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Abstract
Background: Zygote arrest 1 (ZAR1) is one of the few known oocyte-specific maternal-effect
genes essential for the beginning of embryo development discovered in mice. This gene is
evolutionary conserved in vertebrates and ZAR1 protein is characterized by the presence of
atypical plant homeobox zing finger domain, suggesting its role in transcription regulation. This
work was aimed at the study of this gene, which could be one of the key regulators of successful
preimplantation development of domestic animals, in pig and cattle, as compared with human.

Methods: Screenings of somatic cell hybrid panels and in silico research were performed to
characterize ZAR1 chromosome localization and sequences. Rapid amplification of cDNA ends was
used to obtain full-length cDNAs. Spatio-temporal mRNA expression patterns were studied using
Northern blot, reverse transcription coupled to polymerase chain reaction and in situ
hybridization.

Results: We demonstrated that ZAR1 is a single copy gene, positioned on chromosome 8 in pig
and 6 in cattle, and several variants of correspondent cDNA were cloned from oocytes. Sequence
analysis of ZAR1 cDNAs evidenced numerous short inverted repeats within the coding sequences
and putative Pumilio-binding and embryo-deadenylation elements within the 3'-untranslated
regions, indicating the potential regulation ways. We showed that ZAR1 expressed exclusively in
oocytes in pig ovary, persisted during first cleavages in embryos developed in vivo and declined
sharply in morulae and blastocysts. ZAR1 mRNA was also detected in testis, and, at lower level, in
hypothalamus and pituitary in both species. For the first time, ZAR1 was localized in testicular germ
cells, notably in round spermatids. In addition, in pig, cattle and human only shorter ZAR1
transcript variants resulting from alternative splicing were found in testis as compared to oocyte.
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Conclusion: Our data suggest that in addition to its role in early embryo development highlighted
by expression pattern of full-length transcript in oocytes and early embryos, ZAR1 could also be
implicated in the regulation of meiosis and post meiotic differentiation of male and female germ cells
through expression of shorter splicing variants. Species conservation of ZAR1 expression and
regulation underlines the central role of this gene in early reproductive processes.

Background
Maternal mRNAs, accumulated in oocyte, have a crucial
role in the success of early embryo development, allowing
the first cleavages to occur, before the activation of embry-
onic genome [1]. Amongst the mRNA stored in the grow-
ing oocyte are some oocyte-specific genes called maternal
effect genes which may account for this early cleavage reg-
ulation [2]. Maternal Antigen That Embryos Require
(Mater or Nalp5) [3], Zygote Arrest1 (Zar1) [4], Stella [5]
and nucleoplasmin 2 (Npm2) [6] are examples of mater-
nal-effect genes that have been discovered in mice. They
express preferentially in oocyte and knock-out (KO) of
these genes leads to the incapacity of embryo to develop
beyond the first cleavages. Some naturally-occurred point
mutations in oocyte-specific BMP15 and GDF9 genes have
been shown to increase ovulation rate in heterozygous
carriers and to induce sterility in homozygous sheep [7].
On the other hand, developmental block of in vitro pro-
duced embryos remains the major problem in assisted
reproduction technologies of domestic animals, particu-
larly in cattle and pig. Growing number of data indicate
that the stage of embryonic genome major activation,
which is different between species, is crucial for the suc-
cess of pre-implantation embryo development [8]. To
ensure this maternal-embryo transition (MET) of gene
expression, oocytes should reach a sufficient level of
developmental competence during oocyte differentiation
and maturation [9,10] Maternally expressed genes are
widely implicated in this process and some of them were
reported to be associated with developmental competence
[11,12]. In domestic species, MET occurs later as com-
pared to rodent (8-16-Cell-stage in cattle vs. 2-Cell stage
in mouse), leaving more time to allow the study of the fate
of maternal messengers and of their action in regulating
embryo cleavage. Therefore, studying the maternal genes,
including oocyte-specific ones, in farm species appears as
a valuable model for the study of the mechanisms that
affect oocyte quality and its implication in the success of
embryo development and survival. The creation of sub-
tracted cDNA libraries allowed recently the identification
of novel oocyte-specific transcripts in bovine [13], [14]. In
addition, homologues of some maternal-effect germinal
cells specific genes were recently cloned in bovine
(MATER, BMP15, GDF9 [15]; NALP9, [16]) and porcine
species (VASA, [17]). Zygote arrest 1 (Zar1) was described
in mice as maternal-effect oocyte-specific gene encoding
putative transcription activator/repressor with an atypical

plant homeobox domain (PHD) [4]. PHD zinc finger
domain has a C4HC3-type motif, and is widely distrib-
uted in eukaryotes, being found in many chromatins reg-
ulatory factors [18]. By in silico sequences analysis,Zar1
was shown to be evolutionary conserved in six vertebrate
species including human, mice, rat, xenopus, zebrafish
and fugu [19]. ZAR1 expression was reported to be
restricted to oocyte in mice and to ovary and testis in
human, while in frog a larger pattern of expression,
including ovary, lung and muscle, but not testis, was
shown. In cattle the published data were contradictory: in
a previous study we cloned partial ZAR1 cDNA, detected
transcripts in oocytes and testis and showed the decreas-
ing of mRNA throughout early embryo development [15],
while expression of 126 bp fragment, showing the similar-
ity with ZAR1, has been reported to be expressed through-
out pre-implantation embryos development, as well as in
ovary, testis, heart and muscle [20]. Here we cloned full-
length cDNA of ZAR1 orthologues in pig Sus scrofa and
cattle Bos taurus, characterised corresponding genes and
their expression profiles in comparison with human and
with our previous work on bovine [15], paying particular
attention to mRNA differential expression and cellular
localisation in reproductive tissues.

Methods
Oocytes, embryos and other tissue collections
Pig and cattle
All procedures were approved by the Agricultural and Sci-
entific Research Government Committees in accordance
with the guidelines for Care and Use of Agricultural Ani-
mals in Agricultural Research and Teaching (approval
A37801).

Porcine (Sus scrofa) and bovine (Bos taurus) ovaries were
collected at slaughterhouse and cumulus-oocyte com-
plexes (COC) were aspirated from visible antral follicles.
Bovine COC were subjected to in vitro maturation (MIV)
for 22 hours followed by in vitro fertilization and embryo
development, then embryos at 1-Cell, 2-Cell, 4-Cell, 5 to
8-Cell, morula and blastocyst stages were collected as
described [15]. Groups of immature oocytes at germinal
vesicle stage (GV) and mature oocytes at methaphase II
stage (MII) were denuded from cumulus cells by mechan-
ical treatment. Cumulus cells were centrifuged, washed in
PBS and stored.
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Production of pig embryos in vivo was conducted at the
experimental farm of INRA Nouzilly (France) as described
[21]. Briefly, thirteen Large White hyperprolific gilts were
superovulated and artificially inseminated (AI) with
semen from adult Pietrain boars. Donors were slaugh-
tered in the INRA local slaughterhouse at day 1 – 5 after
AI. The genital tract was collected immediately after
slaughter and before scalding of the gilts. The number of
corpora lutea on the ovaries was recorded and both uter-
ine horns were flushed with 40–100 ml of saline solution
(0.9% w/v NaCl) containing 2% (v/v) new-born calf
serum (NBCS, Bio Whittaker, France). Each day from 1 to
5 after AI, groups of ten embryos were collected from 2–3
gilts and were classified as 1-Cell, 2-Cell, 4-Cell, 5 to 8-
Cell, morula and blastocyst stages.

Biopsies (0.5–2 g) from different porcine tissues (hypoth-
alamus, heart, pituitary, intestine, liver, lung, muscle,
spleen, oviduct and ovary) were collected at INRA local
slaughterhouse from two 7-weeks infantile gilts weighting
about 15 kg. Ovaries were also collected from 7-months
old peri-pubertal gilts of about 120 kg weight. Biopsies of
testis were collected from young (7 months) and adult
(2.5 years) slaughtered boars. Bovine biopsies of hypoth-
alamus, pituitary, ovary and testis were collected from
calves and adult cows or bull in an experimental setting.
Granulosa cells were isolated from antral follicles and
stored in pellets.

All samples were frozen in liquid nitrogen and kept at -
80°C before experiements.

Human
After informed patient consent was obtained, immature
oocytes at GV stage were recovered as deemed unusable
for intracytoplasmic sperm injection (ICSI) from patients
involved in a therapeutic ICSI program as described [22].
Oocytes were then stored individually in 10 µl of 1× RQ1-
DNAse reaction buffer supplemented with 1 unit of RNA-
sin (Promega, Charbonnieres, France) at -80°C. Total
RNA from adult human testis was kindly provided by Dr.
J-L. Dacheux (INRA, Nouzilly, France).

RNA and cDNA preparation and analysis
Total RNA preparation
Total RNA was extracted from bovine and porcine
oocytes, embryos and biopsies by using TriZol reagent fol-
lowing the manufacturer's instructions (Invitrogen, Cergy
Pontoise, France). Except for oocytes and embryos, RNA
concentration was deduced from optical density and RNA
integrity was checked by electrophoresis on denaturing
gel. RNA from human oocytes was extracted by three
times freezing – thawing procedure which was the follow-
ing: tubes containing a single oocyte were plunged in liq-
uid nitrogen for 1 min and then thawed in a water bath for
1 min at 37°C. To avoid the contamination with genomic
DNA, total RNA preparations from oocytes and embryos
or 2 µg of RNA from somatic and gonadic tissues were

Table 1: List of sense (S) and antisense (AS) primers used for ZAR1 mRNA analysis.

Coordinate relative to ZAR1 coding sequences and exon position

primer sequence (5'-3')GB acc: bovine DQ231456 porcine DQ231444 human AY191416 exon

S1 ccagccgagcaaggagcg Bt (813) 1
S2 tacactgatggctgccctg Bt (-8) 1
S3 tataacccttaccgagtggagg Bt (976) Hs (1096) 3
S4 ctcgtaccggtacccataccc Hs (60) 1
S5 acgaggtgctggacggttaca Ss (17) 1
S6 cctgcgcttccagttcttaga Bt (831) Ss (840) Hs (952) 1
S7 tgccgaacatgccagaag Bt (955) 1
S8 aacccgttccgcgacgtat Bt (319) 1
S9 tgtctcggtgcagtgctcgtt Ss (342) 1
S10 aacccttatcgcgtggaggata Ss (988) 3
S11 tgcccagtaaaacttcgcca Ss(1045) 4
AS1 tttgaagctgaaagtgctgtcac Bt (1143) Ss (1152) Hs (1263) 4
AS2 tcttcctcgccgactcctct Ss (691) 1
AS3 agagggagaaaggagaagagca Ss(1261) 4
AS4 gacagctttgtcaaatacagcc Ss(1307) 4
AS5 acaaatcttgacggaggggcct Bt (1090) 4
AS6 gaagctgaaagtgctatcacag Bt (1140) 4
AS7 ggcgacgatctctcgccagcggtgtcc Bt (803) 1
AS8 ataggcgtttgcctttgcatc Bt (1117) Ss (1124) 4
AS9 ctggaagcgcaggcgctcct Bt (843) 1
AS10 tcacaggataggcgtttgc Bt (1124) 4
AS11 ttcacagcgggacctcagtt Bt (1203) 4
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incubated with 1 unit of RQ1 DNAse (Promega) for 15
min at 37°C following by heat inactivation as described
in manufacturer's protocol.

Complementary DNA (cDNA) synthesis
Routinely, reverse transcription (RT) was performed on
RNA amounts equivalent to 5 oocytes or embryos, and on
1 µg of RNA from tissue biopsies. cDNA was extended
from oligo (dT)15VN (V = A, C or G, N = A, T, C, or G)
primers during 1 hour at 37°C by mouse Moloney leukae-
mia virus reverse transcriptase (Invitrogen) as described in
user manual.

To obtain human oocyte cDNA, RT was performed
directly from a half of a single oocyte RNA preparation.

Full-length cDNA from 35 -100 oocytes and 100 ng of tis-
sue RNA was obtained using Super SMART PCR cDNA
Synthesis Kits (Ozyme, St Quentin en Yveline, France) fol-
lowing manufacturer's instructions.

Cloning of porcine and bovine ZAR1 cDNA variants and sequence 
analysis
5'-and 3' rapid-amplification of cDNA ends (RACE) PCR
were performed on bovine immature oocytes RNA and on
porcine testis RNA using SMART RACE cDNA Amplifica-
tion Kit (Ozyme). For RACE, specific primers were used:
S10 and AS3 for pig and S1 and AS5-AS7 for cattle. Prim-
ers sequences and positions are listed in Table 1. ZAR1
cDNA variants from porcine oocytes were obtained by RT-
PCR using S5 and AS1 primers, and from bovine oocytes
using S2 and AS11. PCR mix from Advantage PCR kit
(Ozyme) was complemented with 4% of DMSO. PCR
products were cloned into the pCRII dual promoter vector
using the TA cloning kit (Invitrogen). Clones containing
presumptive ZAR1 inserts were sequenced locally using
ABI Prism sequencing apparatus (Perkin Elmer, Court-
aboeuf, France) or by Macrogen company (Seoul, South
Korea).

The sequences obtained were analyzed using the software
package proposed by Infobiogen [23]. Alignments were
performed using BLASTn [24] and Multalin [25]. Site
ENSEMBLE [26] was used for genome assembly. Deduced
protein sequences were analyzed through the NCBI soft-
ware [27] and Interpro [28] websites. Conservation of the
blocks of synteny between human, cattle and pig was ver-
ified on the Multispecies Comparative Table [29], accessi-
ble on-line [30]. Search for repeated sequences was
performed using REPuter software [31] accessible on-line
[32]. Sequences of porcine and bovine ZAR1 genes and
cDNA variants were directly submitted to GenBank.

Northern blot
A quantity of 20 µg of porcine and bovine total RNA from
brain (hypothalamus), pituitary, testis and ovary was
loaded onto MOPS-formaldehyde 1% agarose gel,
migrated and transferred onto Hybond N+ membrane
(Amersham Biosciences, Orsay, France) as described in
manufacturer's manual. Hybridizations were performed
in Ultrahyb solution (Ambion, Cambridgeshire, UK) fol-
lowing instructions. Porcine and bovine ZAR1 specific
probes were amplified from plasmid DNA using S6 and
AS8 primers (Table 1) and radio-labeled with α
[32P]dCTP (Perkin Elmer) by "Prime-a-gene" labeling
system (Promega).

Virtual northern blot
Two µg of amplified full-length cDNA obtained using
SMART cDNA synthesis kit (Ozyme) from porcine and
bovine immature oocytes were separated on gel and trans-
ferred onto HybondN+ membrane. Hybridizations were
performed as described above for Northern blot.

RT- PCR analysis of ZAR1 expression in oocytes, embryos and tissues
For analysis of ZAR1 expression in oocyte and 1-, 2-, 4-, 5–
8-Cell, morula and blastocyst stage embryos, we used as
template cDNA amounts equivalent to one oocyte or
embryo. For other tissues (hypothalamus, heart, pituitary,
intestine, liver, lung, muscle, spleen, oviduct, cumulus
and granulosa cells, ovary and testis), 5% of the reverse
transcription products were used. In negative control reac-
tions, a pool of RNA equivalent to 1 oocyte/embryo or
125 ng of tissues RNA was directly subjected to PCR. RT -
PCR with water instead of RNA was also used as negative
control. As positive control of cDNA quality, the β-actin
specific PCR was performed with all samples using 5'-gcgt-
gacatcaaggagaagc-3' and 5'-tggaaggtggacagggaggc-3' prim-
ers, raising 432 bp fragment. S10-AS3 and/or S6 -AS8
primers were used for ZAR1 expression analysis in pig and
cattle respectively. PCR mix (Interchim, Montluçon,
France) was complemented with 4% of DMSO to amplify
ZAR1 fragments. Amplified products were gel migrated,
documented and then transferred onto nylon Hybond N+
membrane. Hybridizations were performed as reported
[15], using porcine and bovine ZAR1 specific probes as
described for Northern blot.

Comparative RT- PCR analysis of ZAR1 messengers in pig, cattle and 
human oocytes and testis
Template cDNA equivalent to 1/20 of RT from one oocyte
(0.05 of oocyte RNA equivalent) and to 50 ng of reversed
transcribed testis RNA were used for PCR reactions. Two
sets of primers, designed within different ZAR1 cDNA
regions named a, b, c, were used for each species. Region
a was situated at the beginning of the first exon, down-
stream the first AUG start codon, while regions b and c
were located within second, the most conservative half of
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cDNA. In pig, a-c primer set was S5-AS1 (amplicon of
1135 nucleotides) and b-c was S10-AS3 (amplicon of 273
nucleotides). In bovine, S8-AS9 primers were used as a-c
set (amplicon of 524 nucleotide) and S6-AS8 primers,
raising a 286 nucleotides product, as b-c set. Human S4-
AS1 (amplicon of 1203 nucleotides) and S6-AS1 (ampli-
con of 311 nucleotides) primers were used as a-c and b-c
sets, respectively. Amplified products were transferred
onto nylon Hybond N+ membrane. Hybridizations were
then performed using α [32P]dCTP -labeled fragment
spanning 17–1152 nucleotides of pig ZAR1 cDNA as a
probe.

Real-Time PCR
Real-time PCR was performed using an MyiQ (Bio-Rad
Laboratories, Marnes La Coquette, France). Reverse tran-
scription reactions were performed on RNA from six
groups of 10 bovine oocytes at immature germinal vesicle
(GV) stage and six groups at metaphase II stage after 22 h
of MIV. 1 pg of luciferase mRNA was added to each group
of 10 oocytes before RNA extraction and was used as exter-
nal standard. Reactions were performed in triplicate using
real-time PCR kit provided with a SYBR Green fluoro-
phore (Bio-Rad) according to the manufacturer instruc-
tions. ZAR1 primers S7-AS10 and luciferase specific 5' -
tcattcttcgccaaaagcactctg-3'and 5'-agcccatatccttgtcgtatccc-3'
primers were used. The relative abundance of target cDNA
was calculated using the DDCT I-Cycler IQ software. Anal-
ysis of variance by permutation score and Kruskal-Wallis
tests was performed for statistical analysis of data. Differ-
ence was considered significant at p < 0.05.

In situ hybridization (ISH)
Frozen and paraffin-embedded ovaries from 7-weeks-old
swine and testis from young adult boar were serially sec-
tioned (10 µm) to perform in situ hybridization experi-
ments as described [33]. Briefly, porcine ZAR1 specific
35S-labeled cRNA sense and antisense probes were
obtained by in vitro transcription from 1 µg of T7-SP6
flanked fragment spanning 840–1124 nucleotides of pig
ZAR1 cDNA. Paraffin sections were cleaned with toluene,
rehydrated through serial ethanol-water dilutions and
then incubated 7 min in PBS containing 4 µg/ml of Pro-
teinase K (Sigma, France) at 37°C. After overnight hybrid-
ization and serial washes, slides were coated with NTB
emulsion (Eastman Kodak Comp) and exposed in dark
during three weeks at 4°C. Histological determination of
gonad structures was assessed by staining the slides with
Haematoxyline.

Porcine and bovine genomic DNA extraction and analysis
Southern blot hybridization of genomic DNA in porcine and bovine
Genomic DNA was prepared from lysate of 200 mg of por-
cine and bovine follicular cells by double phenol-chloro-
form extraction. 10 µg of DNA were digested separately by

Pvu II, Hind III or PstI restriction enzymes, separated on a
0.9% agarose gel and then transferred onto HybondN+
membrane. Hybridization with a ZAR1 specific probe as
above (see Northern blot) was performed at 65°C over-
night in 0.5 M phosphate buffer pH 7.4, containing 1 mM
EDTA, 7% SDS and 50 µg/ml of salmon sperm DNA and
membranes were finally subjected to autoradiography.

Regional assignment of Sus scrofa ZAR1 gene
Regional assignment was achieved by PCR using porcine
specific primers S11-AS4 on a pig/rodent somatic cell
hybrid panel comprising 27 hybrid clones [34], [35]. PCR
amplification results were scored on 2% agarose gels.
Regional assignment in pigs was achieved through hybrid
cell analysis by using the statistical rules as defined by
Chevalet et al. [36]. The probability of the regional assign-
ment, the error risks, and the number of discordant had
been taken into account when estimating the reliability of
the localization.

Three BAC clones containing pig ZAR1 gene were found in
INRA swine BAC collection [37] by PCR screening and
sequencing of two of them was performed by primer
walking (Macrogen).

Results
Cloning and comparison of ZAR1 cDNA from porcine and 
bovine oocytes
Human 1275 nucleotides full-length zygote arrest 1 cDNA
sequence [GenBank: AY191416] was used as a query to
Blast Search in Sus scrofa sequence collections accessible
through GenBank. Primers S5 and AS1 were designed
according to ESTs BX926143.1 and CO954861, showing
84% and 91% identity with 1–113 nucleotides and 1069–
1274 nucleotides of human ZAR1 sequence, respectively.
RT-PCR was performed on full-length cDNA from pig
immature oocytes. Resulting PCR products revealed sev-
eral sequences of different lengths which were homolo-
gous to human ZAR1 and showed 100% identity in
overlapping with above ESTs. Three ZAR1 cDNA variants
named oo1, oo2, oo3, containing 1164, 804 and 471
nucleotides open reading frames (ORF), encoding respec-
tively 385, 267 and 146 amino acids putative proteins
were obtained [GenBank: DQ231444, DQ231447,
DQ231446].

In bovine, the partial cDNA corresponding to ZAR1 was
previously cloned from immature oocytes RNA in our lab-
oratory [15]. Here we performed 3'- and 5'- RACE-PCR in
order to determine the full-length ZAR1 transcripts
expressed in oocyte. Sequences of resulting clones
revealed to be homologous to human and porcine ZAR1,
and showed a perfect identity with Bos taurus chromo-
some genomic contig NW_974644. By alignment and
assembling of 3'-and 5'-RACE sequences, 1485 bp full-
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length bovine ZAR1 cDNA was determined, which
includes 1155 bp ORF and encodes putative 387 amino
acid protein [GenBank: DQ231456]. Using S2 -AS11
primers, flanking the ORF, we cloned also five shorter var-
iants of bovine ZAR1 cDNA. As in pig, they either pre-
sented ORFs, encoding putative shorter 295 and 170
amino acid ZAR1 proteins [GenBank: DQ231454 and
DQ231450], or ZAR1 relative sequence with premature
stop codons [GenBank: DQ231451, DQ231452,
DQ231453].

Comparison of ZAR1 coding sequences of Sus scrofa
(Ss),Bos taurus (Bt) and Homo sapiens (Hs) showed a sig-
nificant similarity (Fig. 1A). At the amino acid level, iden-
tity reached 78% between pig and cattle, while human
ZAR1 showed 65% and 61% identity with porcine and
bovine, respectively. Both pig and cattle proteins have the
36 amino acid gap comparing to human ZAR1. Highly
conserved C-termini have 96% similarity between the spe-
cies and contain FYVE/PHD zinc finger (ZnF) domain at
308–373 amino acid position in bovine and at 311–376
amino acid in porcine deduced proteins. At nucleotide

ZAR1 protein and mRNA sequences comparison between pig, cattle and humanFigure 1
ZAR1 protein and mRNA sequences comparison between pig, cattle and human. (A) Alignment of porcine and 
bovine ZAR1 with human protein. Numbers indicate amino acid position. Identical amino acids are boxed in grey. Zinc finger, 
FYVE/PHD-type domain is underlined by circle points. Exon boundaries are defined by bent arrows. Start methionin amino 
acids (M) are in bold; note putative alternative start M sites in porcine (amino acid 183) and human (amino acid 173). (B) Por-
cine (Ss), bovine (Bt) and human (Hs) ZAR1 3'-- end cDNA alignment. 3-UTRs are in lower-case letters. Coding sequence is in 
capital letters. Termination codons are bold-typed. Identical nucleotides are denoted by stars. Protein sequence is in bold-type 
italic. Hexamer polyadenylation signals are double-underlined. Putative Pumilio-binding sites are outlined. U/purines dinucle-
otide-rich stretches (putative EDEN) are boxed in grey.

(A) 
  �exon1

porcine MAALGDEVLD GYMYPACTLY SYP--YPYPA AAKDKRAAGG GGWRHPDGGY PPVSSS--DG AAPSSFPGYG QLAAADYLHS YQRAQLMALL 86 

bovine  MAALGDVVLD GYLYPACALY SYRCLYPAAA AAKGKSGADE GGWRPRGGGY PPVSSS-SDG AASSSFPGHG QLAAAEYVHS YQRAQLMALL 85 

human   MAALGDEVLD GYVFPACPPC SYR--YPYPA ATKGK-GAAG GSWQQRGRGC LPASSPCSAG AASLSFPGCG RLTAAEYFDS YQRERLMALL 87 

porcine SQMGPGLAPR PGRVSIRDVA VQVNPRRDVS VQCSLGRRTL LRRAREPGSC S--EGAAGAG GSGLVSPQQP RRGPEQGSPP NGASRPIRFP 174 

bovine  SQVGP----R PA--STRDAA VQVNPFRDVS VQCSLGRRTL GHRARESGPS PDPEGAADAG GSCPASPQRA RRGPEQDSPP SRAPRRVRFL 173 

human   AQVGPGLGPR ARRAGSCDVA VQVSPRIDAA VQCSLGRRTL QRRARDP-ES PAGPGAEGTT GGGSFSQQPS RRGLEQGSPQ NGAPRPMRFP 176 

porcine RTVAVYSPMA TRRLDTLQEG SEAVAGEQRP GEPGGERGPP PARPRGPEAG EESARKTPQP PQSAEEEDEA QAAVRTSPEQ PSPVARAPD- 233 

bovine  RTLAVYSPVT SRCLATLLEG AEAVAGQQRP GEPETERGPP PARPRGPEEG DGSARKVSL- -QLQPEEDEA QAAVPASREQ PPPVARVPD- 230 

human   RTVAVYSPLA LRRLTAFLEG PGPAAGEQRS GASDGERGPP PARLQGPEEG EVWTKKAPRR PQS-DDDGEA QAAVRASWEQ PADGPELPPR 265 

                                                                    �exon2                                                          �exon3

porcine ---------- ---------- ---------- -----AVGEG LSPRSPQPGK ERLRFQFLEQ KYGYYHCKDC NIRWESAYVW CVQGTNKVYY 318 

bovine  ---------- ---------- ---------- -----TAGER SSPRSPQPSK ERLRFQFLEQ KYGYYHCKDC NIRWESAYVW CVQGTNKVYY 315 

human   EAQEGEAAPR SALRSPGQPP SAGRARDGGD GREAAVAGEG PSPRSPELGK ERLRFQFLEQ KYGYYHCKDC NIRWESAYVW CVQGTNKVYF 355 

                                 �exon4                                                       °°°°°°°°°°°° 

porcine KQFCRTCQKS YNPYRVEDIT CQNCKLTRCS CPVKLRHVDP KRPHRQDLCG RCKGKRLSCD STFSFKYII 387 

bovine  KQFCRTCQKS YNPYRVEDIT CQNCKQTRCS CPVKLRHVDP KRPHRQDLCG RCKGKRLSCD STFSFKYII 384 

human   KQFCRTCQKS YNPYRVEDIT CQSCKQTRCS CPVKLRHVDP KRPHRQDLCG RCKGKRLSCD STFSFKYII 424 

            °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° 

(B) 

…   K  Y  I  I

Ss  AAAUAUAUUAUUUAAgcgaaaag------caacaaaccauaaacccug--guccuacug--aucaggugcuaagggagcagacaagugag 

Bt  AAAUAUAUCAUUUAAgugaauggugggggaaaaaacccaagaaaacugaggucccacugugaaugugugcugcuggagcagaaaagcgag 

Hs  AAAUACAUCAUUUAGgugaaag--------------uca-----------guguugcugug—caugcgcugauggaguagacgagu-gag 

    ***** ** ***** * ****                **           **    ***               *            ***  

Ss  c----cuuuuu------ccaug-cucuucuccu-uucucccucucccuccucuaaauacuucacgaaaggc--ugua-uuugacaaagc 

Bt  cugagcuuuuuugccccccaugucucuccuccucuucugccgcucccuc---gaaauacuucguggaaggc--uguuguuuggcaaaac  

Hs  c-----uuuu-------ccgugccucuccucca------ccucucccuucucaaaauacuucaugaaaggcaguguauucugaaaaagc 

    *     ****       ** ** **** ****       ** ******     *********  * *****  ***  * **  *** * 

Ss  ugucaaauaaaagcauugcaaaacaaucacacauguuguguaugauccuuaaacuucgagcuuguguugacagucugggccugucacuuua 

Bt  uguaaaauaaaagcauugcaaaacaguug-auacacugcauaaaauccguagga---gagccugucuuaacagucugugcuuguuacuuua 

Hs  cuucaaauaaagguauugcaacacga 

        ******* * ******* ** 

Ss  auacuuguccauugcauguggcacagccaaggcuccaaacuaaguca--cuugagaagagagucuggaggggcacccagaugugagguu  

Bt  guauuuguccauugcuuauggagcagcca-ggcucugaguuaggcuagucauuacuugacaguaugaaggggcucacu            
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level, porcine and bovine sequences revealed in totality
83% identity, showing significantly higher 93% homol-
ogy within ZnF coding sequence. Numerous palindrome
repeats were detected inside of GC-reach region spreading
the first half of coding sequence in both species (Table 2).
Within 3'- untranslated regions (3'-UTR), XPum
(Pumilio) recognition sites UGUA, approximate to hex-
amer polyadenylation signals (HPS) AAUAAA, as well as
sequences rich in U/(G/A) dinucleotides were found (Fig.
1B). Different length of 3'-UTR in bovine oocyte was evi-
denced by 3'-RACE [GenBank: DQ231448 and
DQ231449]. Poly-A tail was found 197 or 323 bp after
stop codon. In pig, RACE allowed to determine three
closely positioned poly-A binding sites at 158, 167 and
207 nucleotides down-stream UAA.

ZAR1 gene characterization and mapping in pig and cattle
We determined ZAR1 gene sequences and structure for
both pig and cattle [GenBank: DQ231443 and
DQ231455]. Without promoter region, genes spanned
about 4 kb, and include 4 exons and 3 introns. Their struc-
ture was very similar to human ZAR1 gene AY191416
(Table 3), as well to mice Zar1 [GenBank: AY193889].

Mapping of pig ZAR1 by screening somatic cell hybrid
panel allowed its assignment to chromosome 8 region 1/
2p21-p23 with a regional probability of 0.82 and an error
risk inferior to 0.1. This mapping result was totally in
accordance with previous comparative mapping data
available between human and pig. According to multispe-
cies table of genes synteny, we found that human 4p11
and porcine 8 1/2p21-p23 locus, bearing ZAR1, corre-

Table 2: The longest palindrome repeats* in porcine and bovine ZAR1 coding sequences.

Palindrome repeats length (nt) Starting positions of repeats 
relative to coding ZAR1 region

Calculated e-value of repeat**

Sus scrofa
15 135 475 1.60e-02
12 77 102 8.18e-01
12 79 202 8.18e-01
12 268 584 8.18e-01
10 269 605 3.63e-01
12 539 789 8.18e-01
10 266 463 3.63e-01

Bos Taurus
18 203 423 7.52e-03
15 41 451 3.30e-01
15 75 212 3.30e-01
13 206 631 2.18e-01
11 137 751 8.95e-02
10 117 560 3.58e-01
10 137 277 3.58e-01
10 267 636 3.58e-01

* Hamming/edit distance of repeats, computed by REPuter software, was ≤ 1.
**Calculated e-value of repeats – number of repeats of the same length or longer and with the same number of errors or fewer that one could 
expect to find in a random DNA of the same length.

Table 3: Exon-intron structure of ZAR1 genes in pig and cattle comparing with human.

Sus scrofa Bos taurus Homo sapiens

exon/intron coordinates 
relative to 

coding 
sequence

exon length 
(nt)

intron 
length (nt)

coordinates 
relative to 

coding 
sequence

exon length 
(nt)

intron 
length (nt)

coordinates 
relative to 

coding 
sequence

exon length 
(nt)

intron 
length (nt)

1 1–852 >852 1466 1–850 >850 1467 1–963 >963 1512
2 853–945 92 82 851–943 92 83 964–1057 92 80
3 946–1020 74 1292 944–1018 74 1099 1058–1132 74 1089
4 1021- 1164 >143 1019- 1155 >136 1133–1275 >142

* Hamming/edit distance of repeats, computed by REPuter software, was ≤ 1. **Calculated e-value of repeats – number of repeats of the same 
length or longer and with the same number of errors or fewer that one could expect to find in a random DNA of the same length.
Page 7 of 14
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ231448
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ231449
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ231443
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ231455
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY193889


Reproductive Biology and Endocrinology 2006, 4:12 http://www.rbej.com/content/4/1/12
spond to bovine 6 chromosome region. More detailed
analysis by screening of bovine BAC clones allowed posi-
tioning of bovine ZAR1 between BM4528 and BM4621
markers.

Southern-blot hybridization on Sus scrofa and Bos taurus
genomic DNA revealed the presence of a single ZAR1 gene
both in porcine and bovine genome (Fig. 2). As expected
for one-copy gene, single band was detected in PstI-
digested samples and 2 bands were hybridized when
restriction by HindIII or PvuII endonucleases was per-
formed in both species. These profiles corresponded to
the patterns deduced from ZAR1 gene sequences analysis.

Analysis of ZAR1 mRNA expression in different tissues, 
oocytes and preimplantation embryos in pig and cattle
By RT-PCR coupled with southern blot hybridization,
level of polyadenylated ZAR1 mRNA was shown to
decrease throughout pig embryo development from
zygote to 8-cell stages, and only faint traces could be
detected in morula and blastocyst even after radioactive
hybridization of amplified products (Fig. 3A). In bovine
in vitro produced embryos, we confirmed similar expres-
sion pattern, as previously shown [15], but by using
another primer set S3-AS8 (fig. not shown). In addition,
by real time RT-PCR, we showed that level of polyade-

nylated ZAR1 mRNA declined in bovine oocytes during in
vitro maturation (Fig. 3B).

In both species, RT-PCR also revealed ZAR1 transcripts in
hypothalamus, pituitary, ovary, testis, oocytes and occa-
sionally in cumulus cells (Fig. 4).

Southern blot hybridization of porcine and bovine genomic DNA with ZAR1 partial cDNA probeFigure 2
Southern blot hybridization of porcine and bovine 
genomic DNA with ZAR1 partial cDNA probe. 
Number of hybridized bands corresponded to predicted 
hybridization pattern of unique gene, fragmentized by HindIII 
(HdIII), PstI or PvuII endonucleases.
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ZAR1 expression in oocytes and preimplantation embryosFigure 3
ZAR1 expression in oocytes and preimplantation 
embryos.(A) Expression ZAR1 mRNA in pig oocytes and 
embryos developed in vivo:GV – immature germinal vesicle 
oocyte, Z – presumptive zygote, 2c – 2 cells embryos, 4c – 4 
cells embryos, 5-8c – 5–8 cells embryos, M – morulae, Bl – 
blastocyst, r – pool of embryos RNA RT omitted, w – RT 
with water instead of RNA. 35 and 30 PCR cycles were per-
formed for ZAR1 and β- actin detection respectively. (B) 
ZAR1 mRNA expression in bovine oocytes before (GV, 
immature oocytes) and after in vitro maturation (MII, mature 
oocytes) quantified by real-time PCR. Data are presented as 
mean value of 3 experiments made in triplicate each +/- SEM. 
Difference is significant at p < 0.01.
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Different ZAR1 messengers in ovary and testis
Virtual Northern blot on immature porcine and bovine
oocytes revealed several ZAR1 transcripts of different
sizes. The longest forms were about 1.4 – 1.5 kb in both
species as expected according to obtained cDNA
sequences (Fig. 5A). Lower bands and smear might corre-
spond to some truncated transcript variants which we
described above. Classic Northern blot on total RNA from
different porcine tissues revealed major prominent tran-
script of approximately 1.7 kb in ovary and shorter tran-
scripts of approximately 0.9 – 1.1 kb in testis (Fig. 5B).
Faint bands of about 1.0 and 0.6 kb were detectable after
longer autoradiography in ovary. The size of transcripts in
pig ovary was in agreement with obtained cDNA
sequences, it includes ORF, untranslated regions and
150–250 nucleotides poly-A tail. In ovaries from 7-month
old peri-pubertal gilt ZAR1 mRNA was significantly less
abundant than in 7 weeks of age piglet. No clearly visible
messengers could be detected in porcine brain and pitui-
tary as well as in liver RNA preparation used as negative
control. In bovine, we failed to detect the prominent sig-
nal of ZAR1 transcripts in gonads or any other tissues of
adult animals by this method.

Alignment of pig ZAR1 nucleotide sequences showed that
cDNA variants, derived from oocyte, differed by deletions
within the first exon, delimited by palindrome repeats
(Fig. 5C). These repeats were 15 bp long sequences

GGGGGCTACCCTCCT/AGCAGGGTAGCCCCC starting
at nucleotide positions 135/475 in oo2 variant and 9 bp
long repeats GGGGGCTAC/GTAGCCCCC at 135/812
nucleotides in oo3 form. Alignments of bovine oocyte
ZAR1 transcript variants revealed numerous similar dele-
tions within corresponding region (not shown).

To determine the origin of shorter ZAR1 messengers in pig
testis, we performed 3'- and 5'-RACE and deduced the 802
nucleotides length sequence (GenBank accession
DQ231445). It differed from full-length oocyte form by
the absence of a part of the first exon at 5'-end (Fig. 5C).
Testicular ZAR1 cDNA includes a 618 nucleotides long
ORF which encodes putative 205 amino acid protein. This
ORF starts from an alternative ATG codon at 547–549
nucleotide position relative to oocyte ZAR1 cDNA and has
100 % identity with its downstream sequence. Thus, dif-
ferent size transcripts in ovary and testis are likely to be
transcribed from the same gene.

Comparative RT-PCR analysis on oocyte and testicular
full-length cDNA using different sets of primers were also
performed in pig, cattle and human. When using b-c prim-
ers set, spanning exon 2–4, products of expected size were
amplified in both oocyte and testis (Fig. 6). By contrast, if
the sense primer was targeted to the sequence presumably
absent in testicular transcript (set a-c), PCR products were
detected only in oocyte but not in testis in the three spe-
cies (Fig. 6B). In human, as in porcine, methionin resi-
dues 173 and 183, respectively, could be used as
alternative start ZAR1 sites in testis. In contrast, no addi-
tional methionin was found inside bovine full-length
ZAR1 ORF (Fig. 1A).

Localization of ZAR1 messengers in pig germinal cells by in 
situ hybridization
In immature pig ovary, expression of ZAR1 mRNA was
restricted exclusively to oocytes both in primary and sec-
ondary pre-antral follicles and neither in granulosa cells
nor outside the follicles (Fig 7A). In testis, ZAR1 was
shown to be expressed only inside of seminiferous tubules
but not in conjunctive tissues (Fig 7B). Specific RNA was
detected in germinal cells, mostly in round spermatids
and secondary spermatocytes. ZAR1 mRNA was neither
expressed at significant level, if at all, in oblong sperma-
tids, spermatozoa and primary spermatocytes, nor at the
periphery of the tubules, containing spermatogonia and
Sertoli cells bodies.

Discussion
This study showed the high similarity of ZAR1 genes in
pig and cattle as compared with human, as well as the
common presence of FYVE/PHD zinc finger domain in
deduced ZAR1 proteins. The FYVE ZnF domain is con-
served from yeast to human. It functions in the membrane

Expression ZAR1 mRNA in porcine and bovine tissuesFigure 4
Expression ZAR1 mRNA in porcine and bovine tis-
sues. Expression was detected by RT-PCR using S6-AS8 
primers. 38 PCR cycles was performed for ZAR1, 32 and 38 
cycles was performed to detect β-actin in porcine and bovine 
respectively. br- hypothalamus part of brain, h – heart, li – 
liver, pit – pituitary, i – intestine, m – muscle, lu – lung, s – 
spleen, ov – ovary, od – oviduct, te – testis, cu – cumulus 
cells, gr – granulosa cells, oo – oocyte, w – RT-PCR with 
water instead of RNA, RT – empty well, r – PCR with 1 µg 
of pooled RNA from tissues, RT omitted.
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recruitment of cytosolic proteins by binding to phosphati-
dylinositol 3-phosphate [38]. The PHD domain is charac-
teristic of transcriptional activators, repressors or
cofactors. Taking into account these conserved protein
functional domains in six vertebrate species, including
human, mice, rat, xenopus, zebrafish and fugu, and
expression patterns described in mice and frog oocytes
and early embryos, ZAR1 may be considered as one of the
transcriptional regulators acting during the oocyte-to-

embryo transition of gene expression [19]. Reported here
data supported this hypothesis but also supposed the pos-
sible ZAR1 involving in functioning of gonado-hypotha-
lamic axis.

Extra-oocyte ZAR1 mRNA expression in pig and cattle
By in situ hybridization we localised the ZAR1 messengers
not only in growing oocytes, but also in testis, preferen-
tially in secondary spermatocytes and round spermatids.
Similar expression pattern was observed for an orphan
nuclear receptor called germ cell nuclear factor (GCNF)
since its expression was restricted to the post meiotic
round spermatids and to the growing oocytes in mice
[39]. GCNF acts as a repressor of gene transcription during
preimplantation embryo development [40]. The possible
role of ZAR1 in transcription repression in post-meiotic
germ cells of pig and cattle might be supposed.

ZAR1 expression was not restricted to the gonads in pig
and cattle but was also detectable in hypothalamus and
pituitary. The members of recently discovered oocyte-spe-
cific gene family, T-cell leukemia/lymphoma 1B (Tcl1b)
genes, are preferentially expressed in egg and early
embryos, however correspondent ESTs were also found in
testis and pituitary gland [41]. In mice also, expression of
oocyte-specific Bmp15 was reported in gonadotrope cell
line LbT2 and in pituitary. BMP15 was shown to be a
potent and selective stimulator of FSH biosynthesis and
secretion by the primary pituitary cells [42]. Reciprocally,
the brain-derived neurotrophic factor (BDNF), initially
identified to be an important regulator of neuronal sur-
vival and differentiation in bovine, has also been found in
bovine oocyte and cumulus cells and may have a role in
promoting oocyte cytoplasmic competence [43]. Among
the ESTs, preferentially expressed in bovine oocyte, signif-
icant number was also detected in testis and brain [13].
We also found ESTs, coding for Zar1, in cDNA libraries
from mouse brain (GenBank accessions BB248342,
BF471866 and BE863668). Further investigations are
required to determine the possible role of zygote arrest 1
in brain and pituitary in mammals.

ZAR1 expression was found by RT-PCR in frog muscle and
lung, in addition to ovary [19]. Similarly, in cattle one
study reported the amplification of a fragment homolo-
gous to ZAR1 in muscular cDNA (body and heart) [20]. In
contrast, several studies failed to detect such expression in
mice, human, pig and cattle [4], [15], this paper). This dis-
crepancy could be explained by the fact that the 126
nucleotides cDNA fragment detected in that study [20]
showed only 78% identity with ZAR1 bovine sequence
reported here and may thus represent a part of a different
gene with partial ZAR1 sequence homology. In addition,
constant expression of this transcript throughout bovine
preimplantation embryo development with sudden

Different ZAR1 mRNA variantsFigure 5
Different ZAR1 mRNA variants. (A) Detection of 
ZAR1 mRNAs in porcine and bovine oocytes by virtual 
Northern blot. Weight of molecular weight markers (kb) are 
indicated at the middle. (B) ZAR1 mRNA detection by clas-
sic Northern blot analysis in porcine tissues. Ethidium bro-
mide RNA staining is at lower panels, hybridization is upper. 
Size of molecular weight markers (kb) are indicated in the 
middle. RNA from hypothalamic part of brain (br), pituitary 
(pi), ovaries (ov) of 7-week-old piglet and testis (te) of young 
boar were analysed (left gel). RNA from liver (liv), ovaries of 
other infantile immature (ov1) and peri-pubertal (ov2) gilts 
and testis of 7-month young (te1) and 2.5-year old (te2) boars 
were analysed. (C) Schematic representation of pig ZAR1 
gene and correspondent cDNA variants, cloned from Sus 
scrofa oocytes (oo1, oo2, oo3) and testis (tes). The sizes of 
correspondent ORFs are indicated on the right. Grey bars 
designate exons. Chain line denoted sequences absent in tes, 
oo2 and oo3 cDNA variants. Palindrome repeats are indi-
cated by arrows, their lengths are noted in brackets. The 
nucleotide coordinates of the beginning of palindrome 
repeats are marked relatively to oo1 cDNA sequence.
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increase at 4-cell was reported [20], while summarizing
data on ZAR1 expression in early embryos in pig (this
study, [44]), cattle [15], mice and frog [4,19,1], it can be
concluded that ZAR1 did not reactivate after maternal-
embryo transition.

Different ZAR1 mRNA variants in germ cells
Two types of ZAR1 mRNA variants were found. The first
concerns the different size of ZAR1 mRNA in testis with
regard to ovary, and could be the result of a differential
splicing by shortening of 5'- end of the first exon in testic-
ular messengers. Alternative splicing occurs in approxi-
mately half of all mammalian genes and its frequency is
higher for tissue-specific rather than for ubiquitous genes
[45]. Oocyte-specific Mater gene was reported to produce
at least four differentially spliced mRNA variants in mice
[46]. The cAMP-responsive element modulator (CREM)
gene encodes a family of transcriptional regulators, which
were generated by alternative splicing and alternative
translational initiation in mice spermatids [47]. Differ-
ence of ZAR1 mRNA isoform in testis comparing to oocyte
was confirmed in pig, cattle and human – in all three spe-
cies testicular ZAR1 transcripts lacked a 5'-part of the first
exon. In human and porcine, methionin residues, which
could act as alternative translation initiation sites, were
found. Although no downstream AUG codon was evi-
denced in bovine ZAR1, translation of a putative protein
could be initiated from another codon, likely CUG at
nucleotide position 517 or 526 (DQ231456). Mecha-

nisms of alternative initiation of translation at non-AUG
codon had not been clearly defined, but local RNA struc-
ture and particularly stable downstream hairpins could
determine the non-AUG translation start site (for review -
[48]). Numerous direct and inverted repeats, found
within ZAR1 genes, might trigger such events. Interest-
ingly, a band of about 35 kD was revealed by Western blot
in addition to the 45 kD Zar1 in mice [4]. This might be
the product of an alternative translation initiation site
(Methionin at position 61). Indeed, the predicted molec-
ular weight of such alternative protein (34 kD) corre-
sponds to the western blot smaller band. The fact, that no
smaller Zar1 mRNA variants were appreciated by North-
ern in mouse ovary could be explained by using the 1–180
nucleotides cDNA as a probe [4], whereas this fragment
might be absent in shorter transcripts.

The second type of ZAR1 mRNA variants concerns ZAR1
isoforms that were found by RT-PCR in oocytes in both
species. They included full-length cDNA, corresponding
to what could be predicted from gene sequence, and sev-
eral shorter variants, bearing relatively long deletions
within the first exon. These deleted sequences were
flanked by palindrome repeats, but were not in agreement
with classical intron boundaries GT-AG or AT-AC rule (for
review see [49]). Therefore, these cDNA variants could be
the result of complex secondary structure of pig ZAR1
transcripts via stem loops forming and not really alterna-
tively spliced forms. These loops, induced by the presence
of palindrome repeats, could impair the generation of a
full-length cDNA during RT. This could explain the origin
of numerous lower bands and smears observed on virtual
Northern blot, corresponding to truncated sequences.

Elements of ZAR1 regulation
Numerous palindrome repeats were detected in highly
GC-rich region within the first exon of ZAR1. Inverted pal-
indrome repeats occur in prokaryotes and eukaryotes
DNA and can form stem-loops and cruciform figures,
which affect DNA structure or may interact directly with
proteins [50]. Short palindrome repeats are characteristic
of DNA-binding domain of nuclear receptors, but nor-
mally they are separated by only few nucleotides [51]. In
mammals, palindrome repeats were reported mainly in
5'-upstream regions of several genes, such as mouse NF-
kappa B [52] or human RNA polymerase II large subunit
(RpII LS) encoding genes [53]. In the first case, these
repeats were shown to be responsible for the induction of
NF-kappa B by tumour necrosis factor (TNF-alpha), in the
second example repeats lead to highly structured RpII LS
RNA, which may be responsible for transcriptional regula-
tion. This might be the case of ZAR1 genes, where
repeated sequences within its coding region could be
involved in their transcriptional regulation.

RT-PCR detection of differently spliced ZAR1 transcripts in pig, cattle and human oocytes in comparison with testisFigure 6
RT-PCR detection of differently spliced ZAR1 tran-
scripts in pig, cattle and human oocytes in compari-
son with testis. Directions of primers situated on a, b and c 
positions are marked on ZAR1 cDNA scheme by arrows. 
Stars marked putative start codons, stop codon is noted. 
Specificity of amplified fragments was verified by southern 
blot hybridization using porcine full-length cloned ZAR1 
cDNA as a probe.
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Two types of putative regulatory elements were deter-
mined within 3'-UTR of ZAR1 mRNA. The first one was a
consensus UGUA XPum-bindind sequence [54], that we
found in pig and cattle just before polyadenylation signal
AAUAAA. We also found UGUA sequences at similar posi-
tions also in human at 1379–1382 nucleotides, in mice at
1210–1213 nucleotides, in rat at 1220–1223 nucleotides,
and in Xenopus laevis ZAR1 mRNA at nucleotide position
1031–1034 (GenBank accessions NM_175619,
BC099399, NM_181385, AY283176, respectively). In
Xenopus oocytes, XPum protein (homologue of Drosophila
pumilio) can physically bind to mRNA via UGUA
sequence. Pumilio protein was shown to act as transla-
tional repressor of cyclin B1 by binding to this sequence
during oocyte maturation, in addition to Cytoplasmic
Polyadenylation Element (CPE) -mediated repression
[55]. Pumilio proteins are highly conserved, bearing
around 90% amino acid identity in vertebrates [55]. Inter-
estingly, in bovine GV oocytes, the translation of cyclin B1
short mRNA isoform, lacking a CPE but bearing an UGUA
sequence, was repressed [56]. Potentially, homologue of
Pumilio protein could participate in the regulation of
ZAR1 protein translation via UGUA.

The second putative regulatory sequences found within
ZAR1 3'-UTR were stretches rich in U/purines dinucle-
otides repeats, sequence elements that are characteristic of

embryo-deadenylation element (EDEN) in xenope mater-
nal transcripts (c-mos, Eg5). They could drive rapid dead-
enylation and translational repression of these
messengers in xenopus oocytes and embryos (for review
[57]). Such regulation mechanism has not been reported
in mammals yet. However, taking into account the simi-
larity of polyadenylation mechanisms and mRNA transla-
tion via CPE-binding protein in xenope and mammals
[58], we can speculate that as in xenopus, EDEN-like
sequences could play a role in the regulation of expression
of specific transcripts, including ZAR1, by deadenylation
and further degradation, in oocyte and preimplantation
embryos.

Conclusion
Overall, porcine and bovine ZAR1 genes are highly
homologous to human. Taking in account mRNA regula-
tory elements and differential expression patterns in germ
cells through alternative splicing variants, ZAR1 might be
considered as one of the regulator of post-meiotic events
in germ cells in addition to its role in early embryo devel-
opment. Species conservation of ZAR1 expression and
regulation between human and domestic animals under-
lines the central role of this gene in early reproductive
processes. Further studies are necessary to provide an
insight in the role of this gene in functioning of gonado-
hypothalamic axis.
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Localization of ZAR1 mRNA in porcine ovaries and testis by in situ hybridizationFigure 7
Localization of ZAR1 mRNA in porcine ovaries and 
testis by in situ hybridization. ISH was performed using 
specific 35S-labeled antisense (a, c, e, g, i) and control sense 
(b, d, f, h, j) probes. Dark-field images (a, g, bar 100 µm) 
showed ZAR1 expression within follicles in ovary and inside 
of seminiferous tubules in testis. It focused in oocytes of pri-
mary (c, bar 10 µM) and pre-antral follicles (e, bar 50 µM) 
and mainly in round spermatids (rs) but neither in oblong 
spermatids (os) no in primary spermatocytes (sc) – image i, 
bar 10 µM.
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