
HAL Id: hal-02659328
https://hal.inrae.fr/hal-02659328

Submitted on 30 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A logical approach to efficient Max-SAT solving
Javier Larrosa, Federico Heras, Simon de Givry

To cite this version:
Javier Larrosa, Federico Heras, Simon de Givry. A logical approach to efficient Max-SAT solving.
Artificial Intelligence, 2006, 172 (2-3), pp.204-233. �10.1016/j.artint.2007.05.006�. �hal-02659328�

https://hal.inrae.fr/hal-02659328
https://hal.archives-ouvertes.fr

ar
X

iv
:c

s/
06

11
02

5v
1

 [c
s.

A
I]

 6
 N

ov
 2

00
6

A Logical Approach to Efficient Max-SAT solving ⋆

Javier Larrosaa Federico Herasb Simon de Givryc

alarrosa@lsi.upc.edu
bfheras@lsi.upc.edu

Universitat Politecnica de Catalunya
Barcelona, Spain

cdegivry@toulouse.inra.fr
INRA

Toulouse, France

Abstract

Weighted Max-SAT is the optimization version of SAT and manyimportant problems can
be naturally encoded as such. Solving weighted Max-SAT is animportant problem from
both a theoretical and a practical point of view. In recent years, there has been considerable
interest in finding efficient solving techniques. Most of this work focus on the computation
of good quality lower bounds to be used within a branch and bound DPLL-like algorithm.
Most often, these lower bounds are described in a proceduralway. Because of that, it is
difficult to realize thelogic that is behind.

In this paper we introduce an original framework for Max-SATthat stresses the paral-
lelism with classical SAT. Then, we extend the two basic SAT solving techniques:search
and inference. We show that many algorithmictricks used in state-of-the-art Max-SAT
solvers are easily expressable inlogic terms with our framework in a unified manner.

Besides, we introduce an original search algorithm that performs a restricted amount
of weighted resolutionat each visited node. We empirically compare our algorithm with a
variety of solving alternatives on several benchmarks. Ourexperiments, which constitute to
the best of our knowledge the most comprehensive Max-sat evaluation ever reported, show
that our algorithm is generally orders of magnitude faster than any competitor.

Key words: Max-SAT, search, inference

⋆ This paper includes and extends preliminary work from [1,2]

Preprint submitted to Elsevier Science 1 February 2008

http://arXiv.org/abs/cs/0611025v1

1 Introduction

Weighted Max-SAT is the optimization version of the SAT problem and many im-
portant problems can be naturally expressed as such. They include academic prob-
lems such asmax cutor max clique, as well as real problems in domains likerout-
ing [3], bioinformatics[4], scheduling[5], probabilistic reasoning[6], electronic
markets[7]. In recent years, there has been a considerable effort infinding effi-
cient exact algorithms. These works can be divided into theoretical [8,9,10] and
empirical [11,12,13,14]. A common drawback of all these algorithms is that albeit
the close relationship between SAT and Max-SAT, they cannotbe easily described
with logic terminology. For instance, the contributions of [11,12,13,14] are good
quality lower bounds to be incorporated into adepth-first branch and boundpro-
cedure. These lower bounds are mostly defined in a proceduralway and it is very
difficult to see thelogic that is behind the execution of the procedure. This is in
contrast with SAT algorithms where the solving process can be easily decomposed
into atomic logical steps.

In this paper we introduce an original framework for (weighted) Max-SAT in which
the notions ofupperandlower boundare incorporated into the problem definition.
Under this framework classical SAT is just a particular caseof Max-SAT, and the
main SAT solving techniques can be naturally extended. In particular, we extend
the basic simplification rules (for example,idempotency, absorption, unit clause
reduction, etc) and introduce a new one,hardening, that does not make sense in the
SAT context. We also extend the two fundamental SAT algorithms: DPLL (based
on search) and DP (based oninference). We also show that the complexity of the
extension of DP is exponential on the formula’sinduced width(which is hardly
a surprise, since this is also the case of other inference algorithms for graphical
models [15,16]). Interestingly, our resolution rule includes, as special cases, many
techniques spread over the recent Max-SAT literature. One merit of our framework
is that it allows to see all these techniques as inference rules thattransformthe
problem into an equivalent simpler one, as it is customary inthe SAT context.

The second contribution of this paper is more practical. We introduce an original
search algorithm that incorporates three different forms of resolution at each visited
node:neighborhood resolution, chain resolutionandcycle resolution. Our experi-
mental results on a variety of domains indicate that our algorithm is orders of mag-
nitude faster than its competitors. This is especially trueas the ratio between the
number of clauses and the number of variables increases. Note that these are typi-
cally the hardest instances for Max-SAT. Our experiments include random weighted
and unweighted Max-SAT instances, random and structured Max-one problems,
random Max-cut problems, random and structured Max-cliqueproblems and com-
binatorial auctions.

Some of the ideas presented in this paper have strong connections to different

2

techniques recently developed in the WCSP field [17]. Especially significant is
the connection withlocal consistency[18,19,20,21,22] andvariable elimination
[15,23,24].

The structure of the paper is as follows: In Section 2 we review SAT terminology. In
Section 3 we present Max-SAT and introduce our framework. InSection 4 we ex-
tend from SAT to Max-SAT the essential solving techniques. Section 5 summarizes
in a unified way special forms of resolution that can be used tosimplify Max-SAT
formula. Section 6 describes our solver. Section 7 reports our experimental work,
which corroborate the efficiency of our solver compared to other state-of-the-art
solving alternatives. Finally, Section 8 concludes and points out directions of fu-
ture work.

2 Preliminaries on SAT

In the sequelX = {x1,x2, . . . ,xn} is a set of boolean variables. Aliteral is either a
variablexi or its negation ¯xi . The variable to which literall refers is notedvar(l)
(namely,var(xi) = var(x̄i) = xi). If variablexi is assigned totrue literalxi is satisfied
and literalx̄i is falsified. Similarly, if variablexi is instantiated tofalse, literal x̄i is
satisfied and literalxi is falsified. An assignment iscompleteif it gives values to
all the variables inX (otherwise it is partial). Aclause C= l1∨ l2∨ . . .∨ lk is a
disjunction of literals such that∀1≤i, j≤k, i 6= j var(l i) 6= var(l j). It is customary to
think of a clause as a set of literals, which allows to use the usual set operations. If
x∈C (resp. ¯x∈C) we say thatx appears in the clause with positive (resp. negative)
sign. The size of a clause, noted|C|, is the number of literals that it has.var(C)
is the set of variables that appear inC (namely,var(C) = {var(l)| l ∈ C}). An
assignment satisfies a clause iff it satisfies one or more of its literals. Consequently,
the empty clause, noted2, cannot be satisfied. Sometimes it is convenient to think
of clauseC as its equivalentC∨2. A logical formulaF in conjunctive normal
form (CNF) is a conjunction of different clauses, normally expressed as a set. A
satisfying complete assignment is called amodelof the formula. Given a CNF
formula, the SAT problem consists in determining whether there is any model for
it or not. The empty formula, noted/0, is trivially satisfiable. A formula containing
the empty clause is trivially unsatisfiable and we say that itcontains anexplicit
contradiction.

2.1 Graph concepts[25]

The structure of a CNF formulaF can be described by itsinteraction graph G(F)
containing one vertex associated to each boolean variable.There is an edge for each
pair of vertices that correspond to variables appearing in the same clause. Given a

3

x

x

3x 4x

5x

1

2

x

x

3x 4x

5x

1

2

b)a)

Fig. 1. On the left, a graphG. On the right, the induced graphG∗
d whered is the lexico-

graphic order.

graphG and an ordering of its verticesd, the parentsof a nodexi is the set of
vertices connected toxi that precedexi in the ordering. Thewidth of xi alongd is
the number of parents that it has. Thewidth of the graphalongd, denotedwd, is
the maximum width among the vertices.

The induced graphof G(F) alongd, denotedG∗
d(F), is obtained as follows: The

vertices ofG are processed from last to first alongd. When processing vertexxi ,
we connect every pair of unconnected parents. Theinduced widthof G alongd,
denotedw∗

d, is the width of the induced graph. The induced width (also known
as tree-width, k-tree numberor thedimension of the graph) is a measure of how
far a graph is from acyclicity and it is a fundamental structural parameter in the
characterization of many combinatorial algorithms. Computing the orderingd that
provides the minimum induced width is an NP-hard problem [26].

Example 1 Consider the formulaF = {x̄1∨x4,x1∨x4,x2∨x3,x2∨x4,x2∨ x̄5,x4∨
x5}. Its interaction graph G(F) is depicted in Figure 1 (a). The induced graph G∗

d
along the lexicographical order is depicted in Figure 1 (b).Dotted edge is the only
new edge with respect the original graph. When processing node x5, no new edges
are added, because the parents of x5 are already connected. When processing node
x4, the edge connecting x2 and x1 is added because both variables are parents of
x4 and they were not connected. When processing x3, x2 and x1, no new edges are
added. The induced width w∗d is 2 because nodes x5 and x4 have width2 (namely,
they have two parents) in the induced graph.

2.2 SAT algorithms

CNF formulas can be simplified using equivalences or reductions. Well known
equivalences areidempotency C∧C≡C, absorption C∧(C∨B)≡C or unit clause
reduction l∧ (l̄ ∨C) ≡ l ∧C. A well known reduction is thepure literal rulewhich
says that if there is a variable such that it only occurs in either positive or negative
form, all clauses mentioning it can be discarded from the formula. Simplifications
can be applied until quiescence. The assignment oftrue (resp.false) to variablex

4

function DPLL(F) return boolean
1. F := Simplify(F)
2. if F = /0 then return true
3. if F = {2} then return false
4. l :=SelectLiteral(F)
5. return DPLL(F [l]) ∨ DPLL(F [l̄])
endfunction

Fig. 2. DPLL is a search algorithm. It returnstrue iff F is satisfiable.

in F is notedF [x] (resp.F [x̄]) and produces a new formula in which all clauses
containingx (resp. ¯x) are eliminated from the formula, and ¯x (resp.x) is removed
from all clauses where it appears. Note thatF [l] can be seen as the addition ofl to
the formula and the repeated application of unit clause reduction followed by the
pure literal rule.

Algorithms for SAT can be roughly divided intosearchand inference. The most
popular search algorithm and the starting point of most state-of-the-art SAT solvers
was proposed in [27] and is usually calledDavis Putnam Logemann Loveland
(DPLL). Figure 2 provides a recursive description. First, DPLL simplifies its input
(line 1). If the resulting formula is empty, it reports success (line 2). If the resulting
formula is a contradiction, it reports failure (line 3). Else it selects a literall (line
4) and sequentially assigns the formula withl andl̄ (line 5).

We say that two clausesx∨A, x̄∨B∈ F clashiff A∨B is not a tautology (namely,
∀l∈A l̄ /∈ B) and, is not absorbed (namely,∀C∈F C 6⊆ A∨B). The resolutionrule,
{x∨A, x̄∨B} ≡ {x∨A, x̄∨B,A∨B}, is applied to clashing clauses and is central to
inference algorithms. Variablex is called theclashing variableandA∨B is called
the resolvent. Resolution, which is sound and complete, adds to the formula (i.e,
makes explicit) an implicit relation betweenAandB. Note that unit clause reduction
is just a particular case of resolution.

Two years before DPLL, Davis and Putnam proved that a restricted amount of res-
olution performed along some ordering of the variables is sufficient for deciding
satisfiability. The corresponding algorithm is noted DP [28,25]. Figure 3 provides a
recursive description. It eliminates variables one-by-one until it obtains the empty
formula or achieves a contradiction. The heart of DP is FunctionVarElim. It elim-
inates variablexi from formulaF while preserving its solvability. First, it computes
the so-calledbucketof xi , notedB , which contains the set of clauses mentioning the
variable (line 1). All the clauses in the bucket are removed from the formula (line
2). Next, it applies resolution restricted to the clauses inthe bucket while pairs of
clashing clauses exist. Resolvents are added to the formula(line 6). The correctness
of DP is based on the fact that clauses added in line 6 keep the essential information
contained in clauses removed in line 2. Observe that the pureliteral rule is just a
special case of variable elimination in which no pair of clashing clauses exist, so

5

function VarElim(F ,xi) return CNF formula
1. B := {C∈ F | xi ∈ var(C)}
2. F := F −B
3. while ∃ xi ∨A∈ B do
4 xi ∨A :=PopClause(B)
5. while ∃x̄i∨B∈B s.t.Clash(xi ∨A, x̄i ∨B) do
6. F := F ∪{A∨B}
7. endwhile
8. endwhile
9. return (F)
endfunction
function DP(F) return boolean
10.F := Simplify(F)
11. if F = /0 then return true
12. if F = {2} then return false
13. xi :=SelectVar(F)
14. return DP(VarElim(F ,xi))
endfunction

Fig. 3. DP is a pure inference algorithm. It returnstrue iff F is satisfiable.

the inner loop never iterates.

