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Abstract

We present a library called ToOLS for the design of complex tree search algorithms in constraint programming
(CP). We separate the description of a search algorithm into three parts: arefinement-based search scheme that defines
a complete search tree, a set of conditions for visiting nodes that specifies a parameterized partial exploration, and
a strategy for combining several partial explorations. This library allows the expression of most of the partial, i.e.
nonsystematic backtracking, search methods, and also a specific class of hybrid local/global search methods called
large neighborhood search, which are very naturally suited to CP. Variants of these methods are easy to implement
with the ToOLS primitives. We demonstrate the expressiveness and efficiency of the library by solving a satellite
mission management benchmark that is a mix between a traveling salesman problem with time windows and a
Knapsack problem, Several partial and hybrid search methods are compared. Our results dramatically outperform
CP approaches based on classical depth-first search methods.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Design; Languages; Constraint programming; Combinatorial optimization; Search strategies; Tree search; Large
neighborhood search

1. Introduction

Constraint programming (CP) is a declarative language that allows combinatorial problems to be
modeled and solved. It is an open paradigm that is well suited for the integration of techniques from
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Artificial Intelligence and Operations Research. CP solvers provide efficient algorithms through the use
of global constraints. A constraint model has modularity properties, i.e. adding/removing a constraint is
easy, which enables an incremental development process, reducing the development time and effort. The
declarative nature of CP enables the programmer to focus on the application requirements rather than on
debugging low-level programming errors. Validated CP models can be reused in a product line approach.
The technology has spread to many markets such as manufacturing, transportation, telecommunications
and building. Hundreds of industrial applications based on CP are used on a daily basis all over the world.
Many of them use robust off-the-shelf CP solvers, including ILOG Solver [1] and CHIP [2].

CP was specifically designed for tree search methods, in particular depth-first search (DFS), which is
best suited to incremental constraint propagation. Many combinatorial optimization problems are NP-
hard and therefore intractable due to the size of a complete search tree. Given a limited amount of time,
a tree search algorithm explores a subpart of its complete tree only. DFES explores the bottom-left part
only. Partial search methods, as introduced in [3], explore other parts of the tree, by diversifying their
exploration. In most cases, partial search methods provide better results than DFS for a given time limit,
A very interesting research direction is the establishment of links between partial search methods and
local search methods to eventually hybridize both methods. In particular, the large neighborhood search
(LNS) [4] is a promising hybrid approach. LNS consists in a local search method whose neighborhood is
explored by a complete or a partial search method. Large neighborhoods diminish the risk of being stuck
in a local optimum.

CP is well known for its declarative nature in problem modeling but, until recently, it has lacked the
same feature for the design of partial and hybrid search methods. Localizer [5] for local search methods,
OPL [6] for tree search methods and Salsa [7] for both local and tree search methods were major attempts
to define high-level languages for the search. However, none of these languages offers a unified framework
for the design of partial and hybrid search methods in CP. As far as we know, ToOLS (Templates of On
Line Search! ) is the first concrete proposition in this direction. ToOLS divides the descri ption of a search
algorithm into three parts: a complete search tree defined by a refinement-based search scheme, a set of
conditions restricting the exploration of the tree, and a combination of several partial explorations, This
approach allows a set of search primitives to be proposed. ToOLS has been implemented and integrated on
top of Eclair [9], the Thales operational finite domain constraint solver based on the Claire [10] language.
The main advantages of ToOLS are:

e Expressiveness. A unified approach for the design of partial and hybrid search methods based on the
notion of partial exploration, also used to explore neighborhoods in hybrid search.

o Adaptability. A single search scheme can be used to perform a variety of different searches, from a
greedy search to a complete search, depending on an explicit tuning strategy of dynamically adjusted
cutoff parameters. With these parameters, it is possible to implement automatic tuning strategies that
are not discussed in this paper (for that, see [11-13]).

e Readability and modularity. A set of primitives to express complex partial explorations in a declarative
and modular way.

The rest of this paper is organized as follows. Section 2 gives an overview of existing partial and hybrid
search methods that will be used in subsequent sections. Section 3 shows how to design partial and hybrid

! ToOLS was initially designed for hard and soft real-time applications [8]. Templates of search algorithms provide ready-
made search components for engineers, improving algorithm reuse and capitalization.
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Fig. 1. Visiting orders of leaf nodes for various iterative weakening methods.

search algorithms in ToOLS. Section 4 describes the experiments we made on a mission management
benchmark for agile satellites in order to show the expressiveness and readability of our framework, and
to give a comparison of various partial and hybrid search algorithms.

