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coastal lagoon (the Coorong, South Australia)
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Abstract
The distribution and aminopeptidase activity of prokaryotes were investigated along a natural continuous salinity 
gradient in a hypersaline coastal lagoon, the Coorong, South Australia. The abundance of prokaryotes significantly 
increased from brackish to hypersaline waters and different sub-populations, defined by flow cytometry, were 
observed along the salinity gradient. While four sub-populations were found at each station, three additional ones 
were observed for 8.3% and 13.4%, suggesting a potential modification in the composition of the prokaryotic 
communities and/or a variation of their activity level along the salinity gradient. The aminopeptidase activity highly 
increased along the gradient and salinity appeared as the main factor favouring this enzymatic activity. However, while 
the aminopeptidase activity was dominated by free enzymes for salinities ranging from 2.6% to 13.4%, cell-attached 
aminopeptidase activity was predominant in more saline waters (i.e. 15.4%). Changes in substrate structure and 
availability, strongly related to salinity, might (i) modify patterns of both aminopeptidase activities (free and cell-
associated enzymes) and (ii) obligate the prokaryotic communities to modulate rapidly their aminopeptidase activity 
according to the nutritive conditions available along the gradient.

Findings
Dissolved proteins and peptides are important sources of 
energy and nitrogen in aquatic systems [1,2], but they 
must be hydrolysed to amino acids and oligopeptides to 
be useable by prokaryotes. Following the development of 
sensitive methods using fluorogenic substrates [3], prote-
olytic activity in natural aquatic systems has been 
assessed by measuring the activity of leucine-aminopep-
tidase as a model enzyme [4]. However, microbial cells 
living in aquatic systems are influenced by a variety of 
environmental factors which affect the molecular control 
of their enzyme synthesis. Among these variables, salinity 
has been identified as a major driving force in both the 
composition of bacterioplankton and their efficiency in 
degrading dissolved organic carbon (DOC) [5]. Previous 
studies focusing on the effect of salinity on the composi-
tion and metabolic activity of bacterial communities were 

mainly conducted in estuaries where salinity typically did 
not exceed 5% [6] and the effect of higher salinity condi-
tions was mainly investigated in highly saline ponds from 
solar salterns [7]. To our knowledge, little is still known 
about the dynamic of prokaryotic aminopeptidase activ-
ity along natural continuous hypersaline gradients. The 
objective of this study was to investigate the changes in 
aminopeptidase activity of prokaryotic communities 
identified using flow cytometry from brackish to hyper-
saline waters.
The Coorong is a South Australian shallow coastal lagoon 
characterized by a strong salinity gradient with salinity 
continuously ranging from brackish (1.8%) to hypersaline 
(15.5%). Constrained between the last interglacial dune 
and the modern dune that has been established from the 
mid-holocene, this lagoon receives inputs from the ocean 
through the Murray Mouth and from underground and 
freshwater inputs from Lake Alexandrina and Lake 
Albert, which are the terminal system of the River Mur-
ray (Fig. 1). If freshwater inputs lead to lower salinities in 
the northwest part of the Coorong, the excess in evapora-
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tion over precipitation increases salinity along the north-
south axis, especially during the summer period.
Sub-surface samples were collected at 4 stations (S1, S2, S3 
and S4; Fig. 1) characterized by increasing salinities, i.e. 
2.6%, 8.3%, 13.4% and 15.4%. Temperature (°C), conduc-
tivity (mS cm-1) and dissolved oxygen concentrations 
(DO; mg l-1) were recorded using a YSI 85 (Fondriest) 
multiparameter probe. Salinity (%) was calculated from 
temperature and conductivity following Fofonoff and 
Millard [8]. Water samples were collected at each station 
using acid-washed 1-liter borosilicate bottles.
Water temperature ranged between 25.2 and 27.7°C. DO 
concentrations decreased from 3.46 mg l-1 in S1 to 1.48 
mg l-1 in S4 (Table 1). Concentration of suspended partic-
ular matter (SPM), determined following Hewson et al 
[9], increased from 38 mg l-1 at S1 to 540 mg l-1 at S4 (Table 
1). Nutrient concentrations were determined in the field 
using a portable LF 2400 photometer according to stan-

dard colorimetric methods for  (Indophenol blue), 

 (Naphtylethylene diamine),  (Naphtylethyl-

ene diamine after zinc reduction) and  (Ascorbic 
acid reduction). Ammonium was the most abundant 

form of nitrogen with concentrations consistently 
increasing from 2.5 μM in S1 to more than 110 μM in S3 
and S4. Phosphate concentrations were low at S1, S2 and 
S3 (i.e. < 8.5 μM) whereas S4 was characterized by high 
phosphate concentrations (> 50 μM). Chl a (μg l-1), deter-
mined following Strickland and Parson [10] using a 
Turner 450 fluorometer after extraction in methanol of 
the samples collected on glass-fiber filters, were low at S1, 
S2 and S4 (i.e. < 3 μg l-1). In contrast, S3 was characterized 
by relatively high Chl a concentrations (13.5 μg l-1; Table 
1).
Prokaryotic populations were identified and enumerated 
by flow cytometry (FCM) using a FACScanto flow cytom-
eter. Samples were fixed and prepared following Brus-
saard [11]. Sub-populations were discriminated based on 
the differences in SYBR-I Green fluorescence and right-
angle light scatter (SSC). Fluorescent beads 1 μm in diam-
eter were added to all samples as an internal standard. 
Working bead concentrations were estimated after each 
FCM session under epifluorescent microscopy to ensure 
reliability of the bead concentration and all FCM parame-
ters were normalized to bead concentration and fluores-
cence. Finally, populations were identified and 
enumerated using WinMDI 2.9 (©Joseph Trotter) flow 
cytometry analysis software. No significant differences 
were found between FCM counts and epifluorescence 
microscopy (EM) counts conducted at each station (Wil-
coxon-Mann-Whitney U-test, n = 5, p > 0.05).
In accordance with previous observations from solar salt-
erns [12], the abundance of prokaryotes showed a signifi-
cant increase with salinity (p < 0.05), with values ranging 
from 2.1 × 106 ml-1 at S1 to 1.7 × 108 ml-1 at S4 (Fig. 2). The 
high SPM and phosphate concentrations observed at the 
hypersaline station (S4) are favourable to high microbial 
abundance [13-17]. In addition, the decrease in viral lysis 
and bacterivory as well as the rapid growth of bacteria 
under high salinity conditions (i.e. > 15%) [12,18], might 
also have contributed to the high prokaryotic abundance 
observed in the hypersaline part of the lagoon. The 
prokaryotic cytometric richness also varied along the 
gradient (Fig. 3). Four to seven discrete sub-populations 
of prokaryotes were identified along the salinity gradient. 
Four distinct sub-populations were observed at S1 (S = 
2.6%) and S4 (S = 15.4%) (Fig. 3A) whereas 7 and 6 sub-
populations were identified at S2 (S = 8.3%) and S3 (S = 
13.4%), respectively (Fig. 3B). The variability of the 
prokaryotic cytometric richness observed along the salin-
ity gradient (Fig. 3C) could reflect a modification of both 
bacterial populations and their activity level [19]. It is 
now well known that salinity represents one of the main 
factors structuring the distribution of prokaryotic assem-
blages, favouring the dominance of some groups adapted 

NH4
+

NO2
− NO3

−

PO4
3−

Figure 1 Study site (the Coorong, South Australia) and the 4 sam-
pling stations ( ) from S1 to S4.
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at a particular salt concentration [20]. Along the 
Coorong, the highest cytometric richness was observed 
at 8.4% (7 sub-populations, station S2) and 13.4% (6 sub-
populations, station S3). In contrast, the cytometric rich-
ness was much lower under hypersaline conditions (S4) 
and in the brackish area (S1). The elevated nutrient, Chl a 
and SPM concentrations recorded in this part of the 
lagoon, may have favoured this richness through a strong 
resource competition which is known to prevent the pro-
liferation and the dominance of some communities. 
However, the variability in cytometric richness observed 
along the gradient could also reflect a change in prokary-
otic activity level with salinity. This is consistent with pre-
vious results [21] showing that salinity selectively affects 
certain groups leading to a marked modification in their 
growth efficiency and cell-specific activity.
Aminopeptidase activity was estimated using the fluoro-
genic substrate analog, L-leucine-4-methyl-coumarinyl-