The following lemma shows how the complexity of eliminatinga variable depends
on the number of other variables that it interacts with,

Lemma 2 [25] Let F be a CNF formula and xi one of its variables. Let ni be
the number of variables sharing some clause with xi in F . The space and time
complexity ofVarElim(F ,xi) is O(3ni) and O(9ni), respectively.

The following lemma shows how the induced graphG∗
d(F) captures the evolution

of the interaction graphG(F) as variables are eliminated.

Lemma 3 [25] Let d denote the reverse order in which DP(F) eliminates vari-
ables. The width of xi along d in the induced graph G(F)∗d bounds above the num-
ber of variables sharing some clause with xi at the time of its elimination.

Thus, the induced width captures the most expensive variable elimination. The fol-
lowing theorem, which follows from the two previous lemmas,characterizes the
complexity of DP in terms of the induced width.

Theorem 4 [25] Let d denote the reverse order in which DP(F) eliminates vari-
ables. Let w∗d denote the induced width of G(F) along d. The space and time com-
plexity of DP(F) is O(n×3w∗

d) and O(n×9w∗
d), respectively.

A consequence of the previous theorem is that the order in which DP eliminates

6

variables may be crucial for the algorithm’s complexity. Asan example, consider a
formula, whose interaction graph is a tree of depth 1. If variables are eliminated in
a top-down order, the cost may be exponential onn. If variables are eliminated in
a bottom-up order, the cost is linear. In general, finding optimal elimination order-
ings is an NP-hard problem and approximate algorithms must be used. In practical
applications, DP is generally too space consuming and cannot be used [25]. Never-
theless, resolution still plays an important practical role in combination with search:
the addition of restricted forms of resolution at each search node anticipates the de-
tection of dead-ends and improves its performance [29,25,30,31]. As we will show,
the use of resolution is even more relevant in the Max-SAT context.

3 (Weighted) Max-SAT

When a boolean formula does not have any model, one may be interested in finding
a complete assignment with minimum number of violated clauses. This problem
is known as(unweighted) Max-SAT. Note that no repetition of clauses is allowed
and all clauses are equally important. The complexity of Max-SAT is PNP[logn],
meaning that it can be solved with a logarithmic number callsto a NP oracle [32].

Weighted Max-SATis an extension of Max-SAT. Aweighted clauseis a pair(C,w)
such thatC is a classical clause andw is a natural number indicating the cost of its
falsification. A weighted formula in conjunctive normal form is asetof weighted
clauses. Thecostof an assignment is the sum of weights of all the clauses that it
falsifies. Given a weighted formula,weightedMax-SAT is the problem of finding a
complete assignment with minimal cost. We can assume all clauses in the formula
being different, since(C,u),(C,w) can be replaced by(C,u+w). Note that clauses
with cost 0 do not have any effect and can be discarded. Weighted Max-SAT is
more expressive than unweighted Max-SAT and its complexity, PNP, is higher [32]
(it may require a linear number of calls to a SAT oracle). Since most Max-SAT
applications require the expressiveness of weights, in this paper we will focus on
weighted Max-SAT. In the following, when we say Max-SAT we will be referring
to weightedMax-SAT.

Example 5 Given a graph G= (V,E), a vertex coveringis a set U⊆V such that
for every edge(vi,v j) either vi ∈ U or v j ∈ U. The size of a vertex covering is
|U |. Theminimum vertex coveringproblem is a well-known NP-Hard problem. It
consists in finding a covering of minimal size. It can be naturally formulated as
(weighted) Max-SAT. We associate one variable xi to each graph vertex. Valuetrue
(respectively,false) indicates that vertex xi belongs to U (respectively, to V−U).
There is a binary weighted clause(xi ∨x j ,u) for each edge(vi,v j)∈E, where u is a
number larger than|V|. It specifies that at least one of these vertices must be in the
covering because there is an edge connecting them. There is aunary clause(x̄i ,1)
for each variable xi , in order to specify that it is preferred not to add vertices to U.

7

Note that different weights in unary and binary clauses are required to express the
relative importance of each type of clauses.

Consider the minimum vertex covering of the graph in Figure 1(a). The Max-SAT
encoding isF = {(x̄1,1),(x̄2,1),(x̄3,1),(x̄4,1),(x̄5,1),(x1∨x4,5),(x2∨x3,5),(x2∨
x4,5),(x2∨x5,5),(x4∨x5,5)}. The optimal assignment is{x2 = x4 = true,x1 = x3 =
x5 = false} with cost2 that is equal to the size of the minimum vertex covering.

Next, we propose an alternative, although equivalent, definition for weighted Max-
SAT that will be more convenient for our purposes. Given a weighted CNF formula,
we assume the existence of a known upper bound⊤ on the cost of an optimal solu-
tion (⊤ is a strictly positive natural number). This is done withoutloss of generality
because, if a tight upper bound is not known,⊤ can be set to any number higher
than the sum of weights of all the clauses. Amodelfor the formula is a complete
assignment with cost less than⊤. An optimal modelis a model of minimal cost.
Then, Max-SAT can be reformulated as the problem of finding anoptimal model,
if there is any. Observe that any weightw≥ ⊤ indicates that the associated clause
must be necessarily satisfied. Thus, we can replacew by ⊤ without changing the
problem. Thus, without loss of generality we assume all costs in the interval[0..⊤]
and, following [33], redefine thesum of costsas,

a⊕b = min{a+b,⊤}

in order to keep the result within the interval[0..⊤]. A clause with cost⊤ is called
mandatory(or hard). A clause with cost less than⊤ is callednon-mandatory(or
soft).

Definition 6 A Max-SAT instance is a pair(F ,⊤) where⊤ is a natural number
andF is a set of weighted clauses with weights in the interval[0..⊤]. The task of
interest is to find an optimal model, if there is any.

The following example shows that⊤ can be used to express that we are only inter-
ested in assignments of a certain quality.

Example 7 Consider again the minimum vertex covering problem of the graph in
Figure 1 (a). With the new notation, the associated formula is

F = { (x̄1,1),(x̄2,1),(x̄3,1),(x̄4,1),(x̄5,1),(x1∨x2,⊤),(x2∨x3,⊤),

(x2∨x4,⊤),(x2∨x5,⊤),(x4∨x5,⊤)}

which shows more clearly which clauses are truly weighted and which ones are
mandatory. In the lack of additional information,⊤ should be set to the sum of
weights (⊤ = 5), meaning that any assignment that satisfies the mandatory clauses
should be taken into consideration. Suppose now that somehow (for example, with
a local search algorithm) we find a covering of size3. We can set⊤ to 3 because

8

any assignment with cost3 or higher does not interest us anymore. The resulting
Max-SAT problem is tighter (and easier, because more partial assignments can be
identified as unfeasible).

The interest of adding⊤ to the problem formulation is twofold. On the one hand, it
allows to explicit the mandatory nature of mandatory clauses. Besides, as we will
see later, it allows todiscovermandatory clauses that weredisguisedas weighted
clauses. On the other hand, it allows to see SAT as a particular case of Max-SAT.

Remark 8 A Max-SAT instance with⊤ = 1 is essentially a SAT instance because
there is no weight below⊤. Consequently, every clause in the formula is mandatory.

A weighted CNF formula may contain(2,w) among its clauses. Since2 cannot
be satisfied,w is a necessary cost of any model. Therefore,w is an explicitlower
boundof the cost of an optimal model. When the lower bound and the upper bound
have the same value (i.e.,(2,⊤) ∈ F) the formula is trivially unsatisfiable and
we call this situation anexplicit contradiction. The idea of adding an upper bound
⊤ and a lower bound(2,w) to the problem formulation was first proposed in the
WCSP context [33].

4 Extending SAT solving techniques to Max-SAT

4.1 Extending Simplification Rules and Clause Negation

We say that two Max-SAT formulas are equivalent,F ≡ F ′, if they contain the
same set of variables, and complete assignments have the same costs. The following
equivalence rules can be used to simplify CNF weighted formulas,

• Aggregation: {(A,w),(A,u)} ≡ {(A,w⊕u)}
• Absorption: {(A,⊤),(A∨B,w)} ≡ {(A,⊤)}
• Unit clause reduction: {(l ,⊤),(l̄ ∨A,w)} ≡ {(l ,⊤),(A,w)}
• Hardening: If

Lk
i=1ui = ⊤ and∀1≤i<kCi ⊂Ck then

{(Ci ,ui)}
k−1
i=1 ∪{(Ck,uk)} ≡ {(Ci,ui)}

k−1
i=1 ∪{(Ck,⊤)}

Aggregationgeneralizes to Max-SAT the idempotency of the conjunction in classi-
cal SAT.Absorptionrule indicates that in the Max-SAT context the absorbing clause
must be mandatory. Similarly,unit clause reductionrequires the unit clause being
mandatory. The correctness of these equivalences is directand we omit the proof.
TheHardeningrule allows to identify weighted clauses that are indeed mandatory.
It holds because the violation ofCk implies the violation of allCi with i < k. There-
fore, any assignment that violatesCk will have cost

Lk
i=1ui = ⊤.

9

It is easy to see that thepure literal rulecan also be applied to Max-SAT. Besides,
the assignment of a formulaF [l] also holds in Max-SAT. As in SAT, it can be
seen as the addition of(l ,⊤) to the formula which allows a sequence of unit clause
reductions followed by the application of the pure literal rule.

Example 9 Consider the following formula{(x,⊤),(x̄,3),(y,8),(x̄∨ ȳ,3)} with
⊤ = 10. We can apply unit clause reduction to the first and second clauses, which
produces{(x,⊤),(2,3),(y,8),(x̄∨ ȳ,3)}. We can apply it again to the first and
fourth clauses producing{(x,⊤),(2,3),(y,8),(ȳ,3)}. The pure literal rule allows
to remove the first clause producing{(2,3),(y,8),(ȳ,3)}. We can harden the sec-
ond clause because3⊕8 = ⊤. Thus, we obtain{(2,3),(y,⊤),(ȳ,3)}. Unit clause
reduction produces{(2,3),(y,⊤),(2,3)}. Aggregation yields{(2,6),(y,⊤)} and
the pure literal rule produces the formula{(2,6)} which trivially has an optimal
model of cost6.

Proposition 10 The algorithm that applies the previous simplifications until qui-
escence terminates in polynomial time.

Observe that if an explicit contradiction is achieved (i.e., (2,⊤) ∈ F) all clauses
are subsequently absorbed and the formula immediately collapses to(2,⊤).

Thenegation of a weighted clause(C,w), noted(C̄,w), means that thesatisfaction
of C has costw, while its negation is cost-free. Note that̄C is not clausal when
|C|> 1. In classical SAT theDe Morganrule can be used to recover the CNF syntax,
but the following example shows that it cannot be applied to weighted clauses.

Example 11 Consider the weighted clause(x∨y,1) with⊤> 1. The truth table of
its negation(x∨y,1) and the truth table of{(x̄,1),(ȳ,1)} are given below (ignore
the last column for the moment). Note that they are not equivalent.

x y (x∨y,1) {(x̄,1),(ȳ,1)} {(x̄∨ ȳ,1),(x̄∨y,1),(x∨ ȳ,1)}

f f 0 0⊕0 = 0 0⊕0⊕0 = 0

f t 1 1⊕0 = 1 0⊕0⊕1 = 1

t f 1 0⊕1 = 1 0⊕1⊕0 = 1

t t 1 1⊕1 = 2 1⊕0⊕0 = 1

The following recursive transformation rule allows to recover the clausal form in
totally or partially negated clauses. LetA andB be arbitrary disjunctions of clauses,

CNF(A∨ l ∨B,u) =

(A∨ l̄ ,u) : |B| = 0

{(A∨ l̄ ∨B,u)} ∪CNF(A∨ l̄ ∨ B̄,u) ∪

∪ CNF(A∨ l ∨ B̄,u) : |B| > 0

10

The last column in the truth table of the previous example shows the proper CNF
encoding of clause(x∨y,1). The main drawback of this rule is that it generates an
exponential number of new clauses with respect the arity of the negated clause. We
will show in Subsection 4.3 that it is possible to transform it into a linear number
of clauses.

