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Abstract

Proportional hazards models with multivariate random effects (frailties) acting multiplicatively on the baseline hazard are a topic
of intensive research. Several estimation procedures have been proposed to deal with this type of models. Four procedures used to fit
these models are compared in two real-life datasets and in a simulation study. The performance of the four methods is investigated
in terms of the bias of point estimates, their empirical variability and the bias of the estimation of the variability.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Frailty model; Restricted or residual maximum likelihood; Penalized partial likelihood; Laplace approximation; Multivariate
failure-time data

1. Introduction

In applied sciences, one is often confronted with correlated data. This generic term embraces a multitude of data
structures, such as multivariate observations, clustered data, repeated measurements, longitudinal data, and spatially
correlated data. Instances of this type of research can be encountered in virtually every empirical branch of science.

We will focus on clustered failure-time data. A way to model this type of data is to use a proportional hazards model
conditional on random effects introduced to allow for correlation between the observations from the same cluster. First
proposals for such a modelling strategy concentrated on the univariate mixed effects model (also called shared frailty
model), which only includes a univariate random effect in the model.

However, shared frailty models have some limitations. For instance, they force the unobserved factors (frailties) to
be the same for all failure times within the cluster (Xue and Brookmeyer, 1996). This may not always be desirable.
Another drawback is that in most cases, a univariate frailty can only induce positive association within the cluster
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(Xue and Brookmeyer, 1996). Clearly, there are some situations in which the failure times within the same cluster may
be negatively associated.

To avoid these limitations, models with multivariate, correlated random effects have been proposed. The main
problem with the use of such models is parameters estimation. To this aim, various estimation approaches have been
proposed.

For instance, McGilchrist and Aisbett (1991) and McGilchrist (1993, 1994) used a penalized likelihood approach.
Sastry (1997) proposed the EM algorithm for a nested frailty model assuming gamma-distributed frailties. Other variants
of the EM algorithm were developed by Xue and Brookmeyer (1996), Vaida and Xu (2000), Ripatti et al. (2002), and
Cortiñas and Burzykowski (2005). The various implementations of the algorithm differ in the methods used to compute
conditional expectations of random effects at the E-step. In particular, Xue and Brookmeyer (1996) considered the
use of numerical integration, Vaida and Xu (2000) applied Monte Carlo Markov Chain (MCMC) sampling, Ripatti
et al. (2002) used rejection sampling, while Cortiñas and Burzykowski (2005) applied the Laplace approximation.
Maples et al. (2002) combined the EM algorithm with the Newton–Raphson method to estimate a two-level model by
maximizing an empirical version of the partial likelihood. Xue (1998, 2001) developed an alternative fitting method
based on estimating equations derived from a Poisson regression formulation. The formulation was also used by Ha
and Lee (2003) to propose an approach based on a hierarchical likelihood, and by Ma et al. (2003) to develop a method
based on fitting random effects Poisson models. Bayesian approaches were considered by, e.g., Ducrocq and Casella
(1996), Gustafson (1997), Sinha and Dey (1997), Sargent (1998), and Xue and Ding (1999). Ripatti and Palmgren
(2000) proposed estimation based on a penalized partial likelihood obtained by applying the Laplace approximation to
the marginal likelihood function.

There are different advantages and drawbacks related to the different approaches. For instance, the EM algorithm
implementation developed by Sastry (1997) allows to analyze survival data clustered at two levels. However, it assumes a
particular form of the model (basically, shared frailty), with a piecewise baseline hazard and gamma-distributed frailites.
The EM algorithm implementation developed by Cortiñas and Burzykowski (2005) allows for an arbitrary baseline
hazard and can be applied to various distributions of random effects. It is also less computationally intensive than the
implementations considered by Xue and Brookmeyer (1996), Vaida and Xu (2000), and Ripatti et al. (2002). However,
due to the asymptotic nature of the Laplace approximation, the method requires that the cluster size is large enough.
Maples et al. (2002) suggest that in their combined approach a quicker convergence rate, related to the use of the
Newton–Raphson method, can be obtained. They report, however, bias in the estimates of standard deviations and
covariances of the random effects. Ha et al. (2001) and Ha and Lee (2003) indicate that in some extreme cases the
hierarchical likelihood approach might be biased.

Information on the relative merits of the various approaches is scarce. The objective of this paper is to, at least
partially, fill this gap. To this aim, a simulation study is conducted. We consider the methods developed by McGilchrist
and Aisbett (1991), Ducrocq and Casella (1996), Ripatti and Palmgren (2000) and Cortiñas and Burzykowski (2005).
The main reasons for this choice were the differences in the nature of the methods, software availability, and feasibility
of conducting a simulation study.

The paper is organized as follows. Section 2 briefly recalls the proportional hazards model with random effects. In
Section 3 the four estimation methods are reviewed. In Section 4 the estimation methods are applied to two case studies.
Section 5 describes the simulation study. The results are presented in Section 6. A short discussion of the results in
Section 7 concludes the paper.

2. The proportional hazards model with random effects

We consider clustered failure-time data with N clusters. The failure-time random variable corresponding to subject
j (j = 1, . . . , ni) from cluster i (i = 1, . . . , N) will be denoted by Yij . It is assumed that observations of Yij can be
right-censored. Thus, for subject j in cluster i we observe Tij = min

(
Cij , Yij

)
, where Cij is a censoring time (random

variable), independent of Yij . Additionally, a censoring indicator �ij is observed, with �ij equal to 1 if Tij = Yij , and 0
otherwise.

As we mentioned in the introduction the univariate shared frailty model was the first proposal to handle clustered
failure-times data. It can be written as

�
(
tij |�, �i

) = �0
(
tij
)
�i exp

(
xT
ij�

)
, (1)
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where tij are the realizations of the random variable Tij , �0(.) is the baseline hazard function, � is a vector of fixed-
effects corresponding to a vector of covariates xij , and cluster-specific random effects �i are assumed to be independent,
identically distributed random variables with a common density function f (�i; �), where � is the parameter quantifying
the variability of frailties. One of the most common distribution assumed for the frailties is the gamma distribution
(Clayton, 1978; Vaupel et al., 1979; Oakes, 1982; Hougaard, 2000). The main reason is that in this case it is easy to
derive closed form expressions of marginal survival, density and hazard function. In the case of a parametric hazard,
and if the random effects are gamma distributed, an analytic expression for the likelihood can be derived. On the other
hand, if the hazard is unspecified, then the EM algorithm with closed form expression for the conditional expectation
of the frailties can be used. It is worth noting that model (1) can be rewritten in the following form:

�
(
tij |�, bi0

) = �0
(
tij
)

exp
(
xT
ij� + bi0

)
, (2)

where bi0 = ln �i . In what follows, we will distinguish between “frailties” �i and “random effects” bi0.
We will consider the following extension of model (2):

�
(
tij |�, bi

) = �0
(
tij
)

exp
(
xT
ij� + zT

ij bi

)
, (3)

where �0(.) and � are the baseline hazard function and the vector of fixed effects, respectively, and bi is a d-dimensional
vector of random effects associated with a vector of covariates zij . We will assume that the random effects bT

i =
(bi0, bi1, . . . , bid) are normally distributed with mean 0 and variance-covariance matrix D=D(�). To simplify formulas,
we will also use the baseline cumulative hazard defined as

�0
(
tij
) =

∫ tij

0
�0(u) du.

