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REMARKS ON THE STRONG MAXIMUM PRINCIPLE FOR
NONLOCAL OPERATORS

JÉRÔME COVILLE

Abstract. In this note, we study the existence of a strong maximum principle
for the nonlocal operator

M[u](x) :=

Z
G

J(g)u(x ∗ g−1)dµ(g)− u(x),

where G is a topological group acting continuously on a Hausdorff space X
and u ∈ C(X). First we investigate the general situation and derive a pre-

maximum principle. Then we restrict our analysis to the case of homogeneous

spaces (i.e., X = G/H). For such Hausdorff spaces, depending on the topology,
we give a condition on J such that a strong maximum principle holds for

M. We also revisit the classical case of the convolution operator (i.e. G =

(Rn, +), X = Rn, dµ = dy).

1. Introduction and Main results

This note is devoted to the study of the strong maximum principle satisfied by
an operator

M[u] :=
∫

G

J(g)u(x ∗ g−1)dµ(g)− u(x), (1.1)

where G, ∗, X, J, dµ satisfy the following assumptions:
(H1) X is a Hausdorff space,
(H2) G is a topological group acting continuously on X with the operation ∗,
(H3) dµ is a Borel measure on G such that for all nonempty open sets A ⊂ G

we have dµ(A) > 0,
(H4) J ∈ C(G, R) is a non-negative function of unit mass with respect to dµ.
Such kind of operators have been recently introduced in various models where

long range interactions play an important role, see for example [1, 4, 5, 7, 10, 13]. A
first example of such models is given by the well known nonlocal reaction diffusion
equation below,

∂u

∂t
=

∫
Rn

J(x− y)u(y) dy − u + u(1− u) in R+ × Rn. (1.2)
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The above equation models the evolution of a population density through a homo-
geneous environment with a constant rate of birth and death. In this case, we have
(G, ∗) = (Rn,+), X = Rn, J ∈ C(Rn) and dµ = dy is the Lebesgue measure. Such
an equation, with a different type of nonlinearity, appears also in some Ising models
and in ecology, see for example [1, 5, 6, 13] and their many references.

Other examples are given by the following two discrete versions of (1.2),

∂u

∂t
=

1
2
[u(x + 1) + u(x− 1)− 2u(x)] + f(u) in R+ × R, (1.3)

∂u

∂t
=

1
2
[u(p + 1) + u(p− 1)− 2u(p)] + f(u) in R+ × Z. (1.4)

In both situations the discrete diffusion operator can be reformulated in terms of
a nonlocal operator M defined in (1.1). Indeed, in these two cases, by taking
(G, ∗) = (Z,+), dµ the counting measure and J ∈ C(Z, R) defined as follows:

J(p) :=

{
1
2 if p = −1 or p = 1,
0 otherwise,

it follows that for any x in the Hausdorff space R or Z we have
1
2
[u(x + 1) + u(x− 1)− 2u(x)] =

∫
G

J(g)u(x ∗ g−1)dµ(g)− u(x).

As for their continuous version (1.2), equations (1.3) and (1.4) appear in discrete
reaction diffusion models describing a wide variety of phenomenon, ranging from
combustion to nerve propagation and phase transitions. We point the interested
reader to [4, 3, 9] and the many references cited therein.

Another example comes from the following size structured population model,
recently introduced by Perthame et al. in [10, 11],

∂u

∂t
+

∂u

∂x
=

∫ +∞

0

u(
x

y
)b(y)dy − u(x) in R+ × R+. (1.5)

In such case, we have (G, ∗) = (R+\{0}, ·), X = R+ and dµ(y) = dy is the Lebesgue
measure.

In all these examples, depending on the group and the measure considered, the
properties satisfied by the corresponding operator M show significant differences.
However, as for the classical Laplace operator (∆), they all satisfy the following
positive maximum principle.

Definition 1.1 (Courrège Positive maximum principle [2]). An operator A ∈
L(C(X)) is said to satisfy the positive maximum principle if for all f ∈ C(X)
and x ∈ X such that f(x) = sup(f) we have A(f)(x) ≤ 0.

For the Laplace operator (∆), in addition to the above property, it is well known,
see [8, 12], that a sub-harmonic functions satisfies a strong maximum principle:

Theorem 1.2 (Elliptic Strong maximum principle). Let u ∈ C2(Rn) be such that
∆u ≥ 0 in Rn. Then u cannot achieve a global maximum without being constant.

In this note, we investigate the conditions on (G, ∗), X, J and dµ in order to
achieve such strong maximum principles for M. More precisely , we are interested
in finding simple conditions on (G, ∗), X, J and dµ for the strong maximum principle
to hold:



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Coville, J. (2008). Remarks on the strong maximum principle for nonlocal operators.

Electronic Journal of Differential Equations, on-line, 10 p.

EJDE-2008/66 STRONG MAXIMUM PRINCIPLE 3

Theorem 1.3 (Strong maximum principle). Let u ∈ C(X, R) be such that M[u] ≥
0 in X. Then u cannot achieve a global maximum without being constant.

In the analysis of nonlinear elliptic equations, the strong maximum principle
plays a very important role in proving key a priori estimates. It is expected that
such a strong maximum property for M will play a similar role in the analysis of
nonlinear equations involving nonlocal operators. It is therefore of great interest
to investigate the conditions on G, X, dµ and J in order that a strong maximum
principle hold for M.

In this direction, we first establish a generic result satisfied by all operators M.
More precisely, we show the following result.

Theorem 1.4 (Pre-maximum principle). Let (G, ∗, X, J, dµ) be such that (H1 −
H4) are satisfied and let u ∈ C(X, R) be such that

M[u] ≥ 0 (resp. ≤ 0).

Assume that u achieves a global maximum (resp. minimum) at some point x0 ∈ X
and let Fx0 denote the smallest closed subset of X such that

• x0 ∈ Fx0 ,
• Fx0 ∗ {g−1 ∈ G|J(g) > 0} ⊂ Fx0 .

Then u ≡ u(x0) in Fx0 .

Our next result is a characterization of the set Fx0 defined in the above Theorem
1.4.

Proposition 1.5. Let (G, ∗, X, J, dµ) be such that (H1)–(H4) are satisfied and let
Fx0 be the set defined in Theorem 1.4. Then

Fx0 =
⋃
n∈N

Fn,

where the Fn are defined by induction as follows

F0 = {x0}, and ∀n ≥ 0 Fn+1 := Fn ∗ {g−1 ∈ G|J(g) > 0}.

In view of the above generic result, in order to get a strong maximum principle
for M, we need to find conditions on (G, ∗), X, dµ and J which imply that Fx0 = X.
Note that, from the characterization of the set Fx0 , the condition Fx0 = X implies
that X = Fx0 ⊂ orb(x0) := {x ∗ g−1|g ∈ G} ⊂ X, which means that orb(x0) is a
dense set in X.

Observe that for the discrete diffusion operator considered in (1.3), the set orb(x)
is never dense in R. Therefore, we cannot expect to have a strong maximum prin-
ciple in such situation. On the contrary, for the same diffusion operator considered
in (1.4), the set orb(x) is always dense in Z. Moreover we can easily see that in this
situation the discrete operator satisfies a strong maximum principle.

Considering the above remarks, in what follows we restrict our attention to the
case of Hausdorff homogeneous spaces X (i.e. X := G/H, where H is a closed
subgroup of G). For such Hausdorff spaces, the set orb(x) is always dense in X
and sufficient conditions on (G, ∗), X, J and dµ for the strong maximum principle
to hold reduce to find some simple conditions on J . In this direction, we first give a
sufficient condition on J to ensure that M satisfies the strong maximum principle.
Namely, we have the following result.
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Theorem 1.6. Let X be a connected homogeneous space and let (G, ∗), J, dµ be as
in Theorem 1.4. Let e be the unit element of G and assume that J(e) > 0. Then
M satisfies the strong maximum principle.

When X is a compact connected homogeneous spaces, we can generalize the
previous statement to the following result.

Theorem 1.7. Let X be a connected compact homogeneous space and (G, ∗), J, dµ
as in Theorem 1.4. Then M satisfies the strong maximum principle.

Next, we state optimal condition on J in two special cases. Namely, we first
retrieve the Markov necessary and sufficient condition for the convolution operator
(i.e. (G, ∗) = (Rn,+), X = Rn, dµ = dy), which is well known among experts in
stochastic processes.

Theorem 1.8 (Markov condition). Assume that (G, ∗) = (Rn,+), X = Rn and
dµ = dy. Then M satisfies the strong maximum principle iff the convex hull of
{y ∈ Rn| J(y) > 0} contains 0.

As a consequence of the above Markov condition, we derive the following optimal
condition when (G, ∗) = (R+ \ {0}, •), X = R+ and dµ = dy:

Corollary 1.9. Assume that (G, ∗) = (R+ \ {0}, •), X = R+ and dµ = dy. Then
M satisfies the strong maximum principle iff there exists 2 points x1 and x2 such
that J(xi) > 0 and 0 < x1 ≤ 1 ≤ x2).

1.1. General comments. We first note that, provided an extra assumption on the
sign of the maximum (minimum) is made, we can easily extend the above results
to operators M[u] + c(x)u with non-positive zero order term (i.e. c(x) ≤ 0). As
for M, the operator M+ c(x) satisfies a Courrèges positive maximum principle [2],
which in this case state the following definition.

Definition 1.10 (Positive maximum principle). An operator A ∈ L(C(X)) is said
to satisfy the positive maximum principle if for all f ∈ C(X) and x ∈ X such that
f(x) ≥ 0 and f(x) = sup(f) we have A(f)(x) ≤ 0.

In our investigation of homogeneous spaces, we also observe that to obtain a
strong maximum principle for M, we only need the inequality M[u] ≥ 0 at points
where the function u achieves its global maximum. As a consequence, in the two
situation investigated above (Theorems 1.6 and 1.7 ), we have the following char-
acterization:

Proposition 1.11. Let (G, ∗), X, dµ and J be as in Theorem 1.6 or 1.7. Then for
all u ∈ C(X) and x ∈ X such that u(x) = sup(u) we have the following alternatives:
Either

• there exists y ∈ X such that u(y) = u(x) and M[u](y) < 0, or
• u is a constant.

We also want to point out that, although the Markov condition is well known
among experts in stochastic analysis, we present here a simple analytical proof,
which we believe is new. Using such a point of view allows us to relate a simple
recovering problem with the conditions for the strong maximum principle.

The outline of this note is the following. In the two first Sections (Sections 2 and
3), we recall some basic topological results and prove the pre-maximum principle
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and the characterization of Fx (Theorems 1.4 and Proposition 1.5). Then in Section
4, we establish the strong maximum principle (Theorems 1.6 and 1.7). Finally, in
the last section, we prove the optimal conditions (Theorems 1.8 and 1.9).

2. Preliminaries

In this section, we first present some definitions and notation that we will use
in this paper. Then we establish a useful proposition. Let us first define some
notations:

• Σ := {g−1 ∈ G|J(g) > 0}.
• For a function u, we define Γy := {x ∈ X|u(y) = u(x)}.

Let us now introduce the following two definitions:

Definition 2.1. Let A ⊂ X and B ⊂ G be two sets, then we define A ∗B ⊂ X as
follows

A ∗B := {a ∗ b | a ∈ A and b ∈ B}.
Definition 2.2. Let A ⊂ X and B ⊂ G be two sets, then we say that A is B∗
stable if

A ∗B ⊂ A.

Next, let us recall the following basic property of ∗ stable sets.

Proposition 2.3. Let A ⊂ X and B ⊂ G be two sets. If A is B∗ stable, then Ā is
B∗ stable, where Ā denotes the closure of A.

Proof. Let y ∈ Ā ∗ B and V (y) be an open neighbourhood of y. By definition, we
have y := x1 ∗ b1 for some x1 ∈ Ā and b1 ∈ B. Since the operation ∗ is continuous,
the following map T is continuous:

T : X → X

z 7→ z ∗ b1.

Therefore, T−1(V (y)) is a open neighbourhood of x1. Since Ā is a closed set and
x1 ∈ Ā, we have T−1(V (y))∩A 6= ∅. By definition of T−1(V (y)), using the stability
of A, it follows that for all z ∈ T−1(V (y)) ∩A, z ∗ b1 ∈ A. Therefore,

z ∗ b1 ∈ V (y) ∩A for all z ∈ T−1(V (y)) ∩A,

and yields V (y) ∩A 6= ∅.
The above argumentation, being independent of the choice of V (y), shows that

y ∈ Ā. Now, since y is arbitrary, we end up with Ā ∗B ⊂ Ā. �

3. Pre-maximum principle and Characterizations of Fx

In this Section we prove Theorem 1.4 and Proposition 1.5. Let us first start with
the proof of the pre-maximum principle.

Proof of Theorem 1.4. The proof is rather simple. Let us first recall the definition
of Γx0 :

Γx0 := {x ∈ X|u(x) = u(x0)}. (3.1)
Since u is continuous, Γx0 is a closed subset of X. Now observe that Γx0 is Σ∗
stable (i.e. Γx0 ∗ Σ ⊂ Γx0). Indeed, choose any x̄ ∈ Γx0 . At x̄, u satisfies

0 ≤M[u](x̄) =
∫

G

J(g)u(x̄ ∗ g−1) dµ− u(x̄) =
∫

G

J(g)[u(x̄ ∗ g−1)− u(x̄)] dµ ≤ 0.
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Therefore, ∫
G

J(g)[u(x̄ ∗ g−1)− u(x̄)] dµ = 0. (3.2)

Using that J ≥ 0 and that for all g ∈ G, [u(x̄ ∗ g)− u(x̄)] ≤ 0, (3.2) yields

u(x̄ ∗ g−1) = u(x̄) for all g ∈ Σ.

Thus, we have

u(y) = u(x0) for all y ∈ {x̄} ∗ Σ.

Hence, {x̄} ∗ Σ ⊂ Γx0 . Since this computation holds for any element x̄ of Γx0 , we
have Γx0 ∗ Σ ⊂ Γx0 .

Recall now that Fx0 is the smallest closed subset of X such that

• x0 ∈ Fx0 ,
• F0 ∗ Σ ⊂ Fx0 .

Since Γx0 satisfies the above conditions, we then have Fx0 ⊂ Γx0 . �

Note that Γx0 is independent of the choice of the point where u takes its global
maximum. Indeed, we easily see that Γx0 = Γy for any y ∈ Γx0 . On the contrary,
the set Fx0 strongly depends on x0 and there is no reason to always have Fx0 = Fy.
Indeed, for X = G = R, if Σ = R+ then for x0 < y, Fy ⊂6= Fx0 .

Now, we give a characterization of the set Fx0 defined in Theorem 1.4 and prove
Proposition 1.5. For the sake of clarity, let us first recall Proposition 1.5.

Proposition 3.1. Let Fx0 be the set defined in Theorem 1.4, then

Fx0 =
⋃
n∈N

Fn,

where the Fn are defined by induction as follows: F0 = {x0} and for n ≥ 0,
Fn+1 := Fn ∗ Σ.

Proof. Let us define the set

F∞ :=
⋃
n∈N

Fn.

Using the definition of F∞, we easily see that F∞ is Σ∗ stable. From Proposition 2.3,
it follows that F̄∞ is Σ∗ stable. Therefore, by definition of Fx0 , we have F ⊂ F̄∞.

Now, since x0 ∈ Fx0 and Fx0 is Σ∗ stable, by induction we easily see that
∀n ∈ N, Fn ⊂ Fx0 . Thus, F∞ ⊂ Fx0 and yields Fx0 ⊂ F̄∞ ⊂ Fx0 . �

Remark 3.2. As already mentioned in the introduction, to obtain a strong max-
imum principle for M, we only need to find conditions on X, dµ and J such that
Fx0 = Γx0 = X.

4. Strong maximum principle when X is an homogeneous space

In this Section, we treat the case of connected homogeneous space X and prove
sufficient conditions on J (Theorems 1.6 and 1.7) in order to have a strong maximum
principle f or M. Let us start with the proof of Theorem 1.6.
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Proof of Theorem 1.6. Again the proof is rather simple. We must check that for
any u ∈ C(X, R) such that

M[u] ≥ 0 (resp. ≤ 0)

then u cannot achieve a global maximum (resp. minimum) in X without being
constant. So consider u ∈ C(X, R) such that u achieves a maximum at x0 and
satisfies M[u] ≥ 0 (resp. ≤ 0). By definition of Γx, we only need to show that
Γx0 = X. To this end, we will prove that Γx0 is a closed and open set. By definition
of Γx0 , Γx0 is a closed set of X. Now, let us show that Γx0 is open. Choose any
y ∈ Γx0 . Then at this point

0 ≤M[u](y) =
∫

G

J(g)u(y ∗ g−1) dµ− u(y) =
∫

G

J(g)[u(y ∗ g−1)− u(y)] dµ(g) ≤ 0.

Arguing as in the proof of Theorem 1.4, we have u(y ∗ g−1) = u(y) = u(x0) for all
g ∈ Σ. Since e ∈ Σ, we have for some open neighbourhood B(e) of e

u(y ∗ g−1) = u(x0) for all g−1 ∈ B(e).

Using that G is a topological group, y ∗ B(e) is then an open neighbourhood of y.
Thus,

B(y) := y ∗B(e) ⊂ Γx0 .

Therefore Γx0 is an open set. Hence, X = Γx0 since X is connected. �

Let us now turn our attention to the case of compact homogeneous space and
prove Theorem 1.7. First, let us prove the following technical Lemma.

Lemma 4.1. For any g ∈ X there exists a sequence of integers (nk)
k∈N with nk ≥ 1

and gnk → e as k → +∞, where e is the unit element of G.

Proof. Take g ∈ X and let us consider the following sequence (gm)m∈N. Since
X is compact, (gm)m∈N has a convergent sub-sequence (gmk

)k∈N. Without any
restriction, we can assume that mk+1 ≥ mk + 1. Consider now the following
sequence, wk := gmk+1−mk . By construction, wk → e and mk+1−mk ∈ N∗. Hence,
with nk := mk+1 −mk, gnk → e. �

We are now in a position to prove Theorem 1.7.

Proof of Theorem 1.7. As for Theorem 1.6 we have to check that for any u ∈
C(X, R) such that

M[u] ≥ 0 (resp. ≤ 0)
then u cannot achieve a global maximum (resp. minimum) in X without being
constant. So consider u ∈ C(X, R) such that u achieves a maximum at x0 and
satisfies M[u] ≥ 0 (resp. ≤ 0). By definition of Γx, we only need to show that
Γx0 = X. Again, as in the proof of Theorem 1.6, we prove that Γx0 is an open
and closed set and therefore X = Γx0 since X is connected. By definition Γx0 is
closed. Now let us show that Γx0 is open. Let y ∈ Γx0 and Fy be the set defined in
Theorem 1.4 with y instead of x0. Using now the characterization of Fy given in
Proposition 1.5 we have

Fy :=
⋃
n∈N

Fn ⊂ Γx0 , (4.1)

where Fn := {y} ∗ Σn.
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Choose now g ∈ Σ. According to Lemma 4.1 there exists a sequence (nk)k∈N
such that gnk → e. By assumption, Σ is an open subset of G. Therefore Σnk is a
sequence of open subset of G. Since gnk → e, Σnk is a open neighbourhood of e for
k sufficiently large. Therefore,

{y} ∗ Σnk ⊂ Fy ⊂ Γx0

Since Σnk is a open neighbourhood of e for k sufficiently large, {y} ∗ Σnk is then
an open neighbourhood of y. Thus, Γx0 contains an open neighbourhood of y for
any y in Γx0 . Hence, Γx0 is open. �

5. Some optimal conditions

In this section we prove the optimal Markov condition for the convolution oper-
ator (Theorem 1.8) and prove Theorem 1.9 .

The classical convolution case (X = G = Rn) and dµ = dy: When (X = G =
Rn) the operator M takes the form of the usual convolution; i.e.,

M[u] :=
∫

Rn

J(y)u(x− y) dy − u.

For such a convolution operator, the optimal condition on J in order that M satisfy
a strong maximum principle is the following. This condition is known as the Markov
condition.

Theorem 5.1. M satisfies a strong maximum principle if and only if the convex
hull of {y ∈ Rn|J(y) > 0} contains 0.

Proof. Let us start with the necessary condition. Assume that the Markov condition
fails. We will show that M does not satisfy the strong maximum principle. To this
end, we construct a non constant function u that achieves a global maximum and
satisfies M[u] ≥ 0.

Let us denote conv({y ∈ Rn|J(y) > 0}) the convex hull of {y ∈ Rn|J(y) > 0}.
By assumption, 0 6∈ conv({y ∈ Rn|J(y) > 0}). Using the Hahn-Banach Theorem,
there exists a hyperplane H such that conv({y ∈ Rn|J(y) > 0}) ⊂ H+, where
H+ := {x ∈ Rn|xn ≥ 0} in an orthonormal basis (e1; e2; . . . ; en). Let v be a non-
increasing function that is constant in R−, and let us compute M[u] with u(x) :=
v(xn). Since the Lebesgue measure is invariant under rotation and supp(J) ⊂ H+

we have

M[u] =
∫

Rn−1

∫
R

J(t, xn − yn)[v(yn)− v(xn)] dxn dt

=
∫

Rn−1

∫ xn

−∞
J(t, xn − yn)[v(yn)− v(xn)] dxn dt.

Therefore, since v is non increasing we end up with M[u] ≥ 0. Since u achieves a
global maximum without being constant, u is our desired function.

Let us now turn our attention to the sufficient condition. Assume that 0 ∈
conv({y ∈ Rn|J(y) > 0}), then there exists a simplex S(pi) formed by n + 1 points
of Rn such that 0 ∈ S and J(pi) > 0.

By continuity, we can always assume that (p1, . . . , pn) is a basis of Rn. Let us
now rewrite x0 in the basis (p1, . . . , pn):

x0 = −a1p1 · · · − anpn with ai ≥ 0.
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Observe now that for Rn equipped with the sup norm associated to the base
(p1, . . . , pn), there exists r > 0 so that B(x0, r) ⊂ {J > 0}. Now for all inte-
ger m > 0, set ym = mp0 + [ma1]p1 + · · ·+ [man]pn, where [·] denotes the integer
part. Now let u be a continuous function satisfying M[u] ≥ 0 and that achieves a
global maximum at some point z ∈ R. Without loss of generality, we may always
assume that z = 0. Indeed, if z 6= 0, we consider the function uz(x) := u(x − z),
instead of u. We easily see that uz achieves a global maximum at 0 and satisfies
M[uz] ≥ 0. Using now Theorem 1.4, we see that for all m ∈ N,

‖ym‖ < 1 and B(ym;mr) ⊂ Γ0.

Therefore, ⋃
m∈N

B(ym;mr) ⊂ Γ0.

Hence, Rn ⊂ Γ0. �

The above necessary and sufficient condition for the convolution operator can
be weakened depending on the underlying topological structure of the space. In
particular, we have in mind the following setting. Since M is translation invariant,
M is also an operator on the set of periodic functions. On this set of functions, the
strong maximum principle always holds. This condition is not so surprising since
the additional periodic structure will in some sense compactify the homogeneous
space Rn.

Another special case: X = R+, (G, ∗) = (R+ \ {0}, ·) and dµ = dy. In this
situation,

M[u] :=
∫

R+
J(y)u

(x

y

)
dy − u,

and the above operator has essentially the same property as the usual convolution
operator. Indeed, let us make the following change of variables x := et. Then we
have

M[u](et) =
∫

R
J̃(t− s)u(es) ds− u(et),

where J̃(t) := J(et)et. Therefore, letting v(t) = u(et), we end up with

R[v](t) = J̃ ? v(t)− v(t) in R,

with
∫

R J̃(t)dt = 1. Hence, the optimal condition to achieve a strong maximum
principle for such a kind of operator will be of the same type as the one used for
the convolution operator.

Namely, there exists two points a < 1 < b such that J(a) > 0 and J(b) > 0.
This condition corresponds to the one given for the convolution operator which is
the existence of two points a′ < 0 < b′ such that J̃(a′) > 0 and J̃(b′) > 0. The
above observation proves Corollary 1.9.
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[10] Philippe Michel, Stéphane Mischler, and Benôıt Perthame. General relative entropy inequal-
ity: an illustration on growth models. J. Math. Pures Appl. (9), 84(9):1235–1260, 2005.
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