Theorem 12 CNF(A∨ l ∨B,u) returns an equivalent CNF expression.

PROOF. It is clear that CNF(A∨ l ∨B,u) generates a CNF expression because the
negation is applied to smaller sub-expression at each recursive call. Eventually, it
will be applied to literals, so the expression will be a clause. We prove that CNF(A∨
l ∨B,u) returns an equivalent expression by induction over|B|. The|B|= 0 is trivial
since the left-hand and the right-hand sides are the same. Regarding the|B| > 0
case, there are three ways to falsifyA∨ l ∨B. Each one of the three elements in the
right-hand side corresponds to one of them. The last two are assumed correct by
the induction hypothesis.

Remark 13 The weighted expression(A∨C∨ (C∨B),u), where A, B and C are
disjunctions of literals, is equivalent to(A∨C∨ B̄,u), because they are falsified
under the same circumstances.

4.2 Extending DPLL

In Figure 4 we present Max-DPLL, the extension of DPLL to Max-SAT. Max-
DPLL(F ,⊤) returns the cost of the optimal model if there is any, else itreturns⊤.
First, the input formula is simplified with the rules from theprevious subsection
(line 1). If the resulting formula is empty, there is a 0 cost model (line 2). If the
resulting formula only contains the empty clause, the algorithm returns its cost (line
3). Else, it selects a literall (line 4) and makes two recursive calls (lines 5 and 6).
In each call the formula is instantiated withl and l̄ . Observe that the first recursive
call is made with the⊤ inherited from its parent, but the second call uses the output
of the first call. This implements the typical upper bound updating of depth-first
branch and bound. Finally, the best value of the two recursive calls is returned (line
7). Observe that, as search goes on, the value of⊤ may decrease. Consequently,
clauses that originally were soft may become hard which, in turn, may strengthen
the potential of the simplification rules. The parallelism with DPLL (Figure 2) is
obvious. The following statement shows that Max-DPLL is a true extension of
classical DPLL.

Remark 14 The execution of Max-DPLL with a SAT instance (i.e.,(F ,⊤) with
⊤ = 1) behaves like classical DPLL.

11

function Max-DPLL(F ,⊤) return nat
1. F := Simplify(F ,⊤)
2. if F = /0 then return 0
3. if F = {(2,w)} then return w
4. l :=SelectLiteral(F)
5. ⊤ :=Max-DPLL(F [l],⊤)
6. ⊤ :=Max-DPLL(F [l̄],⊤)
7. return ⊤
endfunction

Fig. 4. If (F ,⊤) has models, Max-DPLL returns the optimal cost. Else it returns⊤.

It is easy to see that the time complexity of Max-DPLL is exponential on the num-
ber of variablesn and the space complexity is polynomial on|F |. Therefore, DPLL
and Max-DPLL have the same complexity.

4.3 Extending the Resolution Rule

Consider thesubtractionof costs (⊖) defined as in [34]. Letu,w ∈ [0, . . . ,⊤] be
two weights such thatu≥ w,

u⊖w =

u−w : u 6= ⊤

⊤ : u = ⊤

Essentially,⊖ behaves like the usual subtraction except that⊤ is an absorbing
element. The resolution rule can be extended from SAT to Max-SAT as,

{(x∨A,u),(x̄∨B,w)} ≡

(A∨B,m),

(x∨A,u⊖m),

(x̄∨B,w⊖m),

(x∨A∨ B̄,m),

(x̄∨ Ā∨B,m)

wherem= min{u,w}. In this rule, that we call Max-RES,(A∨B,m) is called the
resolvent; (x∨A,u⊖m) and(x̄∨B,w⊖m) are called theposterior clashing clauses.
(x∨A∨ B̄,m) and(x̄∨ Ā∨B,m) are called thecompensation clauses. The effect of
Max-RES, as in classical resolution, is to infer (namely, make explicit) a connec-
tion betweenA andB. However, there is an important difference between classical
resolution and Max-RES. While classical resolution yieldsthe addition of a new

12

clause, Max-RES is a transformation rule. Namely, it requires thereplacementof
the left-hand clauses by the right-hand clauses. The reasonis that some cost of
the prior clashing clauses must be subtracted in order tocompensatethe new in-
ferred information. Consequently, Max-RES is better understood as amovementof
knowledge.

Example 15 If we apply Max-RES to the following clauses{(x∨ y,3),(x̄∨ y∨
z,4)} (with ⊤ > 4) we obtain{(y∨ y∨ z,3),(x∨ y,3⊖ 3),(x̄∨ y∨ z,4⊖ 3),(x∨
y∨ (y∨z),3),(x̄∨ ȳ∨ y∨ z,3)}. The first and fourth clauses can be simplified.
The second clause can be omitted because it weight is zero. The fifth clause can
be omitted because it is a tautology. Therefore, we obtain the equivalent formula
{(y∨z,3),(x̄∨y∨z,1),(x∨y∨ z̄,3)}

The previous example showed that, under certain conditions, some of the right-
hand side clauses can be removed. Clause(x∨A,u⊖m) (symmetrically for(x̄∨
B,w⊖m)) can be omitted iff either,

• B⊆ A∧m= ⊤, or
• u = m< ⊤.

The first case holds because the clause is absorbed by the resolvent (A,⊤). The
second case holds becauseu⊖m= 0.

Regarding clause(x∨A∨ B̄,m) (symmetrically for(x̄∨ Ā∨B,m)), it can be omitted
iff either,

• B⊆ A, or
• u = ⊤.

The first case holds because the clause is a tautology. The second case holds be-
cause the clause is absorbed by the posterior clashing clause (x∨A,⊤⊖m= ⊤).

Remark 16 The application of Max-RES to mandatory clauses is equivalent to
classical resolution.

PROOF. Clashing clauses being mandatory means thatu = w = ⊤. Clearly,m=
min{u,w}=⊤, u⊖m=⊤ andw⊖m=⊤. Consequently, all right-hand clauses are
mandatory. Therefore, the prior and posterior clashing clauses are equal. Overmore,
the compensation clauses are absorbed by the clashing clauses (as we previously
noted). Thus, Max-RES has the effect of adding(A∨B,⊤) to the formula, which
is equivalent to classical resolution.

Theorem 17 Max-RES is sound.

13

PROOF. The following table contains in the first columns all the truth assign-
ments, in the second column the cost of the assignment according to the clauses on
the left-hand of the Max-RES rule, and in the third column thecost of the assign-
ment according to the clauses on the right-hand of the Max-RES rule. As it can be
observed, the costs the are same, so the resulting problem isequivalent.

x A B Left Right

f f f u m⊕ (u⊖m)

f f t u m⊕ (u⊖m)

f t f 0 0

f t t 0 0

t f f w m⊕ (w⊖m)

t f t 0 0

t t f w m⊕ (w⊖m)

t t t 0 0

Observe that compensation clauses(x∨ A∨ B̄,m) and (x̄∨ Ā∨ B,m) are not in
clausal form when|A| > 1 and|B| > 1. In the following, we assume that they are
transformed to clausal form as needed. In Subsection 4.1, weintroduced a recursive
rule that allows to recover the clausal form in totally or partially negated clauses.
We noted that it produces an exponentially large number of new clauses. Interest-
ingly, Max-RES allows to redefine it in such a way that only a linear number of
clauses is generated,

CNFlinear(A∨ l ∨B,u) =

A∨ l̄ : |B| = 0

{(A∨ l̄ ∨B,u)}∪CNFlinear(A∨ B̄,u) : |B| > 0

The new rule is correct because the two recursive calls of CNF(Subsection 4.1),
CNF(A∨ l̄ ∨ B̄,u) andCNF(A∨ l ∨ B̄,u), can be resolved on literall and we obtain
the equivalent callCNF(A∨ B̄,u). For example, the application ofCNFlinear to
(x∨y,1) (Example 11) produces the equivalent{(x̄∨y,1),(ȳ,1)}. Observe that the
output ofCNFlinear depends on how the literals are ordered in the clause.

14

function Max-VarElim(F ,⊤,xi) return weighted CNF formula
1. B := {(C,u) ∈ F | xi ∈ var(C)}
2. F := F −B
3. while ∃(xi ∨A,u) ∈ B do
4 (xi ∨A,u) :=PopMinSizeClause(B)
5. while u > 0∧ ∃(x̄i∨B,w)∈B s.t.Clash(xi ∨A, x̄i ∨B) do
6. m := min{u,w}
7. u := u⊖m
8. B := B −{(x̄i ∨B,w)}∪{(x̄i ∨B,w⊖m)}
9. B := B ∪{(xi ∨A∨ B̄,m)∪ (x̄i ∨ Ā∨B,m)}
10. F := F ∪{(A∨B,m)}
11. endwhile
12. endwhile
13. return (F)
endfunction
function Max-DP(F ,⊤) return nat
14.F := Simplify(F ,⊤)
15. if F = /0 then return 0
16. if F = {(2,u)} then return u
17. xi :=SelectVar(F)
18. return Max-DP(VarElim(F ,⊤,xi),⊤)
endfunction

Fig. 5. If (F ,⊤) has models, Max-DP returns their optimal cost. Else it returns⊤.

4.4 Extending DP

The following example shows that, unlike classical resolution, the unrestricted ap-
plication of Max-RES does not guarantee termination1 .

Example 18 Consider the following formula{(x∨ y,1),(x̄∨ z,1)} with ⊤ = 3. If
we apply Max-RES, we obtain{(y∨ z,1),(x∨ y∨ z̄,1),(x̄∨ ȳ∨ z,1)}. If we apply
Max-RES to the first and second clauses we obtain{(x∨ y,1),(x̄∨ y∨ z,1),(x̄∨
ȳ∨ z,1)}. If we apply now Max-RES to the second and third clauses we obtain
{(x∨y,1),(x̄∨z,1)}, which is the initial formula.

Nevertheless, Bonetet al. [35] have recently proved that when all clauses are non-
mandatory, the directional application of Max-RES solves the Max-SAT problem.
If their proof is combined with the proof of correctness of DP[28] (namely, all
clauses being mandatory), we have that the extension of DP toMax-SAT pro-
duces a correct algorithm. Max-DP (depicted in Figure 5) is the extension of DP
to Max-SAT. Both algorithms are essentially equivalent themain difference being

1 This fact was first observed in the WCSP context by [34]

15

that Max-DP performs Max-RES instead of classical resolution. Observe the par-
allelism between FunctionVarElim (Fig. 3) and FunctionMax-VarElim (Fig.
5). Both are in charge of the elimination of variablexi from the formula. As in the
SAT case,Max-VarElim computes the bucketB (line 1) and removes its clauses
from the formula (line 2). Then, it selects a clause(x∨A,u) and resolves it with all
its clashing clauses. InVarElim clausex∨A is resolved until no clashing clauses
exist. InMax-VarElim clause(x∨A,u) is resolved until its weightu decreases
to 0 or no clashing clauses exist. A worth noting difference with respect to the SAT
case is thatMax-VarElim selects in line 4 aminimal sizeclause. Such minor dif-
ference is not required for the correctness of the algorithmbut only to achieve the
complexity stated in Theorem 23.

The following lemma shows thatMax-VarElim transforms the input formula
preserving its optimality.

Lemma 19 Consider a call to theMax-VarElim function. Let(F ,⊤) denote
the input formula and let(F ′,⊤) denote the output formula. It is true that(F ,⊤)
has models iff(F ′,⊤) has models. Besides, if(F ,⊤) has models, the cost of the
optimal one is the same as the cost of the optimal model of(F ′,⊤).

PROOF. See Appendix A.

Theorem 20 Algorithm Max-DP is correct.

PROOF. Max-DP is a sequence of variable eliminations until variable-free for-
mula is obtained. Lemma 19 shows that each transformation preserves the cost of
the optimal model. Therefore, the cost of the final variable-free formula(2,u) is
the cost of the optimal model of the original formula.

The following lemma, shows that it has the same complexity toeliminate a variable
in classical SAT and in Max-SAT.