Model (3) can be seen as a linear mixed-effects model on the log-hazard scale. The estimation of the parameters �
and � from the observed data Tij is our main interest. Denote by g(.) and S(.) the density and survival functions of
Yij , respectively. Using the well-known relationships (see, e.g., Klein and Moeschberger, 1997) g(t) = �(t)S(t) and

S(t) = exp
{
− ∫ t

0 �(u) du
}

, the likelihood for the observed data

N∏
i=1

ni∏
j=1

{
g
(
tij
)�ij S

(
tij
)1−�ij

}
can be written as

N∏
i=1

ni∏
j=1

{
�
(
tij
)�ij S(tij )

}
=

N∏
i=1

ni∏
j=1

{
�
(
tij
)�ij e− ∫ t

0 �(u) du
}

.

It follows that, assuming model (3) and the conditional independence of the observations within a cluster given bi , one
might write the (conditional) log-likelihood for the observed data as

lC (�, �0, b) =
N∑

i=1

lC
i (�, �0, bi) , (4)

where

lC
i (�, �0, bi) =

ni∑
j=1

[
�ij

{
ln �0

(
tij
) + xT

ij� + zT
ij bi

}
− �0

(
tij
)

exp
(
xT
ij� + zT

ij bi

)]
(5)

is the (conditional) log-likelihood for the observed data in the ith cluster, and b denotes the vector resulting from
“stacking” vectors bi for all clusters. The (marginal) likelihood of the observed data for all clusters can then be
expressed as

LM (�, �, �0) =
∫ N∏

i=1

LA
i (�, �, �0, bi) dbi , (6)
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where

LA
i (�, �, �0, bi) = f (bi; �) elCi (�,�0,bi ) (7)

and f (bi; �) is the density function of bi . Note that (7) can be treated as the likelihood of the “augmented” data for
cluster i, treating bi as additional observations. Consequently,

LA (�, �, �0, b) =
N∏

i=1

LA
i (�, �, �0, bi) (8)

is the likelihood of the “augmented” data for all clusters.
One might consider using directly the likelihood function (6) in the inference on � and �. There are, however,

two major problems with using it for this purpose. First, it depends on the baseline hazard function �0(.). Unless a
parametric form of the hazard can be assumed, the usefulness of (6) is limited. Second, the integral in (6) will usually
be multidimensional, unless a very simple model is considered, and, in general, will not be available in a closed
form.

Several estimation approaches have been proposed to circumvent these problems. In the following section some of
the methods are reviewed.

3. Estimation methods

In this section the approaches proposed by McGilchrist and Aisbett (1991), Ducrocq and Casella (1996), Ripatti
and Palmgren (2000) and Cortiñas and Burzykowski (2005) are reviewed. In what follows, we will assume that bi are
normally distributed with mean 0 and variance-covariance matrix

D(�) =

⎛⎜⎜⎝
�0 0 . . . 0
0 �1 . . . 0
...

...
. . .

...

0 0 . . . �d

⎞⎟⎟⎠ .

3.1. REML estimation method

McGilchrist and Aisbett (1991) used the penalized likelihood approach to estimate the fixed effects and the residual
maximum likelihood (REML) to estimate the variance components of the random effects. Their method consists of
finding the best linear unbiased predictors (BLUP) of the fixed and random components in a first stage to use them next
to find REML estimates of the variance-covariance parameters.

3.1.1. BLUP and REML estimators
The estimation procedure is a generalization of the results developed by Schall (1991). In order to find the BLUP it

is necessary to maximize the sum of two components. The first component is the partial log-likelihood of failure times
treating the random effects as fixed:

l1 =
N∑

i=1

ni∑
j=1

�ij

⎧⎨⎩xT
ij� + zT

ij bi − ln
∑

tkl � tij

exp
(
xT
kl� + zT

klbk

)⎫⎬⎭ . (9)

It can be seen that Eq. (9) is just the partial likelihood corresponding to Eq. (5). The second component is related to
the distribution associated to the random effects

l2 = −1

2

d∑
g=0

(
N ln 2��g +

N∑
i=1

b2
ig

�g

)
. (10)

The algorithm iterates between two steps. First, given an estimate for the variance-covariance matrix D(�), one iteration
is performed to update the estimates of the parameters � and bi . Second, based on the updated values for � and bi , the
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REML estimator of D(�) is used. Once D(�) is estimated and updated, the process starts all over again. The details
are as follows.

Given values �(p) and b
(p)
i of the fixed and the random effects, obtained at the pth iteration, the Newton–Raphson

iterative procedure is used for maximizing l1 + l2 to obtain BLUP estimators �(p+1) and b
(p+1)
i . Let 	ij = xT

ij� + zT
ij bi

and 	 = (	T
1 , 	T

2 , . . . , 	T
N), where 	i = (

	i1, 	i2, . . . , 	ini

)T. In matrix form, 	 = X� + Zb, where X and Z are design

matrices for the fixed and the random effects, respectively. The random effects are of the form b = (
bT

0 , bT
1 , . . . , bT

d

)T
,

where bg = (
b1g, b2g, . . . , bNg

)T. The Newton–Raphson procedure is carried out as follows:(
�(p+1)

b(p+1)

)
=
(

�(p)

b(p)

)
− A−1

(
0{

D(�)(p)
}−1

b(p)

)
+ A−1

(
XT

ZT

)
�l1

�	
, (11)

where

A =
(

A11 A12
A21 A22

)
=
(

XT

ZT

)[−�2l1

�	�	T

]
(X Z) +

(
0X 0Z

0Z

{
D(�)(p)

}−1 ⊗ IN

)
,

(p + 1) and (p) indicate the iterations of the algorithm, ⊗ denotes the Kronecker product and IN is the identity matrix
of dimension N × N . The dimension of the zero matrices 0X and 0Z depends on the dimension of the vectors � and
b, respectively. Matrix 0X is a square matrix, while 0Z has the same number of rows as 0X, but its number of columns
depends on the dimension of b. The inverse of A will be denoted by M and can be expressed as

M =
(

M11 M12

M21 M22

)

=
(

A−1
11 + A−1

11 A12S
−1
A11

A21A
−1
11 −A−1

11 A12S
−1
A11

−S−1
A11

A21A
−1
11 S−1

A11

)
,

where SA11 =
(
A22 − A21A

−1
11 A12

)
.

Given the estimates of � and b, the REML estimator of �g is

�(p+1)
g = b

(p+1)T

g b
(p+1)
g

N − �(p)−1

g tr
(
M22(g)

) , (12)

where tr
(
M22(g)

)
indicates the sum of elements of the diagonal of the submatrix of M22 related to the component g of

the random effects. The algorithm alternates between (11) and (12) to estimate the values of the parameters.

