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a INRA, UR341 Mathématiques et Informatique Appliquées, F-78350 Jouy-en-Josas Cedex, France
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Abstract
Mosquitoes, acting as vectors, are involved in the transmission of viruses. Thus, their abundances, which strongly depend on the weather and

environment, are closely linked to major disease outbreaks. The aim of this paper is to provide a tool to predict vector abundance.

In order to describe the dynamics of mosquito populations, we developed a matrix model integrating climate fluctuations. The population is

structured in five stages: two egg stages (immature and mature), one larval stage and two female flying stages (nulliparous and parous). The water

availability in breeding sites was considered as the main environmental factor affecting the mosquito life-cycle. Thus, the model represents the

evolution of the mosquito abundance in each stage over time, in connection with water availability.

The model was used to simulate the abundance trends over 3 years of two mosquito species, Aedes africanus (Theobald) and Aedes furcifer

(Edwards), vectors of the yellow fever virus in Ivory Coast. As both these species breed in tree holes, the water dynamics in the tree hole was

reproduced from daily rainfall data. The results we obtained showed a good match between the simulated populations and the field data over the

time period considered.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Yellow fever, a vector-borne disease, remains a major public

health problem both in Africa and South America. It is due to

infection by a Flavivirus and causes a viral hemorrhagic fever in

humans responsible for 30,000 deaths annually (Tomori, 2004).

Furthermore, global warming may increase the outbreak risk of

such infectious diseases associated with hot weather or rainfall

pattern modifications. Chevalier et al. (2004) showed that

geographical distributions of several arthropod-borne zoonoses

have dramatically expanded over the last years. Although one

knows that climate influences the abundance of vectors, it is

still difficult to appreciate the effect of climate variations on the
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emergence and re-emergence of arbovirus diseases. That is

mainly because the epidemiological process is driven by

numerous tangled mechanisms, making analyses fairly com-

plex. Breaking up the process and focusing on its different

elements, in particular on the biology of the vectors which is the

key of the virus transmission, might help to apprehend the

global process.

Mathematical models combined with computer simulations

are powerful tools for describing and understanding complex

biological phenomena. Indeed, modelling allows to test

assumptions, explain some events, or compare alternate

strategies in decision-making. Thus, models have been widely

used for studying complex biological processes such as

population dynamics (e.g. Jarry et al., 1996; Ghosh and

Pugliese, 2004; Awerbuch-Friedlander et al., 2005; Mazaris

and Matsinos, 2006). For mosquito populations in particular,

Moon (1976) developed a dynamic model, but that model did

not consider environmental factors. Focks et al. (1993)

proposed a dynamic life table model for Aedes aegypti taking
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Fig. 1. Biological cycle of mosquitoes.

B. Schaeffer et al. / Infection, Genetics and Evolution 8 (2008) 422–432 423
into account numerous variables, but lacking flexibility to be

generalized to other species. Fouque and Baumgartner (1996)

constructed a distributed delay model taking into account only

part of the life-cycle of the Aedes vexans mosquito, from newly

hatched larvae to emerging adults. Ahumada et al. (2004) built

a population dynamics matrix model, taking into account

temperature and rainfall. These authors obtained encouraging

results because their model captured field data quite adequately.

However, they acknowledged the importance of breeding site

availability which they had not explicitly modelled. Shone et al.

(2006) investigated the role of weather on mosquito species

using statistical regression models. From this point of view, the

dynamical aspect of abundance fluctuations is difficult to

appreciate. In an epidemiological context, most studies did not

take into account the vector population dynamics and set this

population size to a constant value (Esteva and Vargas, 1999;

Ngwa and Shu, 2000; Derouich et al., 2003; Ishikawa et al.,

2003; Ngwa, 2004). As the necessity of taking into account the

fluctuations of the vector density has been shown (Costantino

et al., 1998; Chattopadhyay et al., 2004) the influence of the

seasonality was sometimes introduced as a sinusoid function in

the epidemiological model to roughly describe the mosquito

population dynamics (Lord, 2004; Glass, 2005). In order to

reproduce as best as possible the dynamics of a vector in its own

environment, simulation models were developed (Focks et al.,

1993; Depinay et al., 2004). These models include numerous

parameters that could be difficult to apprehend in field

conditions, such as nutrient competition for example. Validat-

ing such models might prove difficult, as sensitive parameters,

if not well estimated, might distort the model outputs.

In the present paper, our approach was to develop a model as

simple and generic as possible to investigate the mosquito

population dynamics, taking into account only the most

relevant steps of the mosquito life-cycle and the most influent

environmental factors. Such a model aims at capturing the

major trends of the mosquito population size along time.

Moreover, this model could easily be integrated in a larger

modelling process which would, for example, include models

of virus development and host demography.