Lemma 21 Let (F ,⊤) be a Max-SAT instance and xi one of its variables. Let ni
denote the number of variables sharing some clause with xi in F . The space and
time complexity ofMax-VarElim(F ,⊤,xi) is O(3ni) and O(9ni), respectively.

PROOF. See Appendix A.

The next lemma, shows that the induced graph plays the same role in DP and in
Max-DP.

Lemma 22 Let d denote the reverse order in which Max-DP(F ,⊤) eliminates

16

variables. The width of xi along d in the induced graph G(F)∗d bounds above the
number of variables sharing some clause with xi at the time of its elimination.

PROOF. Same as the SAT case (Lemma 3).

The following theorem, which trivially follows from the previous two lemmas,
bounds the complexity of Max-DP.

Theorem 23 Let (F ,⊤) be an arbitrary Max-SAT instance. Let d denote the re-
verse order in which Max-DP(F ,⊤) eliminates variables. The space and time com-
plexity of DP(F) is O(n×3w∗

d) and O(n×9w∗
d), respectively, where w∗d is the in-

duced width of the interaction graph G(F) along d.

Observe that the complexities of DP and Max-DP are the same, even though Max-
SAT has a complexity higher than SAT. The same phenomenon hasalready been
observed with respect to CSP and its optimization version WCSP when using the
bucket-elimination[23] algorithm. Note that bucket-elimination is a meta-algorithm
based on the variable-elimination principle and DP and Max-DP are particular in-
stantiations of it. The following remark shows that Max-DP is a true extension of
DP.

Remark 24 The execution of Max-DP with a SAT instance (i.e.,(F ,⊤) with ⊤ =
1) behaves like classical DP.

5 Efficient Inference

The complexity results of the previous section show that solving Max-SAT with
pure resolution methods is in general too space consuming and can only be used in
practice with formulas with a small induced width (around 30with current comput-
ers). A natural alternative is to use only restricted forms of resolution that simplify
the formula and use search afterwards. In this Section we summarize some simpli-
fication rules that have been proposed in the recent Max-SAT literature and show
that they can be naturally explained with our framework. We also introduce two
original ones that will be used in the solver that we will introduced in Section 6.

We classify these simplification rules in three categories:single applications of res-
olution, multiple applications of resolution (namely, hyper-resolution), and variable
elimination.

17

5.1 Single Resolution

Proposition 25 Unit clause reduction (also calledupper bound rulein [13]),

{(l ,⊤),(l̄ ∨A,w)} ≡ {(l ,⊤),(A,w)}

is a particular case of Max-RES.

PROOF. If w = ⊤, we have the classical SAT case, which is trivial. Ifw < ⊤, we
have that the application of Max-RES to{(l∨2,⊤),(l̄∨A,w)} produces{(A,w),(l ,⊤⊖
⊤),(l̄ ∨A,w⊖w),(l ∨2∨ Ā,w),(l̄ ∨¬2∨A,u)}

The third clause can be removed becausew⊖w = 0. The fourth clause can be
removed because it is absorbed by the second. The fifth clausecan be removed
because it is a tautology.

Proposition 26 Neighborhood resolution[1] (also called replacement of almost
common clausesin [8]),

{(l ∨A,u),(l̄ ∨A,w)} ≡ {(A,w),(l ∨A,u⊖w)}

where, without loss of generality, w≤ u, is a particular case of Max-RES.

PROOF. Resolving the two left-hand clauses, we obtain{(A,w),(l ∨A,u⊖w),(l̄∨
A,w⊖w),(l ∨A∨ Ā,w),(l̄ ∨A∨ Ā,w)}. The third clause can be omitted because
either its weight is 0 (whenw<⊤), or it is absorbed by the resolvent (whenw=⊤).
The fourth and fifth clauses can be omitted because they are tautologies.

The simplification potential of neighborhood resolution isshown in the following
example,

Example 27 Consider the formula{(z∨y,1),(ȳ∨z,1),(z̄,1)}. The application of
neighborhood resolution yields{(z,1),(z̄,1)} which allows a new application of
neighborhood resolution producing the trivial formula{(2,1)}

The termneighborhood resolutionwas coined by [36] in the SAT context. The
Max-SAT extension was first proposed in [8]. The practical efficiency of the|A| =
0,1,2 cases was assessed in [37,38], [14] and [1], respectively.In the WCSP con-
text, it is related to the notion ofprojectionand has been used to enforcenodeand
arc-consistency[34,33].

18

5.2 Variable elimination

Proposition 28 Thepure literal rule(first proposed in the Max-SAT context in [8])
is a special case ofMax-VarElim

PROOF. Consider a formulaF such that there is a literall , whose negation does
not appear in the formula. Letx = var(l). FunctionMax-VarElim(F ,⊤,x) has
the same effect as the pure literal rule, because there is no pair of clauses clashing
on x. Thus, no resolution will be performed and all clauses containing l will be
removed from the formula.

Proposition 29 Theeliminationrule [8] (also calledresolutionin [9,10]) which
says that ifF = {(l ∨A,u),(l̄ ∨B,w)}∪F ′ and var(l) does not occur inF ′ then

F ≡ F ′∪{(A∨B,min{u,w})}

is a special case ofMax-VarElim

PROOF. Let x be the clashing variable (namely,x= var(l)). We need to prove that
FunctionMax-VarElimwith xas the elimination variable replaces{(l ∨A,u),(l̄∨
B,w)} by{(A∨B,min{u,w})}. There are two possibilities: If{(l ∨A,u),(l̄∨B,w)}
clash, they will be resolved and(A∨B,min{u,w}) will be added to the formula. All
the clauses in the bucket after the resolution step do not clash onx, soMax-VarElim
will discard them. If{(l ∨A,u),(l̄ ∨B,w)} do not clash,Max-VarElim will di-
rectly discard them. In that case,A∨B either is a tautology or is absorbed, so it has
no effect on the right-hand side of the elimination rule.

Proposition 30 Let x̃ denote either x or̄x. Thesmall subformula rule[9], which
says that, ifF = {(x̃∨ ỹ∨A,u),(x̃∨ ỹ∨B,w),(x̃∨ ỹ∨C,v)}∪F ′ and x,y do not
occur inF ′ then

F ≡ F ′

is a special case ofMax-VarElim

PROOF. We only need to prove that if we eliminatex andy from{(x̃∨ ỹ∨A,u),(x̃∨
ỹ∨B,w),(x̃∨ ỹ∨C,v)} with functionMax-VarElim, we obtain the empty for-
mula∅.

If all the occurrences ofx or y have the same sign, the rule holds because to the
pure literal rule can be applied. If there are occurrences ofdifferent sign, there are
only two cases to consider (all other cases are symmetric):

• If we have{(x∨y∨A,u),(x∨y∨B,v),(x̄∨ ȳ∨C,w)}, there are no clauses clash-
ing onx (neither ony), soMax-VarElim will just discard the clauses.

19

(x∨A,u⊖m)

(x∨A∨ B̄,m)
(x̄∨B,w⊖m)

(x̄∨ Ā∨B,m)

(A∨B,m)

(x∨A,u) (x̄∨B,w)

Fig. 6. Graphical representation of Max-RES.

• If we have{(x∨y∨A,u),(x̄∨y∨B,v),(x∨ ȳ∨C,w)}, the first and second clauses
clash, so Max-RES produces,

{(y∨A∨B,m),(x∨y∨A,u⊖m),(x̄∨y∨B,v⊖m),(x∨y∨A∨y∨B,m),

(x̄∨y∨A∨y∨C,m),(x∨ ȳ∨B,w)}

which is equivalent to,

{(y∨A∨B,m),(x∨y∨A,u⊖m),(x̄∨y∨B,v⊖m),(x∨y∨A∨B̄,m),(x̄∨Ā∨y∨C,m),

(x∨ ȳ∨B,w)}

There are no further clauses clashing onx, soMax-VarElim will just discard
all the clauses that mention it, producing the equivalent{(y∨A∨B,m)}. The
pure literal rule will eliminate the clause, producing the empty formula.

5.3 Hyper-resolution

Hyper-resolutionis a well known SAT concept that refers to the compression of
several resolution steps into one single step. In the following, we introduce four
hyper-resolution inference rules. The first two (star ruleanddominating unit-clause)
are formal descriptions of already published rules. The other two rules (cycleand
chain resolution) are original. We prove the correctness of these rules by develop-
ing the resolution tree that allows to transform the left-hand side of the rule into the
right-hand side. Figure 6 shows the graphical representation of Max-RES. On top
there are the two prior clashing clauses. We write them in bold face to emphasize
that they are removed from the formula. The resolvent is linked to the prior clashing
clauses. At the left of the resolvent, we write the posteriorclashing clauses and the
compensation clashing clauses, which must be added to preserve equivalence.

20

(l̄1,u1⊖m)

(l1∨ l2∨ . . . lk,w⊖m)
(l̄1∨ (l2∨· · ·∨ lk),m)

(l̄2,u2⊖m)
(l̄2∨ (l3∨· · ·∨ lk),m)

(l̄k−1,uk−1⊖m)
(l̄k−1∨ l̄k,m)

(l2∨ l3 · · ·∨ lk,m) (l̄2,u2)

(lk,m) (l̄k,uk)

.

(l1∨ l2 · · ·∨ lk,w) (l̄1,u1)

(l3∨ l4 · · ·∨ lk,m) (l̄3,u3)

(2,m)

. . .

(l̄k,uk⊖m)

Fig. 7. Resolution tree of thestar rule.

5.3.1 Star rule

The star rule [9,14] identifies a clause of lengthk such that each of its literals
appears negated in a unit clause. Then, at least one of the clauses will be violated.
Formally,

(l1∨ l2∨ . . . lk,w),

(l̄ i,ui)1≤i≤k,

≡

(l1∨ l2∨ . . . lk,w⊖m),

(l̄ i ∨ (l i+1∨ l i+2∨ . . .∨ lk),m)1≤i<k,

(l̄ i,ui ⊖m)1≤i≤k,

(2,m)

21

(B1,w1)
(l ∨ B̄1,w1)

(B2,w2)
(l ∨ B̄2,w2)

(Bk−1,wk−1)
(l ∨ B̄k−1,wk−1)

(Bk,wk)
(l ∨ B̄k,wk)

(l,u⊖w1) (l̄∨B2,w2)

(l,u⊖w1⊖w2) (l̄∨B3,w3)

(l,u) (l̄∨B1,w1)

(l,u⊖w1⊖w2 · · ·⊖wk)

.

(l,u⊖w1⊖w2 · · ·⊖wk−1) (l̄∨Bk ,wk)

. . .

Fig. 8. Resolution tree thedominating unit clause rule.

wherem= min{w,u1,u2, . . . ,uk}.

This rule can be proved ink resolution steps. Assume, without loss of generality
that∀1≤i<k ui ≤ ui+1. Assume as well thatuk <⊤ (otherwise unit clause reduction
could have been previously triggered). Letm = min{w,u1}. Figure 7 shows the
corresponding resolution tree. Recall that bold clauses are resolved, so they must
be removed from the formula. Essentially, each unit clause is used to eliminate one
literal from the lengthk clause. At the end, we derive the empty clause.

5.3.2 Dominating unit-clause

Thedominating unit-clauserule [9] (also called UP3 in [13]) says that if the weight
if a unit clause(l ,u) is higher than the sum of weights in which̄l appears, we can

22

safely assign̄l to the formula. Formally,

F = {(l ,u)}∪{(l ∨Ai ,ui)}
k′
i=1∪{(l̄ ∨B j ,w j)}

k
j=1∪F

′

with u≥ ∑k
j=1w j andF ′ does not contain any occurrence ofl or l̄ , then

F ≡ {(B j ,w j)}
k
j=1∪F

′

This rule can be proved ink resolution steps plus the application of the pure literal
rule. Figure 8 shows the corresponding resolution tree. As in the previous case, we
can assume that weightu is less than⊤ because otherwise the unit clause reduction
could have been triggered. At each step unit clausel is resolved with one(l̄ ∨
B j ,w j). Since, by definition, the weight ofl is larger than or equal tow j , clause
l̄ ∨B j is replaced byB j . At the end of the process, there is no clause mentioningl̄ ,
so the pure literal rule can be applied, which proves the correctness of the rule.