3.1.2. Variance estimation
The elements needed in the estimation of the variance-covariance matrices for the estimated �̂ and �̂ are computed in

the iterative procedure. The variance-covariance matrix for the estimate of � is given by M11. The asymptotic variance
of �̂g is given by

2�̂
2
g

{
N − 2�̂−1

g tr
(
M22(g)

) + �̂−2
g tr

(
M2

22(g)

)}−1
. (13)

3.2. Approximate marginal likelihood method

Using the derivation of a penalized likelihood solution obtained by Breslow and Clayton (1993) for the generalized
linear mixed model assuming Gaussian random effects, Ripatti and Palmgren (2000) presented a parallel approximation
for model (3).
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3.2.1. Penalized partial likelihood
Ripatti and Palmgren (2000) approximate the marginal likelihood (6) using the Laplace approximation. For Gaussian

random effects the marginal likelihood (6) can be rewritten as

LM (�, �, �0) = c|D(�)|−N/2
∫

e−
(b) db,

where


(b) =
N∑

i=1

⎡⎣ ni∑
j=1

{
�ij

(
ln �0

(
tij
) + xT

ij� + zT
ij bi

)
− �0

(
tij
)

exp
(
xT
ij� + zT

ij bi

)}
− 1

2
bT
i {D(�)}−1bi

⎤⎦ . (14)

Let 
′, 
′′ denote the first and the second order partial derivatives of 
 with respect to b. Ignoring a multiplicative
constant, the approximation of the logarithm of the marginal likelihood takes the form:

lM (�, �, �0) ≈ −N

2
ln |D(�)| − 1

2
ln |
′′(b̃)| − 
(b̃), (15)

with b̃ = b̃(�, �) the solution to 
′(b̃) = 0.
Ripatti and Palmgren (2000) show that, for fixed �, the values �̂(�) and b̂(�), which maximize the penalized log-

likelihood (14), also maximize the penalized partial log-likelihood

lPPL (�, �, �0, b) =
N∑

i=1

⎡⎣ ni∑
j=1

�ij

⎧⎨⎩(xT
ij� + zT

ij bi

)
− ln

∑
tkl � tij

exp
(
xT
kl� + zT

klbk

)⎫⎬⎭ − 1

2
bT
i D(�)−1bi

⎤⎦ . (16)

Note that the penalized partial log-likelihood is just the sum of the elements on Eqs. (9) and (10) containing the
parameters of interest (� and b). The estimating equations for �(�) and b(�), for a given �, are of the form:

N∑
i=1

ni∑
j=1

�ij

⎧⎨⎩xij −
xij exp

(
xT
ij� + zT

ij bi

)
∑

tkl � tij
exp

(
xT
kl� + zT

klbk

)
⎫⎬⎭ = 0, (17)

N∑
i=1

⎡⎣ ni∑
j=1

�ij

⎧⎨⎩zij −
zij exp

(
xT
ij� + zT

ij bi

)
∑

tkl � tij
exp

(
xT
kl� + zT

klbk

)
⎫⎬⎭ − {D(�)}−1bi

⎤⎦ = 0, (18)

where the product of a scalar by a vector results in multiplying each elements of the vector by the scalar.
Ripatti and Palmgren (2000) propose to find �̂(�) and b̂(�) by alternating between solving the Eqs. (17) and (18).

Once �̂(�) and b̂(�) are computed, � is updated by maximizing the approximate profile log-likelihood derived from
(15):

lM (�, �, �0) ≈ −N

2
| ln D(�)| − 1

2
ln |
′′(b̂)| − 1

2
b̂T{D(�)}−1b̂. (19)

Ripatti and Palmgren (2000)propose to use 
′′
PPL(b) = (�2lPPL)/(�b�bT) instead of 
′′(b), given its better empirical

performance. An estimating equation for � can be obtained after differentiation of (19) and some simplifications. In
the particular case of a diagonal D(�) the solution of the estimating equation takes the following simple form:

�̂g =
b̂T
g b̂g + tr

{

′′

PPL(b̂)−1
(g)

}
N

, (20)

where tr
{

′′

PPL(b̂)−1
(g)

}
indicates the sum of the elements of the diagonal of the submatrix of 
′′

PPL(b̂)−1 associated with

the gth component of the random effects.
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3.2.2. Variance estimation
Estimates of the variance-covariance matrix of the fixed effects can be obtained using standard Cox regression with

the estimated random effects as an offset. In order to estimate the variance-covariance matrix of �̂ it is necessary to
differentiate (19) twice with respect to � and take the expectation with respect to b. Under the assumed diagonal form
of D(�), the variance for �̂ is given by

var(�̂g) = 2�̂2
g

[
N + 1

�̂2
g

tr
{

′′

PPL(b̂)−1
(g)


′′
PPL(b̂)−1

(g)

}
− 2

�̂g

tr
{

′′

PPL(b̂)−1
(g)

}]−1

. (21)

3.3. Bayesian estimation approach

Ducrocq and Casella (1996) have proposed a Bayesian approach to estimate the parameters of the distribution
of the random effects. In this approach the variance components related to the distribution of the random effects are
estimated from their marginal posterior distribution after integrating out � and b.As this integration cannot be performed
analytically, the Laplace approximation is used.

3.3.1. Laplace approximation of the marginal posterior distribution
Applying the Bayes theorem, the joint posterior density for model (3) is proportional to

LB(�, b, � | y) ∝ L(y | �, b) × �0(b | �) × �0(�) × �0(�). (22)

In this expression, the first factor is the partial likelihood (see (9)), while �0(b | �) is the joint normal density (see (10)).
Ducrocq and Casella (1996) assume a flat prior for � and �

�0(�) ∝ 1 and �0(�) ∝ 1.

Therefore, the log joint posterior density is given by the sum of Eqs. (9) and (10). It is interesting to note that the term
“posterior density” is in fact used here for convenience, acknowledging that it is obtained using the partial likelihood
and not the full likelihood.

According to the Bayesian principle, estimation of the vector of variance components � of the random effects should
be based on its marginal posterior distribution after integrating out the nuisance parameters � and b:

LP(� | y) =
∫

LB(�, b, � | y) d� db. (23)

As this integration cannot be performed analytically, Ducrocq and Casella (1996) propose to approximate this marginal
posterior density using the Laplace approximation. More precisely, for any given value �∗ of �, they show that

LP (�∗ | y
) ≈

∫
exp

{
lB
(
�̂�∗ | y, �∗) − 1

2

(
� − �̂�∗

)T
H�∗

(
� − �̂�∗

)}
d� db, (24)

where H�∗ is the negative Hessian matrix of the joint posterior distribution computed at the maximum �̂�∗ =
(
�̂�∗ , b̂�∗

)
of lB

(
�, b | y, � = �∗). Recognizing under the integral sign of this last equation the kernel of a multivariate normal

density with mean �̂�∗ and variance H�∗ , Ducrocq and Casella derive the following approximation of the marginal
posterior density for any �∗ of �:

lP (�∗ | y
) ≈ constant + lB

(
�̂�∗ | y, �∗) − 1

2 ln
∣∣H�∗

∣∣ . (25)

The method of the simplex (Nelder and Mead, 1965) is used, in an upper level of iterations, to select the value of �
which maximizes this approximate log marginal posterior distribution. This value is taken as the point estimate for �.
Note that, instead of the mode, one could also use another point estimate, given that the whole posterior distribution of
� is available.

For any fixed value �∗ of �, the log joint posterior density is maximized using a limited memory quasi-Newton
method (Liu and Nocedal, 1989) to obtain point estimates �̂�∗ and b̂�∗ of � and b. The negative Hessian matrix H�∗ is
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then computed at this maximum. Based on �̂�∗ and H�∗ , the approximate log marginal posterior density at �∗, obtained
from formula (25), is computed.

3.3.2. Variance estimation
As for the Ripatti and Palmgren (2000) approach, estimates of the variance of the fixed effects � are easily obtained

using standard Cox regression with the estimated random effects as an offset.
Estimates of the standard error of �̂, as well as other point estimates of the distribution of �̂, can be derived from

the knowledge of the full marginal posterior density. To avoid repeated computations of (25), and in particular of
the negative Hessian matrix H for many different values of �, Ducrocq and Casella (1996) propose to summarize
the general characteristics of the distribution (25) through the computation of its first three moments by numerical
integration based on the Gauss–Hermite quadrature. It is worth mentioning that, in general, this distribution appears to
be substantially skewed. It follows that computing the standard deviation of the marginal posterior distribution of � and
using it as standard error of the parameter can lead to overestimation. It is important to note that if we are interested to
test whether � > 0, we can use the whole distribution to compute the confidence interval, without relying on asymptotic
theory, what can be seen as an advantage of this approach.

3.4. The EM algorithm with the Laplace approximation

Cortiñas and Burzykowski (2005) developed an estimation method based on the use of the Laplace approximation
at the E-step in the EM algorithm.

3.4.1. The E-step
In the E-step the expectation of the logarithm of likelihood (8), conditional on the observed data and on the current

values �(p), �(p) and �(p)
0 (.) of parameters �, � and �0(.), respectively, is computed. The expectation, denoted by

Q(�, �, �0), can be written as

Q (�, �, �0) = Q1 (�, �0) + Q2(�), (26)

where

Q1 (�, �0) =
N∑

i=1

ni∑
j=1

[
�ij

{
ln �0

(
tij
) + xT

ij� + zT
ijE (bi)

}
− �0

(
tij
)

exp
{
xT
ij� + ln E

(
ezT

ij bi

)}]
(27)

and

Q2(�) = −1

2

d∑
g=1

⎧⎨⎩N ln
(
2��g

) +
N∑

i=1

E
(
b2
ig

)
�g

⎫⎬⎭ , (28)

with E(.) denoting the expected values. To simplify the notation, the dependence of the expected values in (27) and
(28) on the observed data and �(p), �(p) and �(p)

0 (.) has been suppressed. Note that Q1(�, �0) is just the conditional
log-likelihood (4), where the random effects bi are replaced by their expectations. It is important to note that the
expectations in Eqs. (27) and (28) will not be available in a closed form. The conditional expectations that need to be
computed involve integrals of the form

E {g (bi)} =
∫

g (bi) e
lCi

(
�(p),�(p)

0 ,bi

)
+ln f

(
bi ,�

(p)
)

dbi∫
e
lCi

(
�(p),�(p)

0 ,bi

)
+ln f

(
bi ,�

(p)
)

dbi

. (29)

Cortiñas and Burzykowski (2005) propose to use the Laplace formula to compute these expectations. Using the formula
results in the approximations

E {g (bi)} ≈ g
(̃
bi

)
, (30)
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where b̃i is an isolated global minimum of

k (bi) = − 1

ni

{
lC
i

(
�(p), �(p)

0 , bi

)
+ ln f

(
bi, �

(p)
)}

. (31)

The set of initial values for � and �0(.) are obtained using the Cox regression without random effects. The initial values
for � can be specified by taking D(�) equal to, e.g., the identity matrix.

3.4.2. The M-step
In the M-step new estimates �(p+1) and �(p+1) are found by maximizing the functions Q1 and Q2, respectively. To

estimate � the profile likelihood approach is used. Assuming no ties, in order to keep notation simple, the value of the
baseline hazard which maximizes Q1 is

�(p+1)
m = 1∑

tkl � tm
exp

{
xT
kl�

(p) + zT
klbk

} , (32)

where �m = �0 (tm) and tm (m = 1, . . . , r) are the distinct uncensored failure times. Substituting (32) into Q1 gives the
following profile-likelihood for �:

Q′
1(�) =

N∑
i=1

ni∑
j=1

�ij

⎡⎣xT
ij� − ln

∑
tkl � tij

exp
{
xT
kl� + ln E

(
ezT

klbk

)}⎤⎦ . (33)

The form of (33) resembles that of the partial log-likelihood for the Cox proportional hazards model with offsets

ln E
(

ezT
ij bi

)
. New value �(p+1) of � is obtained by maximizing Q′

1 using standard software for the Cox model, as in

the method proposed by Ripatti and Palmgren (2000).
Given that the density of the random effects bi belongs to the exponential family, the estimation of D(�) is generally

straightforward. Hence, maximizing Q2 leads to the estimator

D̂(�) = 1

N

N∑
i=1

E
(
bib

T
i

)
. (34)

3.4.3. Variance estimation
The variance-covariance matrix of the solution

(
�̂, �̂0, �̂

)
obtained from the EM algorithm can be estimated using

the inverse of the observed information matrix computed from the formula proposed by Louis (1982):

I (�, �0, �) =
[
E
{
−lA

′′
(�, �0, �)

}
− E

{
lA

′
(�, �0, �) lA

′
(�, �0, �)T

}]
, (35)

where lA
′
and lA

′′
are the first and the second derivatives with respect to (�, �0, �) of the logarithm of the “augmented”

likelihood (8).
In order to compute standard error for the fixed parameters and the variance component of the random effects, it

would be necessary to invert I (�, �0, �). The dimension of the matrix I (�, �0, �) can be very large, since it depends
on �0(.) and hence on the number of distinct uncensored failure times. Cortiñas and Burzykowski (2005) proposed to
estimate the standard error of the parameter of interest by inverting only the relevant blocks of the matrix, corresponding
to � and �.

4. Case studies

In this section two case studies will be presented and analyzed using each of the four estimation methods described
in the previous section. The first study was described by Duchateau et al. (2002) and analyzed later also by Cortiñas
and Burzykowski (2005). The second case study was presented by Legrand et al. (2005).
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Table 1
Results of the analysis of the disease free survival data of the patients included in the breast cancer trial (standard error in parentheses)

Method � �2
0 �2

1

McGilchrist 0.162 (0.068) 0.050 (0.032) 9 × 10−5 (0.016)
EM-Laplace 0.162 (0.068) 0.054 (0.026) 8 × 10−5 (0.013)
Ripatti 0.162 (0.069) 0.051 (0.028) 9 × 10−5 (0.014)
Ducrocq 0.162 (0.068) 0.052 (0.064) 1 × 10−5 (0.100)

4.1. Analysis of survival data in a breast cancer clinical trial

In this case study we will use data on disease free survival time of patients from an European Organization for the
Research and Treatment of Cancer (EORTC) early breast cancer clinical trial comparing peri-operative chemotherapy
with surgery alone (Clahsen et al., 1996). The trial included 15 centers, with the following number of patients per
center: 6, 19, 25, 39, 48, 53, 54, 60, 78, 184, 185, 206, 311, 622, 902. Duchateau et al. (2002) used this trial to study
the between-center variability in the baseline hazard. To this aim, they applied a shared frailty model with a gamma-
distributed frailty to model disease free survival. As a result, they estimated baseline hazard (assumed constant) and the
hazard ratio for the surgery-alone treatment to equal 0.07 and 1.16, respectively. The variance of the frailty distribution
was estimated to be equal to 0.092.