This paper is divided into three major sections. The first one

presents the generic model based on the life-cycle graph of a

mosquito population. The second section shows how environ-

mental factors are integrated into the model. The third section

describes an application of the model using data from yellow

fever vectors, Aedes (Stegomya) africanus and Aedes (Dicer-

omya) furcifer, in West Africa (Mondet, 1994, 1997);

parameters were estimated and a sensitivity analysis was

performed. Finally, conclusions are drawn.

2. The generic population model

To represent the dynamics of the mosquito population and

the climate influence, we chose a matrix framework (Caswell,

2001) that is commonly used to study the dynamics of

structured populations (Jensen, 1995; Jarry et al., 1996;

Bommarco, 2001; Choi and Ryoo, 2003; Thomas et al.,

2005). Moreover, this discrete time step corresponds well to the
nature of the field data. In this section, we first present the

mosquito life-cycle. Then we describe the death, growth and

reproduction processes that will be finally merged to produce

the population dynamic model.

2.1. The mosquito life-cycle

The biological cycle of the mosquito is represented in

Fig. 1. The Aedes females lay their eggs on the limits of

stagnant waters in their breeding sites. These eggs hatch when

they are flooded. The aquatic larvae, resulting from eggs, pass

through four stages of development. The last molt leads to a

flying adult, winged, male or female. As soon as female

mosquitoes emerge, they are fertilized, mating occurring only

once in their lifetime. Then females need to find a blood meal

host to start a gonotrophic cycle. When the cycle is over,

female mosquitoes will deposit their eggs. After laying,

females need a new blood meal to start a new gonotrophic

cycle, and so on until they die. A female generally goes

through 5–7 cycles.

The population model we built takes into account only

females because males are not involved in transmission disease.

The model is based on the three phases of the mosquito life-

cycle: the eggs, the aquatic forms and the adults who produce

the eggs. To describe the maturation of eggs, we took into

account two egg stages: an immature stage denoted w1,

followed by a mature stage denoted w2 from which eggs can

hatch. The transition between these two stages may be

controlled by climate. Then, we considered one larval stage,

denoted L, corresponding to the aquatic forms that include

instars (1 to 4) and pupae. Right after emergence as aerial adults

females enter the nulliparous stage denoted A1 during which

they are fertilized and at the end of which they lay their first

eggs. Right after this first laying, they enter the parous stage

denoted A2 during which they go through several more layings.

The availability of hosts which provide blood meals and hence

govern the laying, was not considered as a limiting factor and

so, was not included in the model.

Consequently, our mosquito population is structured in five

stages, w1, w2, L, A1 and A2, and we chose a discrete time
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process to represent its dynamic over time. So at each time t, the

population is described by its state vector denoted Nt,

Nt ¼

w1t

w2t

Lt

A1t

A2t

0
BBBBBB@

1
CCCCCCA
:

To express the evolution of the population with time, we

modelled the processes that affect the abundances of stages i,

i2fw1;w2; L;A1;A2g, during each time step. These processes

are represented in the life-cycle graph in Fig. 2: birth, maturing

from stage to stage, and death. The following paragraphs

present these three processes (in reverse order to simplify the

understanding of the model) and then, the resulting population

dynamic model.

2.2. Death

Death can occur throughout the life of the mosquito. For each

stage i, the mortality rate is denoted qiD and is defined as the

proportion of individuals in stage i that die during each time step.

2.3. Growth

For any stages i and j, ði; j2fw1;w2; L;A1;A2gÞ, the

transition rate from stage i to stage j is denoted qij, and is

defined as the proportion of individuals in stage i at time t that

move (or stay) into stage j (or i) at time t + 1. As the population

is considered to be closed (no migrations), one can write for

each stage i:X
j2fw1;w2;L;A1;A2g

qi j þ qiD ¼ 1:

The residence times which correspond to the development

time in each stage are not identical; for instance, the larval stage

L can last from 6 to 20 days whereas the parous adult stage, A2,

can be up to 30 days. The time step needs to be chosen so as to

be lower than the minimum residence time in any stage and the

time unit is set to one time step (Dt = 1). In the following

application, the time step is set to 1 day. Therefore, between two

time steps, an individual can either remain in its current stage,
Fig. 2. Life-cycle graph of female mosquitoes. Nodes represent the stages:

w1 = immature eggs, w2 = mature eggs, L = larval stages, A1 = nulliparous

adults, A2 = parous adults. The qij (i; j2fw1;w2;L;A1;A2g) are the transition

rates, the qiD are the mortality rates and the Fi, i 2 {A1, A2}, are the fecundities.

Each arrow represents a possible transition between two stages during a time

step.
or pass into the following stage, except for the A2 stage, or die.