5.3.3 Chain resolution

Our originalchain resolutionrule, identifies a subset ofchainedbinary clauses and
two unit clauses associated to the ends. When such pattern exists, a sequence of
unit resolution steps suffices to derive the empty clause. The rule is the following,

(l1,u1),

(l̄ i ∨ l i+1,ui+1)1≤i<k,

(l̄k,uk+1)

≡

(l i ,mi ⊖mi+1)1≤i≤k,

(l̄ i ∨ l i+1,ui+1⊖mi+1)1≤i<k,

(l i ∨ l̄ i+1,mi+1)1≤i<k,

(l̄k,uk+1⊖mk+1)

(2,mk+1)

wheremi = min{u1,u2, . . . ,ui} and∀1≤i< j≤k var(l i) 6= var(l j). This rule can also
be proved ink steps of resolution. Figure 9 shows the corresponding resolution
tree. Starting with unit clausel1, at each resolution step a unit clausel i is resolved
with (l̄ i ∨ l i+1,ui+1), which produces the unit clausel i+1 to be used in the following
resolution step. The last unit clause obtained islk and it is resolved with(l̄k,uk+1),
which derives the empty clause.

Example 31 Consider the following formula{(x,2),(x̄∨y,1),(ȳ∨z,⊤),(z̄,2)}. If
we resolve(x,2) and(x̄∨y,1) we obtain{(x,1),(y,1),(x∨ ȳ,1),(ȳ∨z,⊤),(z̄,2)}.
If we resolve(y,1) and (ȳ∨ z,⊤) we obtain{(x,1),(x∨ ȳ,1),(z,1),(y∨ z̄,1),(ȳ∨
z,⊤),(z̄,2)}. Next, if we resolve(z,1) and (z̄,2), we obtain{(x,1),(x∨ ȳ,1),(y∨
z̄,1),(ȳ∨z,⊤),(z̄,1),(2,1)}

23

(l̄1∨ l2,u2⊖m2)

(l1,m1⊖m2)
(l1∨ l̄2,m2)

(l2,m2⊖m3)
(l2∨ l̄3,m3)
(l̄2∨ l3,u3⊖m3)

(lk−1,mk−1⊖mk)
(lk−1∨ l̄k,mk)
(l̄k−1∨ lk,uk⊖mk)

(lk,mk⊖mk+1)
(l̄k,uk+1⊖mk+1)

(l2,m2) (l̄2∨ l3,u3)

(l3,m3) (l̄3∨ l4,u4)

(l1,u1) (l̄1∨ l2,u2)

(2,mk+1)

(lk,mk) (l̄k,uk+1)

.

Fig. 9. Resolution tree ofchain resolution.

Observe that chain resolution withk = 1 reduces to neighborhood resolution, with
k = 2 reduces to thestar rule, with k = 3, it is the 3-RES rule proposed in [2].
Chain resolution withk = 2 is also related to the enforcement ofexistential arc
consistencyin WCSP [22].

5.3.4 Cycle Resolution

Our original cycle resolution, identifies a subset of binary clauses with a cyclic
structure. When such a pattern exists, a sequence of resolution steps with binary

24

(l̄1∨ l2∨ l̄3,m2)
(l̄2∨ l3,u2⊖m2)

(l1∨ l̄2∨ l3,m2)

(l̄1∨ l2,m1⊖m2)

(l̄1∨ l3,m2⊖m3)

(l̄1∨ l3∨ l̄4,m3)
(l1∨ l̄3∨ l4,m3)

(l̄3∨ l4,u3⊖m3)

(l̄1∨ l̄k,uk⊖mk)
(l̄1∨ lk,mk−1⊖mk)

(l̄1∨ l4,m3) (l̄4∨ l5,u4)

(l̄1∨ l3,m2) (l̄3∨ l4,u3)

(l̄1∨ l2,u1) (l̄2∨ l3,u2)

(l̄1,mk)

(l̄1∨ lk ,mk−1) (l̄1∨ l̄k ,uk)

.

(l̄1∨ lk−1∨ l̄k,mk−1)
(l̄k−1∨ lk,uk−1⊖mk−1)

(l1∨ l̄k−1∨ lk,mk−1)

(l̄1∨ lk−1,mk−2⊖mk−1)

. . .

Fig. 10. Resolution tree ofcycle resolution.

clauses suffices to derive a new unit clause. The rule is the following,

(l̄ i ∨ l i+1,ui)1≤i<k,

(l̄1∨ l̄k,uk)

≡

(l̄1∨ l i,mi−1⊖mi)2≤i≤k,

(l̄ i ∨ l i+1,ui ⊖mi)2≤i<k,

(l̄1∨ l i ∨ l̄ i+1,mi)2≤i<k,

(l1∨ l̄ i ∨ l i+1,mi)2≤i<k,

(l̄1∨ l̄k,uk⊖mk),

(l̄1,mk)

25

function Simplify(F ,⊤)
1. stop:= f alse
2. do
3. if (l ,⊤) ∈ F then apply F [l]
4. elseif{(C,u),(C,w)} ⊆ F then apply Aggregation
5. elseif{(2,u),(C,w)} ⊆ F ∧u⊕w = ⊤ then apply Hardening
6. elseif{(x∨A,u),(x̄∨A,w)} ⊆ F then apply Neighbourhod Res.
7. elseif{(l1,u1),(l̄ i ∨ l i+1,ui+1)1≤i<k,(l̄k,uk+1)} ⊆ F then apply Chain Res.
8. elseif{{(l ∨h,u),(l̄ ∨q,v),(h̄∨q,w)}} ⊆ F then apply Cycle Res.
9. until (((2,⊤) ∈ F)∨stop)
10. return (F)
endfunction
function Max-DPLL(F ,⊤) return nat
11.F := Simplify(F ,⊤)
12. if F = /0 then return 0
13. if F = {(2,w)} then return w
14. l :=SelectLiteral(F)
15.⊤ :=Max-DPLL(F [l],⊤)
16.⊤ :=Max-DPLL(F [l̄],⊤)
17. return ⊤
endfunction

Fig. 11.Max-DPLL enhanced with inference. FunctionSimplify(F ,⊤) converts the
input formula into a simpler one. Note that in our implementation, for efficiency reasons,
we only consider the|A| ≤ 1 and|C| ≤ 2 case.

wheremi = min{u1,u2, . . . ,ui} and∀1≤i< j≤k var(l i) 6= var(l j). This rule can be
proved ink−1 steps of resolution. Figure 10 shows the corresponding resolution
tree. The use of the cycle rule is to derive new unit clauses that, in turn, can be used
by chain resolution to increase the weight of the empty clause.

Example 32 Consider the formula{(x1∨x2,1),(x̄1∨x3,1),(x̄2∨x3,1),(x̄3∨ x̄4,1),(x4∨
x5,1),(x̄5,1)}. We can apply the cycle rule to the three first clauses obtaining,
{(x3,1),(x1∨x2∨ x̄3,1),(x̄1∨ x̄2∨x3,1),(x̄3∨ x̄4,1),(x4∨x5,1),(x̄5,1)}. Chain res-
olution can be applied to the unary and binary clauses producing, {(x1 ∨ x2 ∨
x̄3,1),(x̄1∨ x̄2∨x3,1),(x3∨x4,1),(x̄4∨ x̄5,1),(2,1)}.

Observe that cycle resolution withk = 3 is one particular case of the so-called
high-orderconsistencies proposed in [39] for WCSP. In particular, it is a weighted
version restricted to boolean variables ofpath inverse consistency[37].

26

6 An efficient Max-SAT solver

In the previous section we presented a set of simplification rules. Some of them
have been previously proposed by other researchers, while some others are origi-
nal. We showed that all of them can be view as special cases of resolution, hyper-
resolution or variable elimination. In this Section we consider their incorporation
into the Max-DPLL algorithm introduced in Subsection 4.2. The idea is to use these
rules to simplify the current Max-SAT formula before letting Max-DPLL branch on
one of the variables. Our experimental work indicates that it is not cost effective to
apply all of them on a general basis. We have observe that onlythree rules are
useful in general:neighborhood resolution, chain resolutionandcycle resolution.
Besides, it only pays off to apply these rules to clauses of very small size (up to
2). The reason being that there is only a quadratic number of them which bounds
the overhead of the detection of situations when they can be triggered. Regarding
cycle resolution, we only found effective to apply thek = 3 case (namely, consid-
ering triplets of variables). Note that the fact that our solver only incorporates these
three rules, does not prevent other rules from being effective in classes of problems
where we did not experiment.

A high-level description of our solver appear in Figure 11. It is Max-DPLL aug-
mented with the simplification rules in functionSimplify. This function itera-
tively simplifies the formula. It stops when a contradictionis derived or no further
simplification can be done (line 9). Simplification rules arearranged in an ordered
manner, which means that if two rulesR and R′ can be applied, and ruleR has
higher priority than ruleR′, the algorithm will choseR. The rules with the highest
priority areunit clause reductionandabsorptiongrouped in the assignmentF [l]
operation (line 3). Next, we haveaggregation(line 4), hardening(line 5), neigh-
borhood resolution(line 6),chain resolution(line 7) andcycle resolutionrestricted
to cycles of length 3 (line 8).

Although our actual implementation is conceptually equivalent to the pseudo-code
of Figure 11 it should be noted that such code aims at clarity and simplicity. Thus,
a direct translation into a programming language is highly inefficient. The main
source of inefficiency is the time spent searching for clauses that match with the
left-hand side of the simplification rules. This overhead, which depends on the
number of clauses, takes place at each iteration of the loop.As we mentioned,
our current implementation only takes into account clausesof arity less than or
equal to two. Another way to decrease such overhead is to identify those events
that may raise the applicability of the transformations. For instance, a clause may
be made mandatory (line 5) only when its weight or the weight of the empty clause
increases. Then, our implementation reacts to these eventsand triggers the corre-
sponding rules. Such approach is well-known in the constraint satisfaction field and
it is usually implemented with streams of pending events [40,22].

27

The way in which we detect the chain resolution pattern also deserves special con-
sideration. At each search node, we consider the set of binary and unary clauses
and compute the corresponding implication graph defined as follows:

• for each variablexi , the graph has two verticesxi andx̄i ,
• for each binary clause(l i ∨ l j ,u), the graph has two arcs:(l̄ i , l j) and(l̄ j , l i). We

say that these two arcs arecomplementary.
• if the formula contains the unit clause(l ,u), we say that vertexl is a starting

vertex, and vertex̄l is anendingvertex.

It is easy to see that if there is a path(l1, l2, . . . , lk), wherel1 andlk are starting and
ending, respectively, and the path does not cross any pair ofcomplementary arcs,
then chain resolution can be applied and the path tells the order in which resolution
must be applied.

In our implementation, we select one arbitrary starting vertex and compute short-
est paths to all ending vertices using Dijkstra’s algorithm. If one of the paths does
not cross complementary arcs, we trigger the rule. Else, another starting vertex is
selected and the process is repeated. Note that this method does not necessarily
detect all the potential applications of chain resolution because it only takes into
consideration one path between each pair of starting and ending vertices (the short-
est path given by Dijkstra). The fact that this path crosses complementary arcs does
not prevent the existence of other paths that do not cross complementary arcs. We
believe that a better approach would be to use a flow algorithm, but we have not yet
studied this possibility.

7 Experimental Results

We divide the experiments in two parts. The purpose of the first part is to assess the
importance of each one of the inference rules that our solverincorporates. These ex-
periments include random Max-SAT instances and random Max-clique problems.
The purpose of the second part is to evaluate the performanceof our solver in com-
parison to other available solving techniques. These experiments include random
weighted and unweighted Max-SAT instances, random and structured Max-one
problems, random Max-cut problems, random and structured max-clique problems
and combinatorial auctions.

Our solver, written in C, is available as part of the TOOLBAR software2 . Bench-
marks are also available in the TOOLBAR repository. In all the experiments with
random instances, samples have 30 instances and plots report meancpu time in
seconds. Executions were made on a 3.2 Ghz Pentium 4 computerwith Linux. Un-

2 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolbarInfo

28

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolbarInfo

less otherwise indicated, executions were aborted when they reached a time limit
of 1200 seconds. In all the plots’ legend, the order of the items reflects the relative
performance order of the different competitors.

7.1 Adding Inference to Max-DPLL

We consider the following versions of our solver:

(1) Basic Max-DPLL. Namely, Algorithm 11 in which lines 6-8 in FunctionSimplify
are commented out. We denote this algorithm Max-DPLL-1.