The data were re-analyzed by Cortiñas and Burzykowski (2005), allowing for the variation in both the baseline
hazard and the treatment effect using the following model:

�
(
tij |�, bi0, bi1

) = �0
(
tij
)

ebi0+xij (�+bi1), (36)

where(
bi0
bi1

)
∼ N2

{(
0
0

)
,

(
�2

0 �01
�01 �2

1

)}
. (37)

Cortiñas and Burzykowski (2005) obtained similar estimated values for the baseline hazard, hazard ratio and variance
associated to the random center effects to those obtained by Duchateau et al. (2002). The correlation between random
effects bi0 and bi1 was estimated to equal 0.37.

Here we will re-analyze the data using model (36) but ignoring the correlation between random effects (�01 = 0),
given its small estimated value obtained by Cortiñas and Burzykowski (2005). The model will be fitted to the data using
each of the four estimation methods reviewed in Section 3.

The results of the four estimation methods are shown in Table 1. All the methods produce similar point estimates,
consistently yielding a very small estimate (almost 0) for the variance of the random treatment effects. Some differences
in standard errors of the estimated variance parameters can be seen (most notably for the Bayesian approach of Ducrocq
and Cassella), however. The difference observed in the estimated standard errors may be attributable to the fact that
for the Bayesian approach the estimated error is based on the posterior distribution of the variance estimates, while the
other three methods use the asymptotic normality of the estimates. One would expected similar results if the posterior
distribution were symmetric, which is not the case here (data not shown).

4.2. Analysis of disease free interval data in a bladder cancer clinical trial

Bladder cancer is a common urological malignancy and about 70–80% of all bladder cancers are superficial (stage
Ta-T1). Standard treatment typically consists of transurethral resection (TUR) conducted with the aim of removing all
tumors. However, a high proportion of patients experience recurrence or progression to muscle invasive disease, even
after complete resection. Therefore, randomized phase III trials have been conducted over the last decades to investigate
the use of prophylactic treatment following TUR. The objective of such treatment is both to remove residual, unresectable
lesions and to prevent recurrence after complete resection.
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Table 2
Results of the analysis of disease free interval of patients included in the bladder cancer trials (standard error in parentheses)

Method � �2
0 �2

1

McGilchrist −0.100 (0.092) 0.107 (0.041) 0.106 (0.058)
EM-Laplace −0.104 (0.061) 0.100 (0.024) 0.109 (0.026)
Ripatti −0.100 (0.088) 0.106 (0.032) 0.100 (0.039)
Ducrocq −0.101 (0.092) 0.108 (0.053) 0.109 (0.089)

In this case study, we consider the individual patient data of 2649 eligible bladder cancer patients randomized by
63 European centers in seven consecutive phase III randomized clinical trials conducted by the Genito-Urinary Group
of the EORTC (EORTC 30781, Newling et al., 1995; 30782, Bouffioux et al., 1992, 1995; 30791, Kurth et al., 1984;
30831, 30832, Witjes et al., 1998; 30845 and 30863, Oosterlinck et al., 1993). All these patients had Ta-T1 bladder
cancer, approximately half with primary bladder cancer and half with recurrent disease. Within the context of these
trials, patients in each of the participating centers were treated with or without further intravesical treatment after TUR.
The major baseline characteristics were, in general, well balanced over these two groups, with slightly more patients
with multiple tumors and patients with Ta disease in the intravesical treatment group.

Considering the 35 centers which accrued at least 20 patients, our analysis is based on 2292 patients, 1004 (43.8%)
without and 1445 patients (54.5%) with the further intravesical treatment. The number of patients per center varied from
21 to 249, with a median of 52 and mean of 65. The analyzed endpoint is disease free interval (time from randomization
to the date of the first bladder recurrence, censoring the patients without recurrence at the date of last available follow
up cytoscopy).

The data were analyzed using model (36), but assuming no correlation between random effects (�01 = 0). The model
was fitted to the data using each of the four estimation methods reviewed in Section 3.

The results obtained for the four estimation methods are shown in Table 2. As for the first case study, all the methods
produce similar point estimates. However, more remarkable differences in standard errors of the estimated values can
be seen. For instance, the EM algorithm proposed by Cortiñas and Burzykowski (2005) produces smallest standard
errors. This might be due to the fact that Cortiñas and Burzykowski (2005) do not invert the whole information matrix
given by (35) (see Section 3.4.3). On the other hand, the Bayesian approach of Ducrocq and Casella (1996) yields the
highest values of standard errors. This can be again attributed to the use of the full posterior, rather than an asymptotic,
distribution (see previous section).

5. Simulation study

The analyzes of two case studies presented in the previous section suggest that, while the point estimates obtained
by the four different methods are quite similar, there may be differences in the standard error of the estimates. In order
to investigate in more detail the performance of the different estimation methods, a simulation study is conducted using
a setting similar to the second case study.

5.1. Simulation model and parameter settings

The data were generated using the following proportional hazards model:

�
(
tij |�, bi0, bi1

) = �0
(
tij
)

ebi0+xT
ij (�+bi1), (38)

with (
bi0
bi1

)
∼ N2

{(
0
0

)
,

(
�2

0 0
0 �2

1

)}
. (39)
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Table 3
Interpretation of �2

0

�2
0 Median time-to-event for patients with xij = 0

0.04 (6.5–12.5 years)
0.08 (5.7–14.4 years)
0.4 (3.2–25.5 years)

Table 4
Interpretation of �2

1

�2
0 �2

1 Hazard ratio Median time-to-event for patients with xij = 1

0.04 0.08 (1.26–3.21) (2.6–7.9 years)
0.08 0.04 (1.45–2.80) (2.6–7.9 years)
0.08 0.08 (1.26–3.21) (2.4–8.7 years)
0.4 0.8 (0.46–8.77 ) (0.8–27.1 years)

Model (38) corresponds to the setting of a multicenter clinical trial, in which heterogeneity appears both in the center-
specific baseline hazards, as well as associated to the covariate. Parameters of the model were chosen to mimic data
available in a real bladder cancer clinical trial database (Royston et al., 2004). In this simulation study we considered
the similar distribution of patients over centers as in the real bladder dataset, namely 2323 patients accrued by 37
centers. Distribution of patients over centers was as follows: 21, 23, 23, 25, 26, 30, 30, 32, 34, 34, 34, 35, 35, 35, 37,
39, 41, 42, 42, 43, 52, 52, 53, 56, 61, 63, 66, 72, 85, 86, 91, 104, 116, 120, 155, 183, 247.

Two simulation settings were considered. In the first one moderately censored data (around 40%) were generated,
while in the second one highly censored data (around 60%) were simulated. In both settings we simulated data using
different combinations of values of �2

0 and �2
1, namely 0.04/0.08, 0.08/0.04, 0.08/0.08 and 0.4/0.8. A constant baseline

hazard of �0(t) ≡ 0.077 was used. In order to have a better idea of the interpretation of the values of �2
0, �2

1 and
�0, one might consider the spread of the median time-to-event from center to center. In our simulation bi0 and bi1 are
normally distributed, thus the resulting distribution function for the median time-to-event is log-normal with parameters
ln(ln 2) − ln �0 − �xij and �2

0 + �2
1x

2
ij . For patients with xij = 0, the distribution does neither depend on �, nor on �2

1.

For such patients, Table 3 presents, for each particular value of �2
0, the interval containing the median time-to-event of

90% of the centers.
In the next sections we describe details of both settings.

5.1.1. Moderate censoring setting
In this setting we consider a covariate xij , which divides the population in two groups: 30% of the patients have

xij = 0 and 70% have xij = 1. The covariate can be seen as corresponding to, e.g., a prognostic index. The parameter
� was set equal to 0.7, which corresponds to the estimated value for the real dataset. Given � and �0, we can compute
the median time-to-event for a model without the random effects, which equals 9 in the group defined by xij = 0 and
4.5 in the group defined by xij = 1. Table 4 presents, for each particular value of �2

0 and �2
1, the intervals containing

the hazard ratio of the effect of xij for 90% of the centers. Also, a corresponding interval for the median time-to-event
in the group of patients with xij = 1 is given.

For each parameter setting, 250 datasets were generated in the following way. First, N = 37 random effects for the
overall center effect and N = 37 random effects for the center-specific covariate effect were generated according to
(39). We considered an accrual period (AP) of 1065 days (about 3 years) and a further follow up period (FP) of 2440
days (about 6.7 years). The actual observation for a patient was the minimum of the time-to-event and the time at risk.
The former was generated using an exponential random variable with parameter �

(
tij |�i , bi0, bi1

)
given by (38). The

time at risk for a patient who entered in the study as kth subject at time kAP/2323 was defined as

AP(2323 − k)

2323
+ FP.



J.C. Abrahantes et al. / Computational Statistics & Data Analysis 51 (2007) 3913–3930 3925

Table 5
Interpretation of �2

1

�2
0 �2

1 Hazard ratio Median time-to-event for patients with xij = 1

0.04 0.08 (0.52–1.33) (6.1–19.1 years)
0.08 0.04 (0.60–1.16) (6.1–19.1 years)
0.08 0.08 (0.52–1.33) (5.6–20.8 years)
0.4 0.8 (0.19–3.63) (1.8–65.5 years)

These particular choices of the parameters resulted in approximately 60% of the individuals experiencing the event of
interest.

5.1.2. Heavy censoring setting
In this setting, it was assumed that xij represented the treatment assignment. Hence, an equal split of patients in the

two treatment groups
(
xij = 0 and xij = 1

)
was used. Assuming that the clinical trial takes place in good prognosis

bladder cancer patients, and that the experimental treatment leads to 20% increase in the median disease free interval,
i.e., from 9 to 10.8 years, we used a baseline hazard of 0.077 as in the “moderate censoring” setting, with � equal to
−0.182. Given the values of �, �0, �2

0 and �2
1, we can compute intervals containing the hazard ratio of the effect of the

covariate and median time-to-event for 90% of the centers (Table 5).
For each parameter setting, 250 datasets were generated. In this setting we considered an accrual period of 621 days

(about 1.7 years) and a further follow up period of 2192 days (about 6 years). The generating mechanism for the data
was similar to the one used in “moderate censoring” setting. As a result of the choices of the parameters, approximately
40% of the individuals in the datasets experienced the event of interest.

5.2. Numerical implementation

McGilchrist and Aisbett’s approach was implemented using SAS-IML v8.2. The iterative procedure was stopped if
the maximum of the relative difference between the fixed effects and variance estimates for two consecutive iterations
was smaller than 10−3. The method proposed by Ducrocq and Casella (1996) was implemented with The Survival
Kit (Ducrocq and Sölkner, 1994, 1998) (www.boku.ac.at/nuwi/software/softskit.htm), a package of Fortran programs
developed in the field of animal genetics to estimate survival models with random effects. The joint estimation of two
variance components was not implemented in the original version. Therefore, we used a modified version proposed by
Legrand et al. (2005). In this case, the convergence criterion required that the standardized norm of the vector of first
derivatives of lB

(
�, b|y, � = �∗) at its maximum had to be less than 10−8. The EM algorithm proposed by Cortiñas

and Burzykowski (2005) was implemented using SAS-IML v8.2. The EM algorithm was stopped when the maximum
of the absolute changes for the fixed effects, the variance estimates and the log-likelihood was smaller than 10−5. The
method proposed by Ripatti and Palmgren (2000) was applied using the S+ functions developed by Therneau (2003).
In this case the convergence criterion was the relative change in log-likelihood smaller than 10−4.

5.3. The analysis model and robustness of the estimation methods

The main part of the simulation study was devoted to the investigation of the performance of the four estimation
methods under the correctly specified model. That is, the data were generated under model (38), and the same model
was used in the analysis.

A limited attempt to investigate the robustness of the estimation methods was also undertaken.All the methods assume
proportional hazards, while allowing for an unspecified baseline hazard and normally distributed random effects. Thus,
one could consider their performance when, for instance, the proportionality of hazards assumption is violated, or when
the distribution of the random effects is not normal. In our investigation we focused on the latter. To this aim, we simu-
lated the data using the proportional hazards model (38) under “moderate censoring,” but with (independent) bi0 and bi1
distributed according to a symmetric Laplace distribution with mean 0 and variances equal to 0.4 and 0.8, respectively.
The two Laplace distributions have the same means and variances as the normal distributions, but thicker tails.

http://www.boku.ac.at/nuwi/software/softskit.htm
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6. Results of the simulations

6.1. Moderate censoring setting

Table 6 presents the results of the simulation for the moderate censoring setting. In this setting, none of the methods
used in the simulations experienced convergence difficulties. The parameter � was, in general, estimated well by all the
methods, with a relative absolute bias less than 4% in any of the considered cases. The bias increased with increasing
�2

0 and �2
1. The bias of the estimates obtained by the Ripatti and Palmgren (2000) approach, in the case of �2

0 = 0.04
and �2

1 = 0.08, was higher than for the other methods. On the other hand, the approach of Ducrocq and Casella (1996)
produced the largest bias when �2

0 = 0.4 and �2
1 = 0.8. The variability of estimates of �, measured by the empirical

standard error, was similar for all the methods compared. In general, the Ripatti and Palmgren approach produced
fixed-effects estimates with the largest empirical standard error. It is important to note, that the model-based estimates
produced by Ducrocq and Casella (1996) and McGilchrist and Aisbett (1991) approaches were closer to the empirical
standard error than for the other two methods.

The estimates �2
0 and �2

1 for all the methods were on average comparable. The version of the EM algorithm proposed
by Cortiñas and Burzykowski (2005) yielded estimates with, in general, the smallest empirical variability, while
Ducrocq and Casella’s approach gave estimates with the largest variability. The Ducrocq and Casella approach tended
to overestimate the empirical variability, while the Ripatti and Palmgren method and the version of the EM algorithm
proposed by Cortiñas and Burzykowski (2005) tended to underestimate it. The model-based standard errors produced
by the approach of McGilchrist and Aisbett were in most of the cases closer to the empirical standard error than for the
other methods.

Table 7 shows the mean squared error (MSE) for each parameter in each of the settings studied. For the “moderate
censoring” one can observe that the MSE of the estimates of � was consistently the smallest for the McGilchrist
and Aisbett approach. On the other hand, the EM algorithm proposed by Cortiñas and Burzykowski (2005) tended to
produce the smallest MSE for �2

0. Overall, however, no pattern can be seen that would indicate that one method is
preferable to all other in all circumstances.

Table 6
Moderate censoring setting

Method �̂ �̂2
0 �̂2

1

�2
0 = 0.04 and �2

1 = 0.08
McGilchrist 0.705 (0.074; 0.073) 0.040 (0.023; 0.023) 0.078 (0.035; 0.034)

Ripatti 0.715 (0.119; 0.094) 0.038 (0.023; 0.024) 0.079 (0.026; 0.039)

EM-Laplace 0.702 (0.055; 0.079) 0.044 (0.021; 0.023) 0.083 (0.030; 0.031)

Ducrocq 0.703 (0.081; 0.078) 0.042 (0.033; 0.025) 0.079 (0.047; 0.039)

�2
0 = 0.08 and �2

1 = 0.04
McGilchrist 0.701 (0.067; 0.068) 0.079 (0.030; 0.027) 0.043 (0.029; 0.028)

Ripatti 0.702 (0.083; 0.095) 0.076 (0.025; 0.030) 0.039 (0.021; 0.030)

EM-Laplace 0.693 (0.055; 0.071) 0.075 (0.022; 0.028) 0.055 (0.024; 0.026)

Ducrocq 0.713 (0.073; 0.079) 0.085 (0.041; 0.039) 0.039 (0.039; 0.031)

�2
0 = 0.08 and �2

1 = 0.08
McGilchrist 0.703 (0.074; 0.079) 0.084 (0.033; 0.032) 0.075 (0.038; 0.038)

Ripatti 0.702 (0.082; 0.085) 0.077 (0.025; 0.036) 0.077 (0.026; 0.042)

EM-Laplace 0.696 (0.055; 0.085) 0.076 (0.028; 0.031) 0.080 (0.029; 0.032)

Ducrocq 0.706 (0.081; 0.082) 0.084 (0.046; 0.039) 0.082 (0.053; 0.042)

�2
0 = 0.4 and �2

1 = 0.8
McGilchrist 0.689 (0.160; 0.150) 0.405 (0.122; 0.121) 0.797 (0.224; 0.213)

Ripatti 0.691 (0.122; 0.165) 0.383 (0.101; 0.121) 0.770 (0.195; 0.213)

EM-Laplace 0.698 (0.156; 0.166) 0.375 (0.083; 0.092) 0.765 (0.189; 0.219)

Ducrocq 0.672 (0.161; 0.167) 0.402 (0.162; 0.140) 0.752 (0.218; 0.194)

The mean estimates for 250 simulated datasets for the four different methods. In parentheses: the mean model-based and empirical (first and second
number) standard error.
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Table 7
Mean squared error for the parameters for the four different methods (×10−3)

Method Moderate censoring setting Heavy censoring setting

�̂ �̂2
0 �̂2

1 �̂ �̂2
0 �̂2

1

�2
0 = 0.04 and �2

1 = 0.08
McGilchrist 5.35 0.53 1.16 6.97 0.53 2.81
Ripatti 9.06 0.58 1.52 17.16 0.50 2.12
EM-Laplace 6.25 0.55 0.97 9.03 0.49 0.90
Ducrocq 6.09 0.63 1.52 6.95 0.58 2.30

�2
0 = 0.08 and �2

1 = 0.04
McGilchrist 4.63 0.73 0.79 7.06 1.16 1.45
Ripatti 9.03 0.92 0.90 26.28 0.84 1.30
EM-Laplace 5.09 0.81 0.90 5.97 0.63 0.76
Ducrocq 6.41 1.55 0.96 6.21 1.23 1.45

�2
0 = 0.08 and �2

1 = 0.08
McGilchrist 6.25 1.04 1.47 7.06 1.23 2.04
Ripatti 7.23 1.31 1.77 7.97 1.03 2.61
EM-Laplace 7.24 0.98 1.02 8.48 0.97 0.97
Ducrocq 6.76 1.54 1.77 7.06 1.17 2.75

�2
0 = 0.4 and �2

1 = 0.8
McGilchrist 22.62 14.67 45.38 27.12 14.71 60.91
Ripatti 27.31 14.93 46.27 26.28 13.99 64.73
EM-Laplace 27.56 9.09 49.19 25.07 9.06 41.16
Ducrocq 28.67 19.60 39.94 24.82 14.68 17.73

6.2. Heavy censoring setting

Table 8 shows the results of the simulation for the heavy censoring setting. In this setting, Ripatti and Palmgren’s
approach and the EM algorithm with the Laplace approximation experienced convergence problems (up to 14 and 17%,
respectively). The mean estimated values reported here were based only on the cases when convergence was reached.

Fixed effects � were, in general, well estimated for �2
0 = 0.04 and �2

1 = 0.08 and for �2
0 = 0.08 and �2

1 = 0.04. For
these cases, the relative bias was smaller than 9%. The picture was somewhat different when the variances increased.
The relative bias for the fixed effects was still smaller than 9% for McGilchrist and Aisbett’s approach, but, in general, it
reached almost 15% for the other three approaches. Similar to the previous “moderate censoring” setting, the estimates
for the Ripatti and Palmgren approach showed, in general, the largest empirical variability, while those for the Ducrocq
and Casella method produced, in general, estimates with the smallest variability. Note also, that the model-based
standard error for the approach proposed by the Ducrocq and Casella (1996) was the closest to the empirical value.

The estimates of variances of the random effects, similarly to the previous setting, were comparable for all the
methods. The McGilchrist and Aisbett method produced model-based standard errors very close to the true variability.
The Ripatti and Palmgren approach and the version of the EM algorithm proposed by Cortiñas and Burzykowski (2005)
underestimated the empirical variability, while the method of Ducrocq and Casella overestimated it. Of the three last
methods, the version of the EM algorithm proposed by Cortiñas and Burzykowski (2005), yielded model-based standard
errors closest to the empirical standard error.

From Table 7 one can observe that under the “heavy censoring,” the Ducrocq and Cassella approach was producing
the estimates of � with the smallest MSE. On the other hand, the EM algorithm proposed by Cortiñas and Burzykowski
(2005) tended to produce the smallest MSE for both �2

0 and �2
1. Thus, similarly to the “moderate censoring” case, no

pattern can be seen that would clearly favor one of the methods in all circumstances.