In A2 stage, an individual can only remain in its stage or die. For

instance, for i = L, we have: qLw1 ¼ qLw2 ¼ qLA2
¼ 0, hence

qLA1
þ qLL þ qLD ¼ 1. We assumed that the transition rate from

stage i to next stage, in the absence of death, is equal to the

inverse of the mean residence time in stage i, denoted Ti
rsd. It

means that in the absence of death, the individuals would leave

stage i with frequency 1=Ti
rsd. The underlying hypothesis is that

the stage-duration distribution is geometric: the individual

probability of moving from stage i to stage i + 1 is a constant,

independent of the time spent in stage i. This hypothesis,

though rather unrealistic in mosquito populations, is a very

common simplification. Incorporating mortality, we apply this

frequency to the fraction of the population in stage i that does

not die during the time step. With (1 � qiD) as the survival rate

for stage i, we obtain:

qi j ¼
1

Ti
rsd

½1� qiD�; if j ¼ iþ 1; otherwise qi j ¼ 0:

As qii þ
P

j 6¼ iqi j þ qiD ¼ 1 we deduce that:

qii ¼
�

1� 1

Ti
rsd

�
½1� qiD�:

2.4. The reproduction process

Female mosquitoes lay eggs several times during their adult

stage, each laying occurring after a blood meal. We assumed

that the search for a blood meal host takes very little time

compared to the model time step, so we neglected this delay.

The transition from the nulliparous stage to the parous stage is

triggered by the first laying. Let us denote Tc, with Tc � Dt, the

duration between the emergence and the first laying, which

corresponds to the length of a gonotrophic cycle. Thus, at each

time step, the transition rate from the nulliparous stage to the

parous stage is expressed as:

qA1A2
¼ 1

Tc

½1� qA1D�:

As qA1A1
þ qA1A2

þ qA1D ¼ 1 we deduce that:

qA1A1
¼
�

1� 1

Tc

�
½1� qA1D�:

Nulliparous females lay their eggs when they enter the

parous stage. The number of females that pass into the parous

stage is qA1A2
� A1. Let nwf be the mean number of female eggs

produced by one female. Then the number of eggs produced at

each time step by the nulliparous females is given by

nwf � qA1A2
� A1. Hence the fecundity is

FA1
¼

nwf � qA1A2
� A1

A1

¼ nwf � qA1A2
:

Parous females go through several gonotrophic cycles. As

we neglected the delay induced by the search for a blood meal

host, the time between two successive layings is equal to Tc, the

length of a gonotrophic cycle. Thus, at each time step, the
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proportion of parous females that lay their eggs and start a new

cycle, denoted qc, is given by:

qc ¼
1

Tc

½1� qA2D�:

Hence, the number of eggs produced by parous females at each

time step is:

nwf � qc � A2;

which gives the following expression for the fecundity of

parous females:

FA2
¼ nwf � qc:

2.5. The population dynamics

The qjD (death), qij (growth) and Fi (reproduction) are the

elements of the transition matrix, denoted Q, established from

the life-cycle graph given in Fig. 2. Q is also called the

population projection matrix associated to the model.

Q ¼

qw1w1 0 0 FA1
FA2

qw1w2 qw2w2 0 0 0

0 qw2L qLL 0 0

0 0 qLA1
qA1A1

0

0 0 0 qA1A2
qA2A2

8>>>><
>>>>:

9>>>>=
>>>>;
:

We considered that the transition rates (each element of the

matrix Q) could be affected by the climate conditions, so we say

that Q is climate-dependent and we denote it Qt. As no delay

was incorporated in the model, the state of the mosquito

population at time t, only depends on the population state at

time t � 1. Thus, on the current climate conditions:

Ni;t ¼ Qt � Ni;t�1:

3. Climate dependency

Climatic factors acting on the development of the mosquito

populations vary according to the characteristics of the weather.

That is particularly true in areas were there is an alternation of

seasons (cold and hot or dry and wet). Here we focused on the

mosquito populations of tropical zones where dryness is the

limiting factor but temperature is not. More precisely, we

considered three steps in the mosquito development cycle for

which the need of water is crucial: hatching, larva survival and

for some species, maturation of eggs. Thus, we introduced in

the model a water dependency, by considering the available

water quantity in the breeding sites. Let us denote EP that

quantity. EP depends on both the pluviometry and on the shape

of the breeding sites. So EP needs to be determined for each

species considering its specific environment.

3.1. Maturation of eggs

Once the mosquito eggs are deposited by the females, they

go through a maturation period corresponding to w1. At the end
of this period, eggs have acquired the potentiality of hatching

and move to the w2 stage. Given that for some species,

maturation requires a dry period, we introduced in the model

the possibility of such a conditional transition from w1 to w2.

We expressed that condition by adding to the corresponding

transition rate, a steeply decreasing sigmoid function s, that

represents the egg maturation ability as a function of the

trapped water ratio EP=EPmax:

qw1w2;t ¼
1

Tw1
rsd

ð1� qw1DÞs
�

EPt�1

EPmax

�
:

As qw1w1 þ qw1w2 þ qw1D ¼ 1, the proportion of eggs that

remains immature, qw1w1, also depends on EP.

The sigmoid function is a simple S-shape function, with a

steep slope for intermediate values, an almost flat shape for

small values and a saturation level for higher values. It

approximates a step function. This sigmoid function s verifies

the following conditions: when EPt�1 = 0, the surviving eggs

leave stage w1 with frequency 1=Tw1
rsd, and when

EPt�1 ¼ EPmax, no more eggs move to stage w2. So:

s

�
EPt�1

EPmax

�
¼ e�uw1:1ðEPt�1=EPmaxÞuw1:2 � e�uw1:1

1� e�uw1:1

with parameters uw1:1 > 0 and uw1:2 > 0.

3.2. Hatching

Eggs are laid by the females on the water edge. As the water

level in the hole varies during the laying season, eggs are

distributed along the cavity walls. Once eggs are mature, they

can hatch if they are flooded. Hatching therefore depends on the

trapped water quantity. Thus, we modulated the transition rate

qw2L by an increasing function of EP=EPmax:

qw2L;t ¼ ð1� qw2DÞ; uw2:1

�
EPt�1

EPmax

�uw2:2

;

with parameters uw2:1 > 0 and uw2:2 > 0. So, when EPt�1 = 0,

then qw2L;t ¼ 0 which means that no hatching occurs; when

EPt�1 = EPmax, then mature surviving eggs hatch at frequency

uw2:1 which corresponds to the inverse of the mean residence

time in w2 stage, 1=Tw2
rsd . We chose a power function to represent

the climate dependency. Indeed, it is a quite flexible increasing

function as it allows: quadratic-like curves when uw2:2 > 1, i.e.

curves that increase more rapidly for higher values; or square-

root-like curves when 0< uw2:2 < 1, i.e. curves that increase

more rapidly for lower values.

3.3. Larva mortality

The main factor contributing to larva mortality is habitat

desiccation. Because several studies showed a density-

dependence of the larval survivorship (Renshaw et al., 1993;

Lord, 1998; Teng and Apperson, 2000; Agnew et al., 2002), we

also took into account the density effect by considering the

available water by larva, EP=L. So, we expressed the larval

mortality qLD as a decreasing function of EP=L, L 6¼ 0, as



Fig. 3. Successive phases of the tree-hole filling up process: evaporation and

rainwater trapping between time t � 1 and time t. (a) Time t � 1, (b) between

evaporation and rainwater trapping and (c) time t.
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follows:

qLD;t ¼ qLDm þ ð1� qLDmÞ e�uL:1ðEPt�1=Lt�1ÞuL:2

with uL.1 > 0, uL.2 > 0. When EPt�1=Lt�1 ¼ 0, Lt�1 6¼ 0,

then qLD,t = 1 which means that all larvae die; and when

EPt�1=Lt�1, Lt�1 6¼ 0, increases, then qLD,t declines to qLDm

which is the minimal mortality rate for the larvae. When there

are no larvae, L = 0, there are no larvae dying whatever the

mortality rate applied. When L! 0, qLD! QLDm. So for L = 0

we set qLD = qLDm. In this case, the climate dependency is based

on an exponential function, as we assumed that the decrease

would be rather steep.

4. Application

We applied the mosquito population model with climate

dependency to two specific populations of yellow fever vectors,

Aedes africanus and Aedes furcifer (Cordellier, 1978), which

live in forest galleries and in the bordering savannahs in Ivory

Coast. Their blood meal hosts are primates and humans. Both

mosquito species are active when primates rest in the canopy.

They can also leave the canopy and bite humans who come

into the forest. Moreover, A. furcifer is capable of entering

neighbouring villages. This close proximity of both species to

their blood meal hosts supports our assumption that the time

needed to find a host is negligible compared to the 1-day time

step.

Our aim was to reproduce the major trends in the mosquito

population abundances, comparing the simulations of the

model with field data. To run the model, we had to determine

the dynamics of the trapped water, EPt, and the parameters

values. EPt is strongly related to the type of the habitat and so a

specific habitat model was developed. Concerning the

parameter values, we assumed that the biological character-

istics were known, and we estimated the remaining parameters.

With these parameters, simulations were produced by running

the generic population model with the specific habitat model. In

this section, we successively present the field data, the specific

habitat modeling, the parameters, and then, simulations and

results. Following that, we include a sensitivity analysis to

estimate the contribution of the different parameters to the

variability of the model. Then we close this part with a short

discussion.

4.1. Field data

Over a 3-year period, Mondet (1994) studied the abundance

of mosquito vectors of yellow fever in the Dezidougou area,

Ivory Coast, after a serious outbreak of yellow fever in 1982.

The village of Dezidougou is located at the limit of the forest

and the savannah. In that zone, the climate is divided into two

seasons: a dry season lasting from November to April and a wet

season with two peaks of rain. In the rainy season, the

temperature is rather uniform, with a minimum ranging

between 21 and 25 8C and a maximum ranging between 25

and 27 8C. From the first rains, relative humidity reaches a
maximum ranging between 95 and 100% and persisting during

all the rainy season. Daily rainfall was recorded in Dezidougou

from January 1989 to December 1991. Over these 3 years,

female mosquitoes were captured every day during a 1-week

period, using yellow fever vaccinated human baits spread over 9

sites from 5 to 8 p.m. There was a 30-day interval between the

captures during the first 2 years and a 40-day interval the third

year. Among the species collected, A. africanus and A. furcifer,

were well represented. Each month, a mean daily abundance

was calculated for these two species. These abundances are

given by the bars in Fig. 7 with the simulation results.

4.2. Specific habitat modelling

Breeding sites of both populations, A. africanus and A.

furcifer, are tree holes of variable capacities supplied with

rainwater. During each rainfall, the rainwater that streams is

trapped until saturation of the tree holes. We considered a tree

hole as a cone. Let us denote EPmax the maximal capacity of the

tree hole, p � R2 its basis and H its height (Fig. 3a). Then,

EPmax is equal to:

EPmax ¼ p� R2 � H

3
:

Let EPt�1 be the trapped water in the cone at time t � 1. The

radius of the water surface at time t � 1 is:

rt�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

3EPt�1

p
;

3

r
where K ¼ R

H
:

The water surface at time t � 1 is: St�1 ¼ pðrt�1Þ2.

To determine the trapped water at time t, we need to consider

both rainfall and evaporation that take place during the time

step. We first consider evaporation (Fig. 3a and b) that is related

to the surface of the water S. The larger S is, the greater the

evaporation. So we express the proportion of water evaporated

between time t � 1 and t, denoted uevap,t, as an increasing

function of St�1:

uevap;t ¼ 1� e�revapSt�1 ; with revap� 0:

Then, we introduce the rainfall. Let Pt be the height of the

rainfall between time t � 1 and time t. The volume of the

rainfall getting into the cone is approximated by a cylinder of



Table 2

Parameters of the model estimated from observed data over 1989–1990

Parameters of the model Aedes africanus Aedes furcifer

revap 0.00005 0.00004

reff 2.27 1.61

uw1:1 – 15.7

uw1:2 – 0.86

uw2:1 0.03 0.06

uw2:1 0.67 5.90

uL.1 0.25 1.96

uL.2 0.28 0.07

revap and reff concern, respectively, the evaporation and the filling of the tree

hole. The ux parameters are related to the influence of climate on mosquito

development at three ages: immature eggs (x ¼ w1), mature eggs (x ¼ w2),

larvae (x ¼ L).
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basis p � R2 and height Pt (Fig. 3b and c). At this point, we

have to take into account the part of this rainwater that seeps

through the walls. The more the hole is filled, the less infiltra-

tion occurs. Thus, we express the fraction of the rain effectively

trapped in the tree hole, denoted ueff,t, as a decreasing function

of the difference between the basis of the cone and the surface

of the water trapped in the cone after evaporation. We denote

DSt�1,t that difference. So we have:

ueff;t ¼ e�reff DSt�1;t ; with reff > 0:

Taking into account the fact that EP is bounded by EPmax, then

EPt, the trapped water at time t, is given by:

EPt ¼ minððEPt�1ð1� uevap;tÞ þ ueff;tpR2PtÞ;EPmaxÞ

Combining this trapped water dynamics with the generic

population model, we obtain a fully defined tree-hole breeding

mosquito model.

4.3. Parameters

The biological characteristics of the two mosquito species

are given in Table 1. These biological features are averages

coming from references of the literature, biological surveys or

expert advice. We also fixed the size of the cone-shaped tree

hole, the depth being equal to 80 mm and radius to 30 mm, for

both species. The resulting capacity is 75 ml which is a

reasonable value for a tree hole. The remaining parameters of

the model, i.e. the parameters related to the climate influence,

were estimated from the field data.

4.4. Simulations and parameter estimation

To run the tree-hole breeding mosquito model we used the

parameters described in Table 1 and the rainfall data from

the Dezidougou area. We set the initial conditions: at time 0,

we considered that there were only immature eggs in the
Table 1

Biological characteristics and simulation parameters introduced in the model

Parameters

Biological characteristics

Residence time in w1 stage (days) Tw1
rsd

Mortality rate in w1 stage qw1D

Mortality rate in w2 stage qw2D

Residence time in L stage (days) TL
rsd

Minimal mortality rate in L stage qLDm

Cycle length between two layings (days) Tc

Mortality rate in A1 stage qA1D

Mortality rate in A2 stage qA2D

Number of female eggs/female nwf

Habitat characteristics

Tree hole depth (mm) H

Radius of the tree hole basis (mm) R

Simulation conditions

Initial population (at time t = 0) N0

Time step (days) Dt
tree hole, and we fixed that number w10 to 10 eggs.

So N0 ¼ ðw10; 0; 0; 0; 0Þ, with w10 ¼ 10. We set the time step

to 1 day. We then had to estimate the climate-dependent

parameters. Comparing the simulated mosquito abundances

with field data gathered over the first 2 years, i.e. from January

1989 to December 1990, we estimated the optimal values for

these parameters by minimizing a least square criterion. A

scaling was needed for this fit: abundance data represent a mean

daily number of mosquitoes caught on a given area, whereas the

simulations reproduce the daily number of female mosquitoes

breeding in a given tree hole. We then simulated a third year

using the estimated parameters. The third year of mosquito

abundance data was hence used only to validate the model. All

simulations were performed using the R software.

4.5. Results

Simulations were produced by running the model over the 3

years, using the parameter values in Table 1 and the estimated

parameters given in Table 2.

The first estimated parameters revap and reff, related to the

filling of the tree hole are, respectively, involved in the
Aedes africanus Aedes furcifer

7 7
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12 16
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Fig. 4. Efficient fraction of rainfall ueff in function of the radius of the trapped

water surface r for each species.

Fig. 6. Climate-dependent transition rates as functions of the tree hole trapped

water EP (a–d) or trapped water available by larva EP/L (e and f): (a and b)

immature to mature egg transition rates, (c and d) hatching rates, (e and f) larva

mortality. The graphs on the left correspond to Aedes africanus (a, c and e); the

graphs on the right to Aedes furcifer (b, d and f).
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expression of uevap and ueff. We note that the evaporation rates

uevap are very similar for both species and never exceed 0.2,

which is usual in forest area. The efficient fraction of rainfall

ueff expressed in function of the water surface in the holes is

slightly higher for A. furcifer than for A. africanus, as shown in

Fig. 4. Consequently, the trapped water dynamics represented

in Fig. 5 are a little different in the two breeding sites.

The parameters in Table 2 related to the climate influence on

the transition rates are different between the two mosquito

species. Consequently, the impact of the trapped water EP on

these transition rates also differs between the two species, as

shown in Fig. 6. For the egg maturation, no trapped water effect

was introduced for A. africanus (Fig. 6a). However, for A.

furcifer, the maturation rate rapidly decreases when the tree hole

fills in Fig. 6b. The hatching rate increases with EP for both
Fig. 5. (a) Pluviometry in Dezidougou from January 1989 to December 1991;

and related trapped water (EP) dynamics in the cone-shaped tree hole of (b)

Aedes africanus and (c) Aedes furcifer.
species. For A. furcifer the growth starts for higher levels of EP,

but the increase is then steeper than for A. africanus (Fig. 6c and

d). The A. furcifer larva mortality is almost always to its minimal

value qLDm (Fig. 6f): neither the trapped water quantity, nor the

larva density have much impact on this value. The A. africanus

larva mortality shows a stronger density dependence: the larva

mortality decreases with the trapped water available by larva.

The mosquito abundance data and simulations are repre-

sented in Fig. 7. Note that the scales of the two graphics are

different, as Ae. africanus is globally twice as abundant as Ae.

furcifer. The estimation was performed over the first 2 years and

the resulting abundances fit the field data well. Simulations over

the third year correspond to predictions: for both species we

notice an overestimate. Graphs in Fig. 7 show that the

abundance fluctuations of both mosquito species roughly

follow the fluctuations of the trapped water in the tree holes
Fig. 7. Abundance of Aedes africanus and Aedes furcifer female adults

(A1 + A2). The bars correspond to the number of adult mosquitoes caught in

a day in Dezidougou (average over a week calculated once a month). The lines

represent the simulation results: solid lines correspond to the fitted abundances

and dashed lines correspond to the predictions.



Fig. 8. Sensitivity indexes of the biological parameters and the initial egg population (a and b) and the estimated parameters (c and d). Graphics (a and c) concern Ae.

africanus, graphics (b and d) concern Ae. furcifer. The sensitivity indexes were obtained after a�20% variation of the reference values shown in Table 1 (for a and b)

and in Table 2 (for c and d).
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(Fig. 5). However, the abundance peaks of the two species are

shifted in time. The population of A. africanus increases along

the rainy season whereas the population of A. furcifer rises at

the beginning of the rainy season then declines. Moreover, the

amplitude of the abundance fluctuations is higher for A.

africanus than for A. furcifer.

4.6. Sensitivity analysis

To determine which parameters have the greatest impact on

the model, we carried out a sensitivity analysis on the biological

characteristics, the initial number of eggs and the estimated

parameters. Because the biological characteristics are needed to

estimate the remaining parameters, we performed two separate

analyses. In both cases, parameters were increased and

decreased by 20% from their reference values given in

Tables 1 and 2. To explore this parameter space, we used a

complete experimental design. The output variable, denoted Y,

corresponds to the distance between the simulated abundances

A = A1 + A2 and the field data O, calculated at the observation

times to as follows:

Y ¼
X

to

�
Ato
� Oto

Oto

�2

:

The sensitivity index is defined for each parameter i by:

Si ¼
VðYÞ � V�i

VðYÞ

where V(Y) is the total variance and V�i is the sum of all

variance terms that do not include the parameter i. The higher
the index, the more influence the parameter has. The results are

given by the barplots in Fig. 8.

Globally, the A. furcifer model is more sensitive to parameter

variations than the A. africanus model. For both species, the

mean number of female eggs produced by one female, the

mortality rates in the w2 and A2 stages and the cycle length

between two layings have a major impact on the model output.

The residence time in the L stage specifically affects the A.

africanus model, whereas the mortality in the w1 stage only

affects the A. furcifer model. The other biological parameters

and the initial condition do not show a great influence.

For both species, the estimated parameters related to the

trapped water dynamics show a moderate influence on the

model outputs. uw1:1 and uw1:2, involved in the maturation of A.

furcifer eggs, have a high sensitivity index. uL2 involved in the

larva mortality has the most impact on the A. africanus model

whereas it does not affect the A. furcifer model; in this latter

model, uL1 has a moderate influence.

These additional simulations and the analyses were

performed using the R software.

4.7. Discussion

The model we developed for the A. africanus and A. furcifer

in Ivory Coast was able to reproduce the major trends in the

adult population abundances. The third simulation year, which

was predicted from parameters estimated over the first 2 years,

did not show such a good fit. It caught the global patterns but

overestimated the abundances, both for A. africanus and A.

furcifer. Many explanations may hold: one could think that

because of a lower capture frequency the third year, field data
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did not catch the abundance peaks, or that the mosquitoes that

year experienced a mortality increase . . ..
For both species, the most influent parameters are those that

relate to the production and survival of eggs. However, the

initial condition has very little impact, which implies that the

population development does not only depend on the egg

survival from the previous rainy season. Each year, the

abundances of each species show a distinct pattern. These

different trends are explained by the fact that the eggs of A.

furcifer need a dry season to mature: eggs laid during the rainy

season become mature during the next dry season and are

therefore accumulated in this stage, until new rainfalls. The

sensitivity analysis showed that this maturation process is

critical in the population development. The very low larva

mortality rate obtained for A. furcifer suggests that the larvae

need very little water to survive. Therefore, once the larvae

hatch, which only occurs when sufficient water is available in

the tree hole, they are quite resilient to environmental

fluctuations. A. africanus larvae seem to be more affected by

larva density and water availability, which is supported by the

sensitivity analysis (uL2 has a high index). It could explain why

the adult abundance fluctuations observed seem to follow more

closely the trapped water evolution.

No field data were available to define the tree holes. From

expert advice we chose a conical shape as one of the simplest

representation of a rather deep and narrow hole. Moreover, we

were able to fix the hole capacity to a reasonable value (75 ml).

Keeping the same fixed capacity and varying the shape of the

cone (width and depth), the results were not modified. The only

differences observed were the estimations of the parameters

controlling the filling of the tree hole, revap and reff, which

fluctuated slightly. These two parameters have a moderate

impact on the adult population abundances. However, reff has

different values for both species, which leads us to assume

that t may not have the same type of breeding sites. The

retention of rainwater in the tree hole appears higher for A.

furcifer: it could be due to a different shape of the tree hole or a

different species of tree. Indeed, various types of breeding sites

are available in the wild and mosquitoes might show

preferences. It is the case for Aedes usambara, vector of the

Chikungunya virus, which was caught inside bamboo

plantations in Ivory Coast (Mondet and Montange, 1993).

So to simulate the abundance of A. usambara, we would have to

consider the breeding habitat as a cylinder-shaped hole to

represent the EP process.

Our results suggest that the field populations of A. africanus

and A. furcifer are well simulated by a stage-structured matrix

model incorporating pluviometry influence. In that area, as far

as we know, pluviometry is the only environmental limiting

factor in the Aedes population development. Other factors, such

as temperature, are not considered as limiting factors for both

species in that area, and thus were not introduced in the model.

However, they may also interact with pluviometry and

modulate the mosquito population abundance. Nevertheless,

this simple pluviometry-based model allowed us to capture the

major trends in the population fluctuations, which was our aim

in this application.
In Dezidougou the yellow fever is not endemic. The virus

migrates from the southern forests during the rainy season,

carried by primate and mosquito populations along the forest

galleries. So the virus usually appears in savannah at the end of

the rainy season. Both data and model agree on the following

trend: the population of A. africanus is higher at the end of the

rainy season whereas the population of A. furcifer shows a peak

at the beginning of the season. Therefore, high A. africanus

abundances increase the risk of a yellow fever epidemic in the

monkey population of the Dezidougou area. But YF virus can

survive in some A. furcifer eggs during the dry season. These

females born of contaminated eggs will be capable to generate a

human YF outbreak at the beginning of the following rainy

season, especially with abundant rainfalls that lead to a high

peak of A. furcifer.

5. Conclusions

We have presented a generic mosquito population model that

includes several features: various development stages, climate

and density dependency. Results obtained by applying the

model to field data have shown that it allows a rather good

assessment of the mosquito abundance trends. Indeed, by

taking into account the rain profile in the demographic process,

we have reproduced over 2 years, and predicted over 1 year, the

population evolution of two species of mosquitoes, that differ

by their ecological and biological features. The model fitted the

data quite accurately during the first 2 years; it overestimated

the abundances the third year, but reproduced the global

patterns. In this deterministic model, pluviometry fluctuations

were sufficient to capture the major trends in the population

abundances. However, we may introduce stochastic factors to

account for the biological variability. As we introduced the

effect of trapped water, which is the main factor under inter-

tropical climates for tree-hole breeding mosquitoes, we can also

introduce other factors, such as the temperature for example.

We can also reduce or expand the number of stages. Although,

the generic nature of the model allows the incorporation of

many other factors, we have to keep in mind the parsimony rule

before refining the model.

Applying the model to real abundance and rainfall data, we

have shown its predictive capacity once parameters are

estimated. Therefore, this model could prove useful to estimate

the abundance evolution of disease vectors, according to

different climate change scenarios. Thus, such a model is a

valuable tool to assess the risk of an epidemiological outbreak.

Appendix A. Filling up process of the tree hole

Let us consider a tree hole as an inverted cone with pR2 its

basis and H its depth.

At each time step, the rainwater trapped in the tree hole, EPt

is updated. The filling up process is composed of two successive

phases: evaporation and rainwater trapping (Fig. 3).

The volume of the water that evaporates between t � 1 and

t is uevap,t � EPt�1, where uevap,t is the evaporation rate. This

rate depends on the water surface at t � 1, St�1 ¼ pr2
t�1. The
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larger St�1, the greater the evaporation. Moreover, uevap,t being a

fraction, it is bounded between 0 and 1. So we express the

evaporation rate, uevap,t, between time t � 1 and time t as

uevap;t ¼ 1� e�revapSt�1 , with revap � 0.

Let us denote EPint the trapped water quantity remaining in

the tree hole after the evaporation process is applied between

t � 1 and t:

EPint ¼ EPt�1ð1� e�revapSt�1Þ:

This volume can also be expressed as EPint ¼ ð1=3Þpr2
inthint

where rint and hint are, respectively, the radius and the height of

the water remaining in the hole.

Let us fix K ¼ R=H. Using the cone property R=H ¼
rint=hint we can write that:

EPint ¼
1

3
p

r3
int

K
:

We deduce that:

rint ¼
�

3K

p
EPint

�1=3

¼
�

3K

p
EPt�1ðe�revapSt�1Þ

�1=3

The second phase concerns the rainwater trapping. Let Pt be the

rainfall height between time t � 1 and time t. The rainwater that

comes into the tree hole is approximated by a cylinder pR2Pt.

Because of infiltration, only a fraction ueff,t of this water is

trapped. ueff,t depends on DSt�1,t, the normalized difference

between the basis of the cone, pR2, and the trapped water

surface in the cone after evaporation, pr2
int:

DSt�1;t ¼
pR2 � pr2

int

pR2
¼ R2 � r2

int

R2
:

The bigger this surface, the more infiltration there is. Moreover,

ueff,t being a fraction, it is bounded between 0 and 1. So we

express ueff,t as:

ueff;t ¼ e�reff DSt�1;t ; with reff� 0:

After evaporation and rainwater trapping, the volume of water

in the tree hole is:

EPt ¼ EPint þ ðueff;t � pR2PtÞ

¼ EPt�1ð1� uevap;tÞ þ ðueff;t � pR2PtÞ:

Finally, EPt, the trapped water at time t, is bounded by the tree

hole capacity EPmax ¼ p� R2 � ðH=3Þ. So, we obtain:

EPt ¼ minððEPt�1ð1� uevap;tÞ þ ueff;tpR2PtÞ;EPmaxÞ:
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