(2) The previous algorithm enhanced withneighborhood resolution(namely, lines
7-8 inSimplify are commented out). We denote this algorithm Max-DPLL-
2.

(3) The previous algorithm enhanced withchain resolution(namely, line 8 in
Simplify is commented out). We denote this algorithm Max-DPLL-3.

(4) The previous algorithm enhanced withcycle resolution(namely, all the lines
in Simplify are considered). We denote this algorithm Max-DPLL-4.

For the first experiment we consider random Max-SAT instances. A random k-SAT
formula is defined by three parameters< k,n,m>. k is the length of the clauses,
n is the number of variables andm is number of clauses. Each clause is randomly
generated by selectingk distinct variables with a uniform probability distribution.
The sign of each variable in each clause is randomly decided.In the following
experiments we generate instances in which the number of clauses is always suffi-
ciently high as to make the formula unsatisfiable and we solved the corresponding
Max-SAT problem. We used theCnfgen3 generator. Note that it allows repeated
clauses, sov repetitions of a clauseC are grouped into one weighted clause(C,v).

Figure 12 (top-left) reports results on random Max-2-SAT instances with 100 vari-
ables with varying number of clauses. It can be seen that Max-DPLL-1 performs
very poorly and can only solve instances with up to 200 clauses. The addition of
neighborhood resolution (namely, Max-DPLL-2) improves its performance by 2
orders of magnitude and allows to solve instances with up to 300 clauses. The fur-
ther addition of chain resolution provides a spectacular improvement which allows
to solve instances with up to 750 clauses. Finally, the addition of cycle resolution
allows to solve in 100 seconds instances of up to 1000 clauses.

The Max-Clique problem is the problem of finding the maximum size clique em-
bedded in a given graph. It is known that solving the Max-clique problem of graph
G= (V,E) is equivalent to solving the Min-covering problem of graphG′ = (V,E′)
whereE′ is the complementary ofE (namely,(u,v) ∈ E′ iff (u,v) /∈ E). Therefore,

3 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/
contributed/UCSC/instances

29

 0

 100

 200

 300

 400

 500

 600

 200 300 400 500 600 700 800 900 1000

cp
u

tim
e

n. of clauses

Max-2-SAT, 100 vars

Max-DPLL1
Max-DPLL2
Max-DPLL3
Max-DPLL4

 0

 100

 200

 300

 400

 500

 600

 300 400 500 600 700 800 900 1000

cp
u

tim
e

n. of clauses

Max-3-SAT, 50 vars

Max-DPLL1
Max-DPLL2
Max-DPLL3
Max-DPLL4

 0

 50

 100

 150

 200

36 44 52 60 68 76 84 92 100

cp
u

tim
e

connectivity (%)

Max-Clique, 150 vars

Max-DPLL1
Max-DPLL2
Max-DPLL3
Max-DPLL4

Fig. 12. Experimental results of different algorithms on random Max-SAT and Max-clique
instances.

we solved Max-clique instances by encoding into Max-SAT thecorresponding min-
vertex problem as described in Example 5.

A random graphis defined by two parameters< n,e> wheren is the number of
nodes ande is the number of edges. Edges are randomly decided using a uniform
probability distribution. Figure 12 (bottom) reports the results of solving the max-
clique problem of random graphs with 150 nodes and varying number of edges.
It can be observed that the instances with connectivity lower than 50 percent are
trivially solved by our 4 algorithms. Note that instances with small connectivity
have an associated Max-SAT encoding containing a large number of hard clauses.
Hence, theunit clause reduction ruleis applied very frequently on those instances.
This is the reason why they are so easily solved. However, as the connectivity is
increased, the differences between all the versions are greater. Little improvement is
noticed for Max-DPLL-2 over Max-DPLL-1. For connectivities between 76% and
99% the greatest differences are found. While Max-DPLL-1 and Max-DPLL-2 are
unable to solve those instances, both Max-DPLL-3 and Max-DPLL-4 perform well.
With a connectivity near to 90%, it can be observed that usingthe cycle resolution
reports a noticeable improvement.

From these experiments we conclude that the synergy of the three inference rules
of Max-DPLL-4 produces an efficient algorithm.

30

7.2 Max-DPLL versus alternative solvers

In the following experiments, we evaluate the performance of Max-DPLL-4 (we
will refer to it simply as MAX -DPLL). For that purpose, we compare Max-DPLL
with the following state-of-the-art Max-SAT solvers: MAXSOLVER [13], UP [41]
and LB4A [12]. They suffer from the following limitations:

• The available version of MAXSOLVER is restricted to instances with less than
200 variables and 1000 clauses.

• For implementation reasons, UP cannot deal with instances having clauses with
high weights. Similarly, it cannot also deal with instancesthat combine manda-
tory and weighted clauses.

• LB4A can only solve unweighted Max-2-SAT problems (i.e, it is restricted to
binary clauses with unit weights and without repeated clauses).

Consequently, in the experiments we will only execute a solver if it is possible,
according to its limitations.

It is known that Max-SAT problems can also be solved withpseudo-booleanand
SAT solvers. For the sake of a more comprehensive comparison, we also consider
PUEBLO [42] and MINISAT [43], which are among the best pseudo-boolean and
SAT solvers, respectively. In appendix B, we describe how wetranslated the Max-
SAT instances into these two frameworks. Note that pseudo-boolean formulas are
equivalent to 0-1integer linear programs(ILP). Thus, they can also be solved with
a state-of-the-art ILP solver such as CPLEX. We have not considered this alter-
native because [11] showed that it is generally ineffectivefor Max-SAT instances.
Max-SAT problems can also be solved with WCSP solvers [11]. We have not con-
sider this type of solver in our study, because the referenceWCSP solver is MEDAC
[22], which uses techniques similar to those of Max-DPLL andcan be roughly de-
scribed as a non-boolean restricted version of Max-DPLL-3.

7.2.1 Random Max-k-SAT

For the following experiment, we generated random 2-SAT instances of 60 vari-
ables and 3-SAT instances of 40 variables with varying number of clauses using
theCnfgengenerator. We also generated random 2-SAT instances of 140 variables
using the 2-SAT generator of [12] that does not allow repeated clauses.

Figure 13 (top-left) presents the results on Max-2-SAT without repeated clauses.
It can be observed that MAX -DPLL is the only algorithm that can solve prob-
lems of up to 1000 clauses. The solver with the second best performance, UP,
is 6 times slower. A surprising observation is that the LB4A solver, which was
specifically designed for Max-2-SAT without repetitions, performs worse than the
other Max-SAT solvers in random unweighted Max-2-SAT. Figure 13 (top-right)

31

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700 800 900 1000

cp
u

tim
e

n. of clauses

Max-2-SAT, 140 vars

Pueblo
Minisat

Lazy
LB4a

MaxSolver
UP

Max-DPLL

 0

 50

 100

 150

 200

 200 400 600 800 1000 1200 1400

cp
u

tim
e

n. of clauses

Max-2-SAT, 60 vars

Minisat
Pueblo

Lazy
MaxSolver

UP
Max-DPLL

 0

 50

 100

 150

 200

 100 200 300 400 500 600 700 800 900 1000

cp
u

tim
e

n. of clauses

Max-3-SAT, 40 vars

Pueblo
Minisat

UP
MaxSolver

Lazy
Max-DPLL

Fig. 13. Random Max-2-SAT and Max-3-SAT. Max-2-SAT instances on the plot on the left
do not contain repeated clauses.

presents the results on Max-2-SAT with repeated clauses. MAX -DPLL is again the
best algorithm. The second best solver, UP, is nearly 100 times slower in the hard-
est instances. Figure 13 (bottom) presents the results on Max-3-SAT. MAX -DPLL
provides again the best performance. The second best optionLAZY is about 10
times slower. A worth noting observation is that the alternative encodings (namely,
pseudo-boolean and SAT) do not seem to be effective in these instances.

7.2.2 Max-one

Given a satisfiable CNF formula,max-oneis the problem of finding a model with
a maximum number of variables set to true. This problem can beencoded as Max-
SAT by considering the clauses in the original formula as mandatory and adding a
weighted unary clause(xi ,1) for each variable in the formula. Note that solving this
problem is much harder than solving the usual SAT problem, because the search
cannot stop as soon as a model is found. The optimal model mustbe found and its
optimality must be proved.

Figure 14 shows results with random 3-SAT instances of 150 variables. Note that
UP can not be executed in this benchmark because it cannot deal with mandatory
and weighted clauses simultaneously. The first thing to be observed is that LAZY

and MINISAT do not perform well. Regarding the other solvers, PUEBLO is the best
when the number of clauses is very small, but its relative efficiency decreases as
the number of clauses grows. MAX SOLVER has the opposite behavior, and MAX -

32

 0

 200

 400

 600

 800

 1000

 250 300 350 400 450 500 550 600

cp
u

tim
e

n. of clauses

Max-ONE, 3-SAT 150 vars

Lazy
Minisat

MaxSolver
Max-DPLL

Pueblo

Fig. 14. Random Max-one instances.

DPLL always lay in the middle. The performance of all these solvers converge
as the number of clauses approaches the phase transition peak. The reason is that,
as the number of models decreases, the optimization part of the Max-one problem
loses relevance (the number of models to chose from decreases).

Table 15 reports results on the Max-one problem on selected satisfiable SAT in-
stances from the DIMACS challenge. The first column indicates the name of the
problem classes. The second column indicates the number of instances of each
class. The rest of columns indicate the performance of each solver by indicating the
number of instances that could be solved within the time limit. If all the instances
could be solved, the number in parenthesis is the mean time inseconds. The “-”
symbol in the MAX SOLVER column indicates that the instances could not be exe-
cuted due to the limitation that this solver has on the maximum number of variables
and clauses. As can be observed, MAX SOLVER and LAZY do not succeed in this
benchmark, which means that MAX -DPLL is the only Max-SAT solver that can
deal with it. Its performance is comparable to the good performance of MINISAT

and PUEBLO. However, in thepar16*c* instances MAX -DPLL performs badly,
while in thepar8* instances it performs better than the others.

7.2.3 Max-cut

Given a graphG = (V,E), acut is defined by a subset of verticesU ⊆V. The size
of a cut is the number of edges(vi ,v j) such thatvi ∈U andv j ∈V −U . TheMax-
cut problem consists on finding a cut of maximum size. It is encoded as Max-SAT
associating one variablexi to each graph vertex. Valuet (respectively,f) indicates
that vertexvi belongs toU (respectively, toV −U). For each edge(vi ,v j), there
are two clausesxi ∨ x j , x̄i ∨ x̄ j . Given a complete assignment, the number of vio-
lated clauses is|E|−SwhereS is the size of the cut associated to the assignment.

33

Problem n. inst. MaxDPLL MaxSolver Lazy Minisat Pueblo

aim50* 16 16(0.59) 16(0.12) 16(28.25) 16(0.01) 16(0.00)

aim100* 16 16(2.67) 16(4.92) 0 16(0.02) 16(0.00)

aim200* 16 9 4 0 16(0.03) 16(0.00)

jnh* 16 16(1.49) − 6 16(0.08) 16(0.10)

ii8* 14 5 − 1 10 3

ii32* 17 11 − 0 16 15

par8* 10 10(0.92) − 5 10(16.39) 10(26.52)

par16*c* 5 5(784.14) − 0 5(0.93) 5(0.93)

Fig. 15. Results for the Max-one problem on selected DIMACS SAT instances.

 0

 50

 100

 150

 200

 250

 300 350 400 450 500

cp
u

tim
e

n. of edges

Max-CUT, 60 vars

Lazy
UP

MaxSolver
LB4a

Max-DPLL

Fig. 16. Random Max-cut instances.

Note that this encoding produces an unweighted Max-2-SAT formula, so the LB4A
solver can be used. Random Max-Cut instances are extracted from random graphs.
We considered graphs of 60 nodes with varying number of edges.

Figure 16 reports the results on this benchmark. It can be observed that for all
solvers other than MAX -DPLL, problems become harder as the number of edges
increases. However, MAX -DPLL solves instances of up to 500 edges almost in-
stantly. The second best solver is LB4A, but MAX -DPLL is up to 15 times faster.
PUEBLO and MINISAT perform so poorly even in the easiest instances that they are
not included in the comparison.

34

7.2.4 Max-clique

The Max-clique problem is the problem of finding the maximum size subgraph em-
bedded in a given graph and its Max-SAT encoding was described in the previous
subsection. Solvers UP, MAX SOLVER and LB4A could not be executed in this do-
main due to their limitations. Our first Max-clique experiment used random graphs
with 150 nodes and varying number of edges. Figure 17 reportsthe results. Again,
MAX -DPLL is clearly better than any other competitor. All othercompetitors are
more than 2 orders of magnitude slower than MAX -DPLL.

We also considered the 66 Max-Clique instances from the DIMACS challenge4 .
MAX SOLVER could not be executed in this benchmark because the number ofvari-
ables and clauses of the instances exceeds its capacity. Thus, the only two Max-SAT
solvers that could be executed are MAX -DPLL and LAZY . Within the time limit,
they solved 32 and 23 instances, respectively. MINISAT and PUEBLO could solve
22 and 16 instances, respectively. Therefore, MAX -DPLL provided the best per-
formance in this benchmark, too.

These instances have been previously used to evaluate several dedicated max clique
algorithms. Performing a proper comparison with MAX -DPLL is difficult because
their code is not available and we would need to re-program their algorithms. How-
ever, following the approach of [44], we overcome this problem by normalizing
the reported times. Of course, this is a very simplistic approach which disregards
very relevant parameters such as the amount of memory or the processor model. In
consequence, the following results can only be taken as orientative. Giving a time
limit of 2.5 hours per instance in our 3.2 Ghz computer, MAX -DPLL was able to
solve 37 instances. In anequivalent(via normalization) time, [45] solves 38, [46]
soves 36, [47] solves 45, and [44] solves 52.

7.2.5 Combinatorial Auctions

Combinatorial auctionallow bidders to bid for indivisible subsets of goods. Con-
sider a setG of goods andn bids. Bidi is defined by the subset of requested goods
Gi ⊆ G and the amount of money offered. The bid-taker, who wants to maximize
its revenue, must decide which bids are to be accepted. Note that if two bids request
the same good, they cannot be jointly accepted [7]. In its Max-SAT encoding, there
is one variablexi associated to each bid. There are unit clauses(xi,ui) indicating
that if bid i is not accepted there a loss of profitui . Besides, for each pairi, j of
conflicting bids, we add a mandatory clause(x̄i ∨ x̄ j ,⊤).

We used the CATS generator [48] that allows to generate random instances inspired
from real-world scenarios. In particular, we generated instances from theRegions,
PathsandSchedulingdistributions. The number of goods was fixed to 60 and we

4 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

35

 0

 20

 40

 60

 80

 100

 120

 140

36 44 52 60 68 76 84 92 100

cp
u

tim
e

connectivity (%)

MAXCLIQUE, 150 variables

Pueblo
Minisat

Lazy
Max-DPLL

Fig. 17. Random Max-clique instances.

increased the number of bids. By increasing the number of bids, instances become
more constrained (namely, there are more conflicting pairs of bids) and harder to
solve. UP, MAX SOLVER and LB4A could not be executed due to their limitations.
The LAZY solver could not be included in theRegionscomparison due to overflow
problems.

Figure 18 (top-left) presents the results for the Paths distribution. MAX -DPLL pro-
duces the best results being 22 times faster than the second best option LAZY . Fig-
ure 18 (top-right) presents the results for the Regions distribution. MAX -DPLL is
again the best algorithm. It is 26 times faster than the second best solver PUEBLO.
Finally, results for the Scheduling distribution are shownin Figure 18 (bottom). In
this benchmark, the performance of MAX -DPLL and MINISAT are quite similar,
while the other solvers are up to 4 times slower.

8 Conclusions and Future work

This paper introduces a novel Max-SAT framework which highlights the relation-
ship between SAT and Max-SAT solving techniques. Most remarkably, it extends
the concept ofresolution. Our resolution rule, first proposed in [1], has been proved
complete in [35]. There are many beneficial consequences of this approach:

• It allows to talk about Max-SAT solving with the usual SAT terminology.
• It allows to naturally extend basic algorithms such as DPLL and DP.
• It allows to express several solving techniques that are spread around the Max-

SAT literature with a common formalism, see their logical interpretation and see
the connection with similar SAT, CSP and WCSP techniques.

36

 0

 100

 200

 300

 400

 500

 600

 70 80 90 100 110 120 130 140 150 160

cp
u

tim
e

n. of bids

AUCTION dist. PATHS, 60 goods

Minisat
Pueblo

Lazy
Max-DPLL

 0

 100

 200

 300

 400

 500

 600

 100 120 140 160 180 200 220

cp
u

tim
e

n. of bids

AUCTION dist. REGIONS, 60 goods

Minisat
Pueblo

Max-DPLL

 0

 100

 200

 300

 400

 500

 600

 70 80 90 100 110 120 130 140 150 160

cp
u

tim
e

n. of bids

AUCTION dist. SCHEDULING, 60 goods

Lazy
Pueblo

Minisat
Max-DPLL

Fig. 18. Combinatorial auctions. Top-left:Pathsdistribution. Top-right:Regionsdistribu-
tion. Bottom:Schedulingdistribution.

From a practical point of view, we have proposed a hybrid algorithm that combines
search and selected forms of inference. It follows a typicalsearch strategy but, at
each visited node, it attempts to simplify the current subproblem using special cases
of resolution with which the problem is transform into a simpler, equivalent one.
Our experiments on a variety of domains show that our algorithm is usually orders
of magnitude faster than its competitors.

Our current solver lacks features that are considered very relevant in the SAT con-
text (for example clause learning, re-starts, etc). Since our framework makes the
connection between SAT and Max-SAT very obvious, they should be easily incor-
porated in the future. Additionally, some of the ideas presented in this paper have
been borrowed from theweighted CSPfield [17]. Therefore, it seems also possible
to incorporate new (weighted) constraint processing techniques. Finally, we want to
note the recent work of [41] in which very good lower bounds are obtained by tem-
porarily setting⊤ = 1 and simulating unit propagation. Since the hyper-resolution
rules presented in Section 5.2 are special cases of their more general algorithm, we
want to explore if their approach can be fully described withour resolution rule.

A Correctness and Complexity of Max-VarElim

In this appendix we prove Lemmas 19 and 21, which establish the correctness of
theMax-VarElim function in Figure 5 and its time and space complexity. In the

37

proofs we borrow some ideas from [25,28,35] and adapt them toour framework.

In the following, when we writeC ∈ F we mean(C,u) ∈ F for some weightu
(there is no ambiguity because all clauses inF are different). We use symbolF ⊢xi

F ′ to denote the application of a resolution step to formulaF resulting in formula
F ′, where the clashing variable wasxi . Consider the elimination of variablexi with
FunctionMax-VarElim. First of all, the formula is partitioned into two sets of
clauses,B andF . Then, clauses of the form(xi ∨A,u) are fetched fromB , resolved
with clashing clauses until quiescence or disappearance and, finally, are discarded.
Suppose that discarded clauses are stored in a setD . Formally, we can see the
execution ofMax-VarElim as a sequence of resolution steps,

Bo∪Fo∪D o ⊢xi B1∪F1∪D 1 ⊢xi . . . ⊢xi Bq∪Fq∪D q

whereD o = ∅. For all 0≤ k≤ q: Bk is a set of clauses that contain eitherxi or x̄i , Fk

is a set of clauses thatdo notcontainxi neitherx̄i , andD k is a set of clauses that con-
tainxi . Besides,Bq does not have any clause withxi . The output ofMax-VarElim
is Fq that, as we will prove, is essentially equivalent to the original formula. LetNi

denote the set of variables sharing clauses withxi in the startingB (namely,Bo),

Ni = {x j 6= xi | ∃C∈Bo x j ∈ var(C)}

and letni = |Ni | be its cardinality. In the remaining of this appendix we willshow
that: the number of new clauses generated during the sequence of resolution steps is
bounded byO(3ni) (space complexity), the number of resolution steps is bounded
by O(9ni) (time complexity) and, from an optimal model ofFq we can be trivially
generate an optimal model of the original formulaBo∪Fo (correctness).

Observe that all the variables different fromxi appearing in clauses generated by the
resolution process must belong toNi because resolution does not add new variables.
Therefore, all the clauses inBk have the forml ∨A wherevar(l) = xi andvar(A)⊆
Ni . Variable xi must appear in the clause either as a positive or negative literal
(namely, there are 2 options) and everyx j ∈ Ni may or may not appear inA and,
if it appears, it can be in positive or negative form (namely,there are 3 options).
Consequently, the size ofBk is bounded by 2×3ni . For similar reasons, every clause
C addedto F during the resolution process satisfies thatvar(C) ⊆ Ni . Everyx j ∈
Ni may or may not appear inC and, if it appears, it may be positive or negative
(namely, there are 3 options). Consequently, the number of non-original clauses in
Fk is bounded by 3ni . Therefore, the number of clauses added toB andF during
the execution ofMax-VarElim is bounded by 2×3ni +3ni . As a result, its space
complexity isO(3ni).

Next, we analyze the time complexity. Recall that two clauses (xi ∨ A,u),(x̄i ∨
B,w) ∈ F clash if A∨B: is not a tautology (i.e.,∀l∈A l̄ /∈ B) and,A∨B ∈ F is
not absorbed (i.e,∀(C,⊤)∈F C 6⊆ A∨B). We say that a clause(xi ∨A,u) is saturated
if there is no clause inF clashing with it. The following lemma shows that resolv-

38

ing on a clause, either removes the clause from the formula orreduces the number
of clauses clashing with it,

Lemma 33 Consider a resolution stepP ⊢xi P
′ where(xi ∨A,u) and (x̄i ∨B,w)

are the clashing clauses. Then, either xi ∨A /∈ P ′ or the number of clauses clashing
with xi ∨A decreases.

PROOF. We reason by cases:

(1) If u < w or u = w < ⊤ then the posteriorxi ∨A has weight 0 (namely, disap-
pears from the formula).

(2) If u= w=⊤ then the effect of resolution is to add the resolvent to the formula
(P ′ = P ∪ (A∨B,⊤)). Then,x̄i ∨B does not clash withxi ∨A anymore.

(3) If u > w thenx̄i ∨B is replaced by ¯xi ∨C∨ Ā in the formula. The new clause
does not clash withxi ∨A, becauseA∨B∨ Ā is a tautology.

Consider the inner loop ofMax-VarElim. It selects a clausexi ∨A and resolves
it until either it disappears or it saturates. Ifxi ∨A saturates, it is removed fromB
and added toD . We call this sequence of resolution steps theprocessingof xi ∨A
and use symbol⊢∗

xi∨A to represent it. A consequence of the previous lemma is that
the number of resolution steps required to processxi ∨A is bounded by the number
of clauses clashing with it. Note that the number of clauses clashing with(xi ∨A,u)
is bounded by 3ni , because clashing clauses must belong toB and variablexi must
occur negated. Therefore, for each iteration of the outer loop, the inner loop of
Max-VarElim iterates at most 3ni times.

Consider now the outer loop ofMax-VarElim. It selects a sequence of clauses
xi ∨A1,xi ∨A2, . . . ,xi ∨As and processes them one after another. We can see this
process as,

Bo∪Fo∪D o ⊢
∗
xi∨A1
Bk1 ∪Fk1 ∪D k1 ⊢

∗
xi∨A2

. . . ⊢∗
xi∨As
Bks∪Fks∪D ks

Recall that the algorithm always selects for processing a clausexi ∨A j of minimal
size (line 4). Observe that the size of the compensation clausexi ∨A∨ B̄ added toB
(line 9) is larger than the clause that is being processed. Asa consequence, once a
clause is processed, it does not appear again inB , which means that∀1≤ j< j ′≤s A j 6=
A j ′. A direct consequence is that, since there are at most 3ni distinctA j , the outer
loop iterates at most 3ni . Therefore, the maximum number of iterations of the inner
loop is 3ni × 3ni = 9ni , which means that the time complexity of the function is
O(9ni).

Finally, we prove the correctness ofMax-VarElim.

Lemma 34 A saturated clause, remains saturated during any sequence of resolu-
tion steps⊢xi .

39

PROOF. Consider a resolution stepF ⊢xi F
′. Let xi ∨A andx̄i ∨B be the clashing

clauses, and letxi ∨C be a saturated clause ofF . We only need to prove thatxi ∨C
remains saturated inF ′. Since,xi ∨C is saturated inF , eitherC∨B is a tautology
or it is absorbed inF . The only new clause inF ′ that could clash withxi ∨C is
x̄i∨B∨Ā. However, ifC∨B was a tautology, so it isC∨B∨Ā. If C∨B was absorbed
in F , so it will C∨B∨ Ā in F ′.

A consequence of the previous lemma is that at the end of the sequence of resolution
steps performed byMax-VarElimwe have a formulaBks∪Fks∪D ks such that all
its clauses are saturated.

To prove the correctness ofMax-VarElim we only need to prove that any as-
signmentI of Fks can be extended to variablexi in a cost free-manner, taking into
account the clauses ¯xi ∨B∈ Bks and the clausesxi ∨A∈ D ks, because it means that
finding the optimal assignment ofFks is equivalent to finding the optimal assign-
ment ofBks ∪Fks ∪D ks which, in turn is equivalent to finding the optimal assign-
ment of the original formula.

If Bks = ∅ (resp.D ks = ∅), variablexi must be set totrue (resp.false). Else, con-
sider that there is a clausexi ∨A ∈ D ks such thatI does not satisfyA (similarly
for x̄i ∨B ∈ Bks). Variablexi must be set totrue. We show thatI satisfies every
x̄i ∨B∈ Bks: Clausexi ∨A is saturated, then eitherA∨B is a tautology or there is
a clauseC ∈ Fks with C ⊆ A∪B. In the first case, sinceI does not satisfyA, and
sinceA∨B is a tautology, this means thatI satisfiesB. In the second case, sinceI
satisfiesC and does not satisfyA, it must satisfyB.

B Solving Max-SAT with Pseudo-boolean and SAT solvers

In Linear pseudo-Boolean(LPB) problems over boolean variables{x1, . . . ,xn}, val-
uestrue and falseare replaced by numbers 1 and 0, respectively. Literall i repre-
sents eitherxi or its negation1−xi . A LPB problem is defined by a LPB objective
function (to be minimized),

n

∑
i=1

ai l i whereai ∈ Z

and a set of LPB constraints,

n

∑
i=1

ai j l i ≥ b j , whereai j ,b j ,∈ Z, xi ∈ {0,1}

A Max-SAT formula can be encoded as a LPB problem [11] by partitioning the set

40

of clauses into three sets:H contains the mandatory clauses(C,⊤), W contains
the non-unary non-mandatory clauses(C,u < ⊤) andU contains the unary non-
mandatory clauses(l ,u). For each hard clause(Cj ,⊤)∈H there is a LPB constraint
C′

j ≥ 1, whereC′
j is obtained fromCj by replacing∨ by + and negated variables ¯x

by 1−x. For each non-unary weighted clause(Cj ,u j)∈W there is a LPB constraint
C′

j + r j ≥ 1, whereC′
j is computed as before, andr j is a new variable that, when set

to 1, trivially satisfies the constraint. Finally, the objective function is,

∑
(Cj ,r j)∈W

u j r j + ∑
(l j ,u j)∈U

u j l j ≥⊤

A LPB problem can be solved with a native LPB solver such as PUEBLO or with a
SAT solver. In the latter case, each LPB constraint must be converted into a logic
circuit. There are different possible conversions such as BDDs, adders or sorters. In
our experiments we used MiniSAT+ [49], a translating tool that converts each PB
constraint into the presumably more convenient circuit andsolves the correspond-
ing SAT formula with MINI SAT. MINI SAT+ converts the objective function of
the LPB problem into another LPB constraint by setting an upper bound. The LPB
problem is solved by decreasing the value of the upper bound until an infeasible
SAT formula is found.

References

[1] J. Larrosa, F. Heras, Resolution in max-SAT and its relation to local consistency for
weighted CSPs, in: Proc. of the 19th IJCAI, Edinburgh, U.K., 2005.

[2] J. Larrosa, F. Heras, New inference rules for efficient max-SAT solving, in: Proc. of
AAAI-06, Boston, MA, 2006.

[3] R. R. H. Xu, K. Sakallah, sub-sat: A formulation for relaxed boolean satisfiability with
applications in routing, in: Proc. Int. Symp. on Physical Design, San Diego CA, 2002.

[4] E. B. D.M. Strickland, J. Sokol, Optimal protein structure alignment using maximum
cliques, Operations Research 53 (2005) 389–402.

[5] M. Vasquez, J. Hao, A logic-constrained knapsack formulation and a tabu algorithm
for the daily photograph scheduling of an earth observationsatellite, Journal of
Computational Optimization and Applications 20(2).

[6] J. D. Park, Using weighted max-SAT engines to solve MPE, in: Proc. of the 18th

AAAI, Edmonton, Alberta, Canada, 2002, pp. 682–687.

[7] T. Sandholm, An algorithm for optimal winner determination in combinatorial
auctions, in: IJCAI-99, 1999, pp. 542–547.

[8] N. Bansal, V. Raman, Upper bounds for maxsat: Further improved., in: ISAAC, 1999,
pp. 247–258.

41

[9] R. Niedermeier, P. Rossmanith, New upper bounds for maximum satisfiability., J.
Algorithms 36 (1) (2000) 63–88.

[10] J. Chen, I. Kanj, Improved exact algorithms for max-sat.

[11] S. de Givry, J. Larrosa, P. Meseguer, T. Schiex, Solvingmax-SAT as weighted CSP, in:
Proc. of the 9th CP, LNCS 2833. Springer Verlag, Kinsale, Ireland, 2003, pp.363–376.

[12] H. Shen, H. Zhang, Study of lower bounds for max-2-sat, in: Proceedings of the 19th
AAAI, 2004.

[13] Z. Xing, W. Zhang, Maxsolver: An efficient exact algorithm for (weighted) maximum
satisfiability, Artificial Intelligence 164 (1-2) (2005) 47–80.

[14] T. Alsinet, F. Manya, J. Planes, Improved exact solver for weighted max-sat, in: Proc.
of the 8th SAT, 2005.

[15] U. Bertele, F. Brioschi, Nonserial Dynamic Programming, Academic Press, 1972.

[16] R. Dechter, Constraint Processing, Morgan Kaufmann, San Francisco, 2003.

[17] P. Meseguer, F. Rossi, T. Schiex, Soft constraints, in:F. Rossi, P. van Beek, T. Walsh
(Eds.), Handbook of Constraint Programming, Elsevier, 2006, Ch. 9.

[18] M. Cooper, Reductions operations in fuzzy or valued constraint satisfaction, Fuzzy
Sets and Systems 134 (3) (2003) 311–342.

[19] M. Cooper, T. Schiex, Arc consistency for soft constraints, Artificial Intelligence
154 (1-2) (2004) 199–227.

[20] J. Larrosa, T. Schiex, In the quest of the best form of local consistency for weighted
CSP, in: Proc. of the 18th IJCAI, Acapulco, Mexico, 2003.

[21] J. Larrosa, T. Schiex, Solving weighted CSP by maintaining arc-consistency, Artificial
Intelligence 159 (1-2) (2004) 1–26.

[22] S. de Givry, F. Heras, J. Larrosa, M. Zytnicki, Existential arc consistency: getting
closer to full arc consistency in weighted CSPs, in: Proc. ofthe 19th IJCAI, Edinburgh,
U.K., 2005.

[23] R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial
Intelligence 113 (1999) 41–85.

[24] J. Larrosa, R. Dechter, Boosting search with variable elimination in constraint
optimization and constraint satisfaction problems, Constraints 8 (3) (2003) 303–326.

[25] I. Rish, R. Dechter, Resolution vs. inference: two approaches to SAT, Journal of
Automated Reasoning 24 (1) (2000) 225–275.

[26] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded
decomposability - a survey, BIT 25 (1985) 2–23.

[27] M. Davis, G. Logemann, G. Loveland, A machine program for theorem proving,
Communications of the ACM 5 (1962) 394–397.

42

[28] M. Davis, H. Putnam, A computing procedure for quantification theory, Journal of the
ACM 3 (1960).

[29] A. V. Gelder, Satisfiability testing with more reasoning and less guessing, American
Mathematical Society, 1995, pp. 0–1.

[30] F. Bacchus, Enhancing Davis Putnam with extended binary clause reasoning, in:
Proceedings of the 18th AAAI, 2002, pp. 613–619.

[31] L. Drake, A. Frisch, T. Walsh, Adding resolution to the DPLL procedure for boolean
satisfiability, in: Proceedings of 5th SAT, 2002, pp. 122–129.

[32] C. Papadimitriou, Computational Complexity, Addison-Wesley, USA, 1994.

[33] J. Larrosa, Node and arc consistency in weighted CSP, in: Proceedings of the 18th
AAAI, 2002, pp. 48–53.

[34] T. Schiex, Arc consistency for soft constraints, in: CP-2000, Singapore, 2000, pp. 411–
424.

[35] M. Bonet, J. Levy, F. Manya, A complete calculus for max-SAT, in: Proceedings of
9th SAT, 2006.

[36] B. Cha, K. Iwama, Adding new clauses for faster local search, in: Proc. of the
13thAAAI, Portland, OR, 1996, pp. 332–337.

[37] R. Wallace, E. Freuder, Comparative studies of constraint satisfaction and Davis-
Putnam algorithms for max-SAT problems, in: Cliques, Coloring and Satisfiability,
1996, pp. 587–615.

[38] T. Alsinet, F. Manya, J. Planes, Improved branch and bound algorithms for max-SAT,
in: Proc. of the 6th SAT, 2003, pp. 408–415.

[39] M. Cooper, High-order consistency in valued constraint satisfaction, Constraints 10
(2005) 283–305.

[40] C. Bessiére, Arc-consistency and arc-consistency again, Artificial Intelligence 65 (1)
(1994) 179–190.

[41] F. M. Chu Min Li, J. Planes, Exploiting unit propagationto compute lower bounds in
branch and bound max-sat solvers, in: Proc. of the 11th CP, Sitges, Spain, 2005.

[42] H. M. Sheini, K. A. Sakallah, Pueblo: A hybrid pseudo-boolean sat solver, Journal on
Satisfiability, Boolean Modeling and Computation 2 (2006) 165–189.

[43] N. Eén, N. Sörensson, An extensible sat-solver., in:Proceedings of SAT03, 2003, pp.
502–518.

[44] J.-C. Régin, Using constraint programming to solve the maximum clique problem, in:
Proc. of the 9th CP, LNCS 2833. Springer Verlag, Kinsale, Ireland, 2003, pp.634–648.

[45] D. Wood, An algorithm for finding maximum cliques in a graph, Operations Research
Letters 21 (1997) 211–217.

43

[46] P. R. J. Ostergard, A fast algorithm for the maximum clique problem, Discrete Applied
Mathematics 120 (2002) 197–207.

[47] T. Fahle, Simple and fast: Improving a branch-and-bound algorithm for maximum
clique, in: Proceedings of ESA, 2002, pp. 485–498.

[48] M. P. K. Leyton-Brown, Y. Shoham, Towards a universal test suite for combinatorial
auction algorithms, ACM E-Commerce (2000) 66–76.

[49] N. Eén, N. Sörensson, Translating pseudo-boolean constraints into sat, Journal on
Satisfiability, Boolean Modeling and Computation 2 (2006) 1–26.

44

x

x

3x 4x

5x

1

2

x

x

3x 4x

5x

1

2

 0

 100

 200

 300

 400

 500

 600

 700

 200 300 400 500 600 700 800 900 1000

cp
u

tim
e

n. of clauses

Max-3-SAT, 60 vars

Max-DPLL
Medac

UP
Lazy

MaxSolver

x

x

3x 4x

5x

1

2

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000

n.
 o

f n
od

es
 (

th
ou

sa
nd

s)

n. of clauses

UP
UP+NRES0

UP+NRES0+NRES1
EDAC

	Introduction
	Preliminaries on SAT
	Graph conceptsRish00
	SAT algorithms

	(Weighted) Max-SAT
	Extending SAT solving techniques to Max-SAT
	Extending Simplification Rules and Clause Negation
	Extending DPLL
	Extending the Resolution Rule
	Extending DP

	Efficient Inference
	Single Resolution
	Variable elimination
	Hyper-resolution

	An efficient Max-SAT solver
	Experimental Results
	Adding Inference to Max-DPLL
	Max-DPLL versus alternative solvers

	Conclusions and Future work
	Correctness and Complexity of Max-VarElim
	Solving Max-SAT with Pseudo-boolean and SAT solvers
	References