6.3. Robustness of the estimation methods

The results of the simulations investigating the effect of misspecifying the analysis model (assuming a normal
distribution for Laplace-distributed random effects) are shown in Table 9. It can be seen that the mean estimated fixed
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Table 8
Heavy censoring setting

Method �̂ �̂2
0 �̂2

1 Convergence (%)

�2
0 = 0.04 and �2

1 = 0.08
McGilchrist −0.173 (0.085; 0.083) 0.039 (0.026; 0.023) 0.081 (0.042; 0.053) 100
Ripatti −0.166 (0.092; 0.130) 0.044 (0.021; 0.022) 0.080 (0.036; 0.046) 86.4
EM-Laplace −0.168 (0.067; 0.094) 0.043 (0.015; 0.022) 0.079 (0.026; 0.030) 83.2
Ducrocq −0.167 (0.084; 0.082) 0.042 (0.031; 0.024) 0.080 (0.031; 0.048) 100

�2
0 = 0.08 and �2

1 = 0.04
McGilchrist −0.181 (0.077; 0.084) 0.080 (0.034; 0.034) 0.043 (0.036; 0.038) 100
Ripatti −0.176 (0.100; 0.162) 0.079 (0.024; 0.029) 0.039 (0.034; 0.036) 94.4
EM-Laplace −0.176 (0.067; 0.077) 0.078 (0.022; 0.026) 0.056 (0.015; 0.020) 88.6
Ducrocq −0.171 (0.077; 0.078) 0.082 (0.042; 0.035) 0.042 (0.056; 0.038) 100

�2
0 = 0.08 and �2

1 = 0.08
McGilchrist −0.169 (0.083; 0.083) 0.081 (0.036; 0.035) 0.076 (0.045; 0.045) 100
Ripatti −0.167 (0.086; 0.088) 0.081 (0.024; 0.032) 0.082 (0.037; 0.051) 97.2
EM-Laplace −0.168 (0.066; 0.091) 0.082 (0.028; 0.031) 0.082 (0.029; 0.031) 94.8
Ducrocq −0.169 (0.086; 0.083) 0.083 (0.044; 0.034) 0.087 (0.072; 0.052) 100

�2
0 = 0.4 and �2

1 = 0.8
McGilchrist −0.197 (0.167; 0.164) 0.392 (0.126; 0.121) 0.763 (0.232; 0.244) 100
Ripatti −0.156 (0.143; 0.160) 0.392 (0.078; 0.118) 0.765 (0.180; 0.252) 100
EM-Laplace −0.155 (0.129; 0.156) 0.385 (0.085; 0.094) 0.766 (0.165; 0.200) 100
Ducrocq −0.160 (0.165; 0.156) 0.406 (0.151; 0.121) 0.767 (0.227; 0.129) 100

The mean estimates for 250 simulated datasets for the four different methods. In parentheses: the mean model-based and empirical (first and second
number) standard error.

Table 9
Moderate censoring setting using Laplace-distributed random effects

Method � �2
0 �2

1

McGilchrist 0.692 (0.158; 0.151) 0.376 (0.118; 0.147) 0.736 (0.211; 0.285)

Ripatti 0.689 (0.120; 0.151) 0.376 (0.119; 0.152) 0.769 (0.215; 0.291)

EM-Laplace 0.685 (0.127; 0.162) 0.374 (0.106; 0.151) 0.730 (0.201; 0.277)

Ducrocq 0.703 (0.158; 0.148) 0.406 (0.160; 0.159) 0.727 (0.194; 0.225)

The mean estimates for 250 simulated datasets for the four different methods. In parentheses: the mean model-based and empirical (first and second
number) standard error.

effects are close to the true value of 0.7 (relative bias of at most 2.1%) and very similar to those obtained for the moderate
censoring setting when the simulation and analysis models coincided (see Section 6.1). The empirical variability and
the model-based standard errors are somewhat smaller for the misspecified case. MSE for all the methods is comparable
(around 2.3%).

The absolute relative bias for the variance parameters is larger (up to around 9%) for the misspecified analysis model
than for the correct model (in general, less than 5%). The empirical variability of the estimates is considerably larger
for the former. In general, for all methods the mean model-based standard errors underestimate the empirical ones with
the absolute relative bias ranging from 16% to 42% (except for the Ducrocq and Casella approach for �2

0, for which it
is 1%). For all methods MSE is around 2.3% for �2

0 and around 8.5% (except for the Ducrocq and Casella approach,
for which it is 5.6%) for �2

1.

7. Concluding remarks

Proportional hazards models with multivariate random effects offer several advantages over univariate shared frailty
models (Xue and Brookmeyer, 1996), especially when times from the same cluster are negatively associated. The main
stumbling block in the use of the former models is estimation methods.
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In this paper we compared the performance of four estimation methods, proposed by McGilchrist and Aisbett (1991),
Ducrocq and Casella (1996), Ripatti and Palmgren (2000) and Cortiñas and Burzykowski (2005). The main reason for
this choice was software availability and feasibility of conducting a simulation study.

Each of the methods seems to offer some advantages and drawbacks. For instance, under “heavy censoring” in the
simulation study assuming the same simulation and analysis models, Ripatti and Palmgren’s approach, as well as the
method proposed by Cortiñas and Burzykowski (2005), experienced convergence problems. The non-convergence rate
for the method proposed by Cortiñas and Burzykowski (2005) was somewhat higher. No such problems were seen
for the other two methods. The estimates obtained by the modified version of the EM algorithm proposed by Cortiñas
and Burzykowski (2005) seemed to express the smallest empirical variability. However, model-based standard errors
underestimated the variability. Similar underestimation could be observed for the Ripatti and Palmgren approach.
Ducrocq and Casella’s method, on the other hand, produced conservative standard errors, especially for the estimated
variance components. However, it can be noted that, in general, the distribution of the estimates of � appears to be
substantially skewed. From this point of view, the advantage of Ducrocq and Casella’s approach is that it can provide
an estimate of the whole distribution, which can be used for testing purposes.

In the simulation study, the point estimates produced by the four methods were, in general, comparable. However,
their empirical variability differed. As a result, some differences in the MSE could be observed. For instance, under
“moderate censoring” the MSE of the estimates of the fixed effect was the smallest for the McGilchrist and Aisbett
approach, while under “heavy censoring” it was the smallest for the Ducrocq and Cassella approach. On the other
hand, the EM algorithm proposed by Cortiñas and Burzykowski (2005) tended to produce the smallest MSE for
the variance parameters. Overall, no clear pattern favoring one of the methods irrespectively of circumstances could
be seen.

A small simulation study was conducted to investigate the robustness of the four methods to a misspecification of
the distribution of the random effects. More concretely, the true (Laplace) distribution had thicker tails than the one
(normal) assumed in the analysis model. There were no major, consistent differences in robustness of the compared
methods. Even with this relatively mild misspecification the relative bias of the estimated variance parameters almost
doubled. A considerable increase in the bias of the estimated standard errors was also observed. This warrants a more
complete robustness study. This is a topic for future research.

Taking into account the above, it is difficult to formulate a clear recommendation. The choice of the method can
depend, e.g., on the aim of the analysis (fixed effects, variance components), amount of censoring present in the data,
magnitude of the variability of random effects. The results presented in this paper can offer some guidance in this
respect.
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