7amide (Leu-AMC). AMC fluorescence was determined 
at 340 nm (excitation) and 440 nm (emission), with a 
spectrofluorometer (Hitachi Fluorescence Spectropho-
tometer, Model F-3000) previously calibrated. Total enzy-
matic activity (i.e. free enzymes dissolved in water and 
cell surface bound enzymes) and free extracellular enzy-
matic activity were estimated for each sampling site. For 
free enzymatic activity, water samples were previously 
gravity filtered through 0.2 μm pore size filters. Before 
each spectrophotometry analysis, subsamples without 
substrates were used as blanks to determine the back-
ground fluorescence of the samples at each sampling sta-
tion. Aminopeptidase activity was quantified through 
Michaelis-Menten kinetic parameters: the highest rate of 
substrate hydrolysis Vmax (μM h-1) and the half-saturation 
constant for the enzyme Km (μM), which indicates the 
enzyme affinity to the substrate.
In the present study and as previously described in solar 
salterns [7], the aminopeptidase activity of prokaryotes 
increased with salinity (Fig. 4A). The significant positive 
correlation observed between abundance and aminopep-
tidase activity is consistent with previous observations 
[7,22]. Specifically, the increase in the potential activity 
(Vmax) from station S1 to station S4 indicates that hydroly-
sis rates increase with salinity. In addition, given the 
increase in SPM concentrations by more than one order 
of magnitude between stations S1 and S4 (Table 1) and to 
the extent that prokaryotic metabolism reflects the ambi-
ent substrate availability, this increase in aminopeptidase 
activity suggests that the quality of organic matter may 
strongly differ along the salinity gradient and may indi-
cate the existence of a gradient in the protein availability 
from brackish to hypersaline stations. This hypothesis is 
congruent with previous observations [23,24] showing 

Table 1: Physical and chemical parameters measured along the salinity gradient.

Parameters S1 S2 S3 S4

S (%) 2.6 8.3 13.4 15.4

T (°C) 27.7 24.2 26.6 25.2

DO (mg l-1) 3.4 3.7 2.2 1.4

[NH4
+] (μM) 2.5 5.3 > 110 > 110

[NO3
-] + [NO2

-] (μM) < 1.6 2.9 < 1.6 1.7

[PO4
3-] (μM) 1.0 8.4 1.0 > 50

[Chl a] (μg l-1) 1.2 2.5 13.5 1.3

SPM (mg l-1) 38.0 182.7 477.0 540.0

Salinity (S; %) and temperature (T; °C). Dissolved oxygen (DO; mg l-1), ammonium ([NH4
+]; μM), nitrate + nitrite ([NO3

-] + [NO2
-]; μM), phosphate 

([PO4
3-]; μM), Chlorophyll a ([Chl a]; μg l-1) and Suspended Particulate Matter (SPM; mg l-1) concentrations

Figure 2 Prokaryotic abundances (×108ml-1) along the salinity 
gradient. The error bars are the standard deviations.
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Figure 3 Cytometric differentiation of prokaryotic populations. (A) Shows results obtained from S4. Four prokaryotic sub-populations were iden-
tified; the histogram plot of green fluorescence shows 4 peaks relating to sub-populations of increasing DNA content (B1 to B4). (B) Shows results 
obtained from S2. Seven prokaryotic sub-populations were identified; the histogram plot of green fluorescence shows 7 peaks relating to sub-popu-
lations of increasing DNA content (B1 to B7). Sub-populations differed through their green fluorescence and side scatter, and therefore were not clas-
sified into high and low DNA-subpopulations but as different discrete populations. (C) Relative abundances (%) of cytometrically-defined sub-
populations along the salinity gradient from S1 to S4.
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that dissolved organic nitrogen (DON) and protein con-
centrations increased southwards along the Coorong. 
While this issue is well beyond the objectives of the previ-
ous work, information on the quality and quantity of 
organic matter would be a step forward in the under-
standing of the role played by salinity in prokaryotic met-
abolic activity. The observed increase in aminopeptidase 
activity beyond 15% (Fig. 4) contradicts previous results 
suggesting that salinity greater than 12% hampers amino-
peptidase activity [7]. This difference may be related to 
the uniqueness of the Coorong which is characterized by 
a strong continuous salinity gradient with specific 
dynamics and functional performance of bacterioplank-
ton communities in contrast to solar salterns considered 
as steady-state ecosystems with well-adapted and estab-

lished communities. Further work would nevertheless be 
needed to confirm and generalize this potential funda-
mental difference between solar salterns and hypersaline 
lagoons.
Free and cell-associated aminopeptidase activities exhibit 
different patterns in relation to salinity. From 2.6% to 
13.4%, free aminopeptidase activity seems to be favoured; 
for higher salinity (15.4%), cell-associated aminopepti-
dase activity is preferred (Fig. 4A). Under the assumption 
that protein substrates were likely more available at the 
hypersaline station (S4), this observation is congruent 
with Hollibaugh and Azam 's conclusions[25]. Free 
enzymes could be less important in the protein degrada-
tion and close physical association between prokaryotes 
and proteins would be necessary for efficient protein deg-
radation. This may explain the dominance of cell-associ-
ated aminopeptidase activity observed at the hypersaline 
station. In addition, the changes in ionic strength related 
to salinity might affect the structure of substrate mole-
cules and consequently the activity of extracellular 
enzymes [5]. Indeed, the solubility of proteins is known to 
be profoundly affected by the ionic strength and particu-
larly by the presence of divalent cations [25]. This low sol-
ubility of proteins under hypersaline conditions might 
favour the prokaryote/protein association and might thus 
explained the higher cell-associated aminopeptidase 
activity observed at the hypersaline station. Moreover, 
the increase in SPM concentration along the salinity gra-
dient may also favour the creation of microscale environ-
ments leading to local hotspots of prokaryotes attached 
to particles [26]. This may also explained the observed 
transition from free to cell-attached aminopeptidase 
activity along the gradient (Fig. 4A) and the increase in 
substrate affinity observed at station S4 (Fig. 4B) for high 
salinity values. It is finally stressed that free-aminopepti-
dase activity is unlikely to have been contaminated by cell 
lysis, hence over-estimated, because of the non-destruc-
tive gravity filtration conducted here. Note, however, that 
at the highest salinity, free enzymes might aggregate with 
particulate matter, leading to an overestimation of the 
cell-associated enzymatic activity. While this is beyond 
the aims of the present work, further work is needed to 
assess the contribution of salinity in bounding free 
enzymes to particulate material.
In accordance with previous reports, this first study per-
formed along a continuous salinity gradient has shown 
that the increase in salinity appeared as the main factor 
favouring aminopeptidase activity. However, both amino-
peptidase activities (free and cell-associated enzymes) are 
also influenced by the availability and structure of sus-
pended materials that is susceptible of strong changes 
along the salinity gradient. Prokaryotic communities have 
then to rapidly modulate their aminopeptidase activities 

Figure 4 Aminopeptidase activity along the salinity gradient. (A) 
maximum enzymatic velocity, Vmax (μM h-1), and (B) affinity with the 
substrate, Km (μM) from S1 to S4. Total enzymatic and free enzymatic ac-
tivities are shown in black and grey, respectively. The error bars repre-
sent the standard deviations.
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to optimize their fitness in response to the variability of 
the nutritive conditions along the salinity gradient.
Given the key role played by microbial communities in 
the functioning of aquatic systems, these results stress the 
need to extend our knowledge concerning the effect of 
salinity on the dynamics and activity of microbial com-
munities in natural systems particularly in the context of 
global change which particularly affects local ecosystems, 
such as the Coorong, through changes in salinity related 
to modifications of freshwater discharge and evaporation. 
Further work is thus needed to assess the interplay 
between salinity and the global enzymatic activity of 
prokaryotic communities.
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