2. Background

2.1. Partial search methods

The main idea is to diversify the search by avoiding the thrashing phenomenon of systematic backtrack-
ing methods. Systematic backtracking methods can spend a very long time to explore a subtree containing
no feasible solution or only suboptimal solutions. See [14,15] for an analysis of this phenomenon. We
give a classification of the existing partial search algorithms:

o Tterative weakening methods solve the same problem repeatedly with some search restrictions progres-
sively relaxed at each iteration. The successive searches are of increasing complexity, until optimality
is proved or the deadline is reached. For instance, iterative broadening (IB) [16] uses an artificial
breadth cutoff, with a restriction on the number of explored values in each domain. Limited discrep-
ancy search (LDS) [17] uses a maximum number of cumulated discrepancies along all the search
paths. Depth-bounded discrepancy search (DDS) [18] allows discrepancies high in the tree by means
of an iteratively increasing depth bound. Discrepancy-bounded depth first search (DBDES) [19] uses a
minimum and maximum number of discrepancies along all the search paths. Fig. 1 shows the behavior
of several iterative weakening methods, in particular the way they change the exploration order and
perform multiple explorations.

The main drawback of these methods is that each new iteration revisits all the nodes of the previous
iteration, except when a tighter upper bound has been found in minimization or, for some iterative
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methods, they revisit neither leaf nodes [18], nor interior nodes [19].2 The semantic decomposition
method in [20] revisits subproblems rather than search nodes. The ability to find decreasing upper
bounds quickly during the first iterations helps the Depth First Branch and Bound algorithm to cut
branches earlier in subsequent iterations. This fact alone Justifies iterative methods.

e Real-time heuristic search methods adapt some cutoff parameters depending on a given time limit. For
instance, Ref. [21] dynamically adjusts the approximation degree of an approximate branch and bound
algorithm. In best first search, Ref. [22] dynamically adjusts the depth of a look-ahead search. The
self-adjusting depth first branch and bound algorithm in [11,12] dynamically tunes two branch factor
thresholds in order to end the search near a given deadline.

e lierative sampling methods try several different value and variable ordering heuristics rapidly by doing
greedy searches or very incomplete searches. One way to obtain new heuristics is to bias a given
heuristic randomly (see [15] for biased variable ordering heuristics and [23] for biased value ordering
heuristics). The main drawback of these methods is the difficulty of improving the solution quality
when a large amount of time is allocated. This is due to a large degree of incompleteness and also to
blind searches in case of a random selection. A solution proposed by [15] is to increase the search
effort every n searches.

o Interleaving methods simultaneously examine different parts of a single search tree, as in interleaved
depth-first search [24], or different search trees, as in Algorithm Portfolios [25]. The interleaving
methods should be used when there are different search algorithms or search heuristics that perform well
on different instances of a given problem. When interleaving several searches, the most promising ones
can get more computational resources as time passes. When solving constraint satisfaction problems,
Ref.[26] choose to allocate more CPU time to the search that reaches the deepest node in the search
tree. When solving optimization problem, [27] applies a reinforcement learning strategy to focus on
the best algorithms in an algorithm portfolios approach.

2.2. Hybrid search methods and large neighborhood search

The exploration of local search neighborhoods using CP was initiall y proposed by Pesant and Gendreau
[28]. They transformed the k-interchange neighborhood for the travelling salesman problem into a CP
model with k variables specifying the removed edges and a set of interface constraints linking these %
variables with the variables of the original problem. Constraint propagation and cost pruning were able to
discard infeasible or uninteresting sets of neighbors, accelerating the neighborhood exploration relative
to classic neighbor enumeration for k >4 and a number of cities greater than sixty. The speed-up can be
even greater if side-constraints are added to the original TSP,

A common neighborhood is obtained by freezing a part of the current solution and by relaxing the rest,
This defines a new subproblem in which a better solution is sought, by using tree search. In n-jobs x mi-
machines job-shop scheduling, [29] kept the job sequences on all machines but one. The scheduling of
n tasks on the one remaining machine defined the neighborhood, which was completely explored by
branch and bound. This method is called shuffle. In vehicle routing, Shaw [4] relaxed a set of related
visits to be reinserted at a different place in the current solution. Related visits were geographically close

2 The ones which conduct to a search tree with every node having a number of cumulated discrepancies strictly lower than
the current iteration limit.
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to one another or from the same route. Note that the selection of the related visits was not included in the
neighborhood definition but were randomly chosen at each local move. The neighborhood subproblem
was created by fixing some variables of the original problem only (the frozen visits), without adding new
variables and constraints as in [28]. The neighborhood can be very large (up to 30% of the visits were
relaxed in [4]), hence the term large neighborhood search. Partial search has been used to guide the search
towards good neighbors rapidly. Different partial search methods have been incorporated into LNS by
several authors [4,27,30-33]. For instance, LDS with a constant discrepancy limit was used in [4,32].
For a network design problem, Perron [27] showed that the addition of a constant discrepancy limit and
a limit on the number of backtracks provided results that were more robust than using just one of these
two search limits.

All the previously cited methods perform a local descent strategy, permitting only better solutions
to be found from one neighborhood search to another. A simple strategy to escape from local optima
is to use variable neighborhoods. This is the variable neighborhood search (VNS) principle introduced
by Mladenovic and Hansen [34], who proposed ordering neighborhoods by increasing sizes. If we let
parameter k control the size of a neighborhood, e.g. k-interchange in TSP, VNS starts its first neighborhood
search with k = 1, and then increases k by one in each iteration, until there is no better solution in the
current neighborhood. If a better solution is found, then k is reset to one. VNS will spend more time
on the smallest neighborhoods, getting better solutions faster than using a fixed k. This fact was verified
by Loudni and Boizumault [32] on a radio-link frequency assignment problem. A variant of VNS is
to use completely different neighborhoods. In [35], two different neighborhood operators were used to
solve the vehicle routing problem with time windows. The original VNS [34] does not explore each
neighborhood completely, but starts with a random point in the current neighborhood and then performs
a fast local search method (e.g. 2-opt in TSP) that tries to improve this starting point and is allowed to
exit the neighborhood. By contrast, Refs. [4,30-32] use deterministic partial search methods, without any
randomization. This approach is called variable neighborhood descent (VND) in [36].

A technique related to VNS is called variable depth search, including the Lin—Kernighan heuristic [37]
which controls the size of a neighborhood based on gain criteria.

As pointed out by Hansen et al. [36], when the neighborhood size becomes very large, the local search
inside VNS becomes too slow. These authors proposed an approximation scheme that restricts the local
search to move inside the current neighborhood and not in the whole problem space. This is called variable
neighborhood decomposition search (VNDS). By definition, LNS applies this strategy. Moreover, VNS
applied on very large neighborhoods tends to degenerate into multistart [36]. The same conclusion was
drawn by Loudni and Boizumault [32] for VND with partial search. One way to improve performance
is to use VNS again for the neighborhood exploration as proposed in [36]. We will show the relative
performances of these different LNS-based hybrid search methods in Section 4, on a satellite mission
management benchmark.

3. Designing complex tree search algorithms in ToOLS

A search algorithm in ToOLS is a Claire object created by a functional composition of constructors called
ToOLS primitives. This form of nested constructors defines a simple language which is easy to parse and
interpret. There are three possible goals that can be applied to a search algorithm object: to search for one



2810 S. de Givry, L. Jeannin / Computers & Operations Research 33 (2006) 2805-2833

solution or to prove there is no solution (goal function solve), to search for all the solutions or to prove
there is no solution (goal function solveal1l), and to search for one optimal solution with respect to an
objective function represented by a CP variable and to prove its optimality (goal functions minimize
and maximize). The complete syntax is given in Appendix A. We now describe the ToOLS primitives,

3.1. Primitives for expressing a complete search tree based on refinements

Tree search methods divide a problem into simpler problems until a salution is reached. The simplifi-
cation, called a refinement, consists in reducing the search space by adding some constraints. For this pur-
pose, we use only primitive constraints [38] of the Eclair solver, which have a direct impact on the constraint
store. For instance, the primitive constraint x < v reduces the domain of a variable x to the values lowerthan
v. The primitive constraint settle (c¢jorecy, left) replacesinthe constraintstore the logical disjunc-
tive constraint [39] ¢ or c; by its left part, i.e. the constraint ¢;. In order to get a complete search tree, we
restrict the problem decomposition process to a set of predefined complete choice points. If user-defined
choice points were available, as in OPL, a complete search would not be ensured. An example of a prede-
fined choice point is splitleq(x, v), which divides a problem into two subproblems: the first one
having the constraint x < = v and the other one having the constraint x > v. enum (x) enumerates all
the values in the current domain of x (with n = domainsize(x)). Below is a semantic description of the pre-
defined
choice points:

splitleq (x, v) : x <=v|x>v

splitlt (x, v) : x<v|x>=v

setval (x, v) : x==v|x!=v

enum (x) : x ==dom(x) [1] | x ==dom(x) [2] | -+ | x == dom(x) [n]
setdisj ( ¢ or ¢z ) : settle (c¢jore ,left) | settle(e¢jorey, right)

All the choice points are binary choice points, except for enum which is nary. In every choice
point, a specific heuristic can be used to order choices. Heuristics are Claire functions that can easily
access the constraint store. We combine choice points using an imperative programming approach.
For instance, the term while(x, 1, enum(x)) defines a classical search tree by enumeration.
It repeatedly performs the choice point enum(x) (which could be another combination of choice
points also) until all the variables in the list 1 are assigned. Here x is a local variable that is used
by the choice point. By default, x is assigned to the first unassigned variable in 1 before each ex-
ploration of enum (x). The correct value of x is restored upon backtracking. The leaf nodes of the
search tree are the solutions. In optimization, a basic’® branch and bound method is used: an im-
provement on the best solution cost found so far is enforced at each node. In real-life applications,
classical variable enumeration can be very inefficient. Other search schemes are needed. We show
this on two famous examples. The bridge scheduling problem [39] is best solved by the following
search algorithm:

3 The objective function is represented by a CP variable. Thanks to constraint propagation, a simple lower-bound computation
is performed in minimization.
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do (
while (d, Disjunctions,
setdisj (d) ),
while (x, Variables,
enum (x)))

The primitive do (fermy, termy) createsthe subtree ferm at every leaf node of the subtree termy. In
this example, all the disjunctive constraints are simplified first, then a classical enumeration is performed
on the variables. Dealing with disjunctive constraints in an explicit way is a capability of Eclair. This is
useful for scheduling problems, but also for expressing and managing complex choice points. It avoids
creating new constraints, such as precedence constraints, during the search.

A more complex combinatorial problem, the perfect square placement problem [40], is best tackled by
the following search algorithm:

do (
while (x, list { s.xorigin|s in Squares}, smallestVar,
let (xinf, delay(inf, x),
splitleq (x, xinf))),
while (y, list {s.yorigin|s in Squares}, smallestVar,
let (yinf, delay(inf, ¥y).
splitleq (v, yinf))))

smallestVar is a heuristic that returns the first unassigned variable with the smallest value in its
domain. The 1et primitive defines a local variable and computes its value once only, before entering into
the subtree (defined by splitleq in this example). The delay primitive is used to perform a function
call with possible parameters during the search. The first argument of delay is a Claire function name.
The subsequent arguments are passed as parameters when the function is called (they must correspond to
the function interface). Here, local variable xinf is assigned to the smallest value in the current domain
of %, obtained by calling the function inf applied to x. Remember that a ToOLS term is an object that
will be interpreted during the search. Any call to a Claire function to be done during the search has to be
encapsulated into an object and this is preciscly what the primitive delay does. The delay primitive
acts as closures in functional programming languages, i.e. a piece of code (represented by a function
name) together with its environment (represented by a list of parameters). The primitive while interacts
with the constraint store in an elegant way: the number of iterations depends on the list of variables
and the propagations. At the leaf nodes of the first while, all the x-axis coordinates of the packed
squares are assigned. The second while assigns all the y-axis coordinates. A complete search using this
search algorithm finds a first solution in a second and ends in 1 min on a modern computer, finding eight
symmetrical solutions for the 21-square problem.4 The same search algorithm written in Claire takes the
same time. The ToOLS terms, which are interpreted during the search, induce a negligible overhead on
this example.

4 Our constraint model uses logical constraints and linear equations only. Better results were obtained using the CHIP global
constraints di ffn and cumulative in [41].
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Fig. 2. A search tree with 5 solutions (leaf nodes), 4 backtracks and 8 nodes corresponding to the maximization of 2X + 3Y
where the variables X and Y belong to [0,2], using the following search algorithm: do (enum (X, increasing, marky),
enum(Y, increasing, marky)) .Ateachnode, the exploration order, the evaluation of sum(order) and the evaluation
of sum(distance) are given. The domain values of X and ¥ are explored in the initial order, expressed by the heuristic
increasing. Let marky (v) — 2v and marky (v) — 3v be two heuristic functions that return a mark for any assignment
of X and Y. For instance, the third explored node corresponds (o the assignment X == 0 and ¥ = = 1. Here, sum(order)
evaluates to 0 + 1 = | and sum(distance) evaluates to 2%2-2x0)+3%2—-3%1)=17.

3.2. Primitives for partial exploration

We define several primitives to control the size of the explored part of a given search tree. The primitives
specify conditions under which nodes may be visited. A condition is a formula, expression < threshold,
that must hold at any node (before posting a primitive constraint). expression defines a function that is
used to evaluate a node, path or subtree during the search. A node is explored only when the function
value is less than or equal to the given threshold (primitive nodelimit). The primitives pathlimit,
treelimit, and globallimit are also provided. When a search algorithm exceeds the threshold of
atreelimit, theexploration of the subtree is stopped and the search backtracks towards the last choice
point outside the subtree. In case of agloballimit, the search ends defi nitively (globallimit has
the same effect as a conditional breakpoint). We found the following evaluation functions to be useful:

e oxder: rank of a node (restricted by nodelimit). The alternative choices (child nodes) of a choice
point (parent node) are sorted according to a given heuristic, and each alternative is assigned a rank
based on this sort. The first choice starts at rank zero,

e distance: rating difference of a node from the preferred node (nodelimit). A special heuristic

is used to mark each alternative of a choice point with a rating, and the one with the highest rating is

designated as the preferred alternative (thus having a null rating difference). See Fig. 2.

sum (order) : sum of all the node ranks in a search path (pathlimi t)

sum(distance): sum of all the node distances in a search path (pathlimit)

nbbacktracks: number of backtracks in a subtree (treelimit and globallimit)

nbnodes: number of nodes in a subtree (treelimit and globallimi t)

nbleaves: number of leaf nodes in a subtree (treelimit and global limit)

Every condition applies to a given subtree, Let st be any subtree produced by a ToOLS term as defined in
the previous section. Then nodelimit (0, order, st) implements a greedy search. Each visited
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node corresponds to the first alternative choice, and has a rank equal to zero. The search algorithm
pathlimit (1, sum(order), st) explores all the paths with zero or one discrepancy. Note that
only the best and second best alternative choices are visited, since the other alternatives have a discrepancy
greater than one.

Let while; and whiles correspond to both while terms in the perfect square example. This code
applies two different discrepancy limits for each subtree:

do (
pathlimit (3, sum(order), while;),
pathlimit (1, sum(order), whiley))

Anotherexampleis treelimit (100, nbnodes, pathlimit (1, sum(order), st)) that
explores at most 100 nodes of a partial search tree. The order of condition primitives applied on the same
subtree does not matter. When several limits occur at the same time, the search backtracks to the closest
choice point to the root. Thanks to the functional composition of primitives, we cannot have two conditions
on two overlapping search trees.

In case of nodelimit and pathlimit, the scope of these conditions can be restricted by an
additional argument (relDepth), specifying that the conditions are only active inside a depth interval
- of a given subtree. The bounds of this interval are tunable thresholds. A positive bound means the depth
is relative to the root of the subtree. A negative bound means the depth is relative to the currently deepest
leaf node. For instance nodelimit (0, order, relDepth(3, -1), st) will explore the first
two choice points completely but only the best alternative choice of the other choice points, except for the
last choice point, which is completely explored. Negative depth bounds implement bounded backtrack
search (BBS) [42,18]. The distance keyword is used when “it is not the number of discrepancies
that matter, but rather the quality of the discrepancies’ [43]. A mark heuristic is a function that returns
a signal representing the value of expanding a node. For instance, it can be the expected cost value
in optimization. In the example of Fig. 2, we project the linear objective function 2.X + 3Y onto each
variable X and Y. Ref. [43] shows that “signal strength plays a more significant role than discrepancies
in determining where the search effort should be spent’”. Further investigations need to be done in
this direction.

In condition formulae, threshold is a cutoff value that tunes the degree of incompleteness of the explo-
ration, Smaller values indicate smaller sizes of the explored part of a given search tree. We call the cutoff
values the incompleteness parameters. A static value for these parameters can be used as in the previous ex-
amples. But amore general approach consists in defining a funing policy. A tuning policy restricts the space
of the possible combinations of parameter values to the “lelevant” combinations and sorts these combina-
tions by an order of increasing induced search complexnty The first combination should correspond to a
greedy search and the last one to a complete search. A well-known tuning strategy consists in performing
a sequence of partial explorations based on the same search tree following the ordered tuning policy,
beginning with the first (greedy) combination and concluding with the last (complete) one. The primitive
increasedScope implements this strategy. We describe several iterative weakening methods using
this primitive:

5 n practice, the increasing property is verified if the policy contains monotonically increasing parameter values.



2814 S. de Givry, L. Jeannin / Computers & Operations Research 33 (2006) 2805-2833

e IB: Iterative Broadening [16]
increasedScope (p, 1list(0,1,2, ...),
nodelimit (p, order, st))
e LDS: Limited Discrepancy Search [17]
increasedScope (p, 1list(0,1,2,...),
pathlimit (p, sum(order), st))
e LDS-BBSk: LDS & Bounded Backtrack Search [42]
increasedScope (p, 1ist(0,1,2,...),
pathlimit (p, sum(order), relDepth(l,-k), st))
e DDS: Depth-Bounded Discrepancy Search [18]°
increasedScope (p, 1list(1,2,...),
nodelimit (0, order, relDepth(p,o0), st))
eDDS-BBSk: DDS & Bounded Backtrack Search [18]
increasedScope (p, list(1,2,...),
nodelimit (0, order, relDepth(p,-k), st))
¢ DBDFSk : Discrepancy-Bounded Depth First Search [19]
increasedScope (p, list(k—1, 2k—1, 3k—1,...),
pathlimit (p, sum(order), st))

The relevant combinations are easily found when there is a single integer-valued parameter. This is
not the case when there are floating point parameters, when mark heuristics are normalized, or when
there are several parameters. In these cases, the number of possible parameter values may be huge. It is
impossible to test all the combinations. Some different combinations may imply the same search tree.
Moreover, some combinations may be better than others, because the resultin g search algorithm produces
on average better solutions for a set of problem instances. Thus, we propose to establish a list of relevant
combinations by doing experiments. Ref. [43] learns the optimal cutoff policy for a single float parameter
of the weighted discrepancy search method from a model of the value ordering heuristic. When the time
limit is known, one should take maximum advantage of this information. This is the purpose of real-time
heuristic search methods that use a dynamic tuning strategy [22,21,11-13].

3.3. Primitives for combining several partial explorations

The combination is described by the sequence primitive, which is the basis of several algorithms given
as examples:

e sequence (hsy, hsa, ...) : asequence of several search algorithms (is; can be any ToOLS term). On
the contrary to the do primitive which chains searches by hooking up the tree of hs; | ateach leaf node
of hs;, the sequence primitive explores the tree of hs; modulo the limits in place and proceeds to
apply anew search hs;.y from the initial computation state unless hs; terminated without encountering
any limit (complete search). A simple sequence example is to perform a greedy search, a partial
search, and then a complete search sequentially, each search using a different search scheme. Iterative
weakening methods (primitive increasedScope) follow this approach but use only one scheme

6 Without the improvement which consists in not re-visiting any nodes at the depth bound p.
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of problem decomposition based on the same heuristics. The sequence primitive overcomes this
limitation. Typical examples are iterative sampling methods [23,15] and large neighborhood search
methods [4,27,30-32].

All the searches are completely independent, except for the solutions, which are stored in a common
pool, and the best cost bound in optimization, which is shared. The goal of the search, which can be
solve, solveAll, minimize, or maximize, is the same for all the searches defined by a
search algorithm object. Therefore, the whole search process stops as soon as a search included in the
sequence process ends and is complete, or there is no more search to be done. As said before, ToOLS
considers a search to be complete if no threshold limits were exceeded during the search, or if a solution
was found for a constraint satisfaction problem (goal solve).

Another important primitive is needed to express the interleaving of several search algorithms, dealing
with parallelism issues, including load-balancing and adaptive resource allocation depending on the
effectiveness of the various search algorithms. Examples are interleaved depth-first search [24,26] and
algorithm portfolios [25,27]. This primitive is not addressed in the sequel of this paper and is left for
future work.”

ToOLS lets the user define its own generator function in Claire that builds a sequence of partial search
algorithms dynamically. The sequence process will call this function at runtime in order to get the next
search algorithm to be executed or a special value (unknown) that expresses the end of the sequence.
The generator function will receive three mandatory input parameters, step (the search number in the
sequence), time (the remaining CPU time), and trace (information about search history such as the
number of solutions found so far/by the previous search or the number of nodes done so far/by the previous
search), provided by the ToOLS runtime system. Because the function is encapsulated into a delay
primitive, it can also receive optional input parameters provided by the programmer. For instance, let hs
defines any search scheme that uses a randomized value ordering heuristic. Then the following generator
function iterator repeats hs N times:

[iterator (step:integer, time:integer, trace:list, nb:integer,
hs:HybridSearch)
-> if (step < =nb) hs
else unknown]

This function can be used to implement various iterative sampling methods [23,15] depending on which
search limits are used (randomst corresponds to any randomized search scheme):

e ISamp/DFSk: iterative sampling with depth-first search limited on the number of backtracks
sequence (delay (iterator, N,
globallimit (k, nbbacktracks, randomst)))
e TSamp/BBSk: iterative sampling & bounded backtrack search
sequence (delay (iterator, N,
nodelimit (0, order, relDepth(l,-k), randomst)))

7 The interleaving mechanism could rely on the multi-threading capacity of unix-like operating systems. Each search algo-
rithm will correspond to a unix thread and will use its own distinct copy of the constraint store. Future versions of the Claire
language would enable this multi-threading approach in ToOLS.
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¢ ISamp/LDSA-BBSk: iterative sampling & limited discrepancy search & bounded backtrack search
sequence (delay (iterator, N,
pathlimit (4, sum(order), relDepth(1,-k), randomst)))

This feature is also used to implement LNS methods. When using the goal functions minimize or
maximize, only the best solution is stored. In the case of LNS, the best solution found by one search is
partially reused for the next search. The information which is reused can be a partial assignment or a partial
schedule, as it is done in Section 4.4, The function getLastSolution accesses the value of the vari-
ables saved in the last solution found, i.e. the current best solution in optimization. Let choose be a Claire
function that returns a set of variables belonging to a given problem. And let st be a search scheme rep-
resented by a ToOLS object. Then, the following generator function 1ns applies st on a restriction of the
original problem, such that the variables returned by choose are assigned to the values contained in the
last solution:

[Ins(step:integer, time:integer, trace:1list . choose: function,
st:Choice)
—> let FrozenVariables := choose(step) in
if (length(FrozenVariables) > 0)
do ( nodelimit (0, order, splitleq(Zero, 0)),
forall (x, Frozenvariables,
tell(x, ==, delay(getLastSolution, x))),
st)
else unknown]

When the neighborhood search is complete, we cannot deduce the whole search is complete. We add a
dummy choice point splitleq with a greedy search limit before the neighborhood definition in order to
be sure that the sequence will continue to the next neighborhood even if the current neighborhood search
is complete. The choose function manages the size of the neighborhood depending on the number of
frozen variables. It can change the size by following the VNS [34] strategy, see Section 2.2. The function
vns (s, e) does this, where s is the initial minimum size, and e is the final maximum size. Here are
two examples of LNS using different partial search methods applied on a given search scheme st:

¢ VNDSs, e/LDSA-BBSk : one-level variable neighborhood decomposition
search with limited discrepancy search & bounded backtrack search®
sequence (
© // Compute an initial solution

globallimit (1, nbleaves, st),

// Improve this solution by using one-level VNDS

// VNDSs, e

sequence (delay(1lns, vns(s,e),
// LDSd-BBSk
pathlimit (d, sum (order), relDepth(l, -k), st))))

8 Following the terminology in [36], LNS combining with VNS is called VNDS. But, because VNS is not again used inside
VNDS, we call our algorithm one-level VNDS, as opposed to the fiwo-level VNDS initially proposed in [36].
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e VNDSs, e/DFSk: one-level variable neighborhood decomposition search
with depth-first search limited on the number of backtracks
sequence (

// Compute an initial solution

globallimit (1, nbleaves, st),

// Improve this solution by using one-level VNDS

// VNDSs, e

sequence (delay (1lns, vns(s,e),
// DFSk
globallimit (k, nbbacktracks, st))))

Note that the first sequence is needed in order to produce an initial solution for LNS first. Moreover,
the branch and bound principle is enforced for all the searches included in the sequence process: each
search cannot find a solution worse than the ones found by the previous searches. Thus, an optimization
goal applied on a ToOLS algorithm implies a local descent strategy. If a non descent strategy has to be
expressed, then another goal is required. We use the goal function solveAll that will not enforce any
improvement constraint on the objective variable as minimize ormaximize does. First, we describe
a generic function vnds that creates a VNDS algorithm that uses hs, which can be any search algorithm,
for its neighborhood exploration:

[vnds (s:integer, e:integer, hs:HybridSearch)
— > sequence (delay(iterator, N,
sequence (delay (lns, vns(s,e),
let (solution, delay( minimize, Objective, hs),
if (delay (isbetter, solution),
forall (x, ProblemvVariables,
tell(x, ==, delay(getValue, x, solution))),

// else

FAILURE))))))]

Let solveAll be the (first) goal applied on an algorithm produced by this function. The first sequence
repeats N times the LNS scheme defined in the second sequence. The neighborhood search in LNS starts by
fixing some variables as it is defined by the 1ns generator function. From this subproblem, a second goal
is executed using hs to search for the best solution that minimizes the global variable Object ive. This
second goal returns a solution which is compared with the last solution found in the master scheme (Claire
function i sbetter). If this new solution is strictly better, then it is rebuilt in the master scheme (forall
applied on ProblemVariables, which contains the list of problem variables, and getValue that
returns the value assigned to variable x in this solution), so it becomes a solution for the master scheme.
Otherwise, the current neighborhood search stops (ToOLS primitive FAILURE), and 1ns generates a
new neighborhood. '

The following code represents a two-level variable neighborhood decomposition search algorithm
using VNDS again as a local search procedure to explore the neighborhoods [36]:

VNDSs, e/Random+VNDS1, 2 /LDSd-BBSk: two-level VNDS with random initial solutions, and
DS and BBS. Let st be any search scheme. randomst can be the same search scheme as st, but adds
randomness in the value ordering heuristics.
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// Master VNDSs,e
vnds (s, e,
sequence (
// Compute a random initial solution inside the neighborhood
// defined by wvnds
globallimit (1, nbleaves, randomst),
// Slave VNDS1, 2
sequence (delay(lns, wvns(1,2),
// LDSd-BBSk
pathlimit (d, sum(order), relDepth(1, -k), st)))))

Because we apply the solveAll goal on this al gorithm, each neighborhood search of the master scheme
starts with an initial solution the quality of which can be worse than the best solution found so far. The same
goal could be used to implement population-based local search methods, by keeping a set of (diversified)
solutions.

In addition, we can specify how to distribute a global time limit to all the searches included in a
sequence by the notion of a time-sharing policy [13]. By default, the sequence primitive allocates
the total time to the current search. An example using a static policy is sequence (1list (1,0.5),
hsy, hsa, hs3z) , that allocates the total time to the first search hsy. Then, if all the time has not been
exhausted, half of the remaining time is allocated to hs,. Similarly, if time remains, the rest is allocated
to his3. A dynamic policy is achieved by replacing the list of constant values by a delay primitive.
Static and dynamic time-sharing policies, including [26,27], may improve the performance of the search.
This is why the third dimension of search algorithm description in ToOLS (first one defines a complete
search tree, second one a partial search) is also called temporal strategy, which performs several partial
explorations and stipulates how to distribute the global time limit to these explorations. Dealing with
real-time aspects is further discussed in [13).

4. Experiments

We present a mission management benchmark for agile satellites in order to show the expressiveness
and readability of our framework, and to give a comparison of various partial and hybrid search algorithms.
This section also emphasizes how important it is for performance issue to develop problem-dependent
search procedures.

4.1. A mission management benchmark for agile satellites
We solved a simplified version of a problem of selecting and scheduling earth observations for agile

satellites.” See [44,45] for a complete description. The satellite has a pool of candidate photographs
to take. It must select and schedule a subset of them on each pass above a certain strip of territory.

9 This benchmark is available in the free constraint solver choco [46].
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The satellite can only take one photograph at a time (disjunctive scheduling). A photograph can only be
taken during a time window that depends on the location photographed. Minimal repositioning times are
required between two consecutive photographs. All physical constraints (time windows and repositioning
times) must be met, and the sum of the revenues of the selected photographs must be maximized (linear
objective criterion). This problem is a mix between a traveling salesman problem with time windows,
and a Knapsack problem. The decision variables are grouped in two sets: the first one for the selection of
the candidate photographs (binary variables) and the second one for the acquisition starting times of the
selected photographs (integer variables, time accuracy in milliseconds).

4.2. The constraint model

Let N be the number of candidate photographs. For each photograph with number i (i € [1, N]), let
E; be its earliest starting time, L; its latest starting time, D; its duration, x; its selection variable, f; its
starting time, and r; its revenue. Let M; ; be the repositioning time between any pair of photographs
(i, /). M is a symmetrical matrix. The Eclair constraints are:

Vie[l,N]: ;2 E;, (1)
Vie[l,N]:ti<L; or x;=0, 2)
Vie[l, N]:t;>L; or xj=1, 3)
V@i, j))e[1, NI x[I,Nl:tiztj+ Dj+ Mj; or f1;>ti+ Di+ M; ;. (€))]

The constraints 1,2 and 3 are time window constraints. Instead of writing (v; = 1) = (E;j < <Lj), we
assume that every candidate photograph must start after its earliest starting time but must finish before its
latest starting time only if it is selected. Rejected photographs will have their starting time greater than their
latest starting time. This is a valid model if the initial domains of the #;s are large enough. The constraints
2 and 3 express the link between the selection variables and the starting time variables. The constraint 4
represents minimum transition time constraints. Although the physical constraint on repositioning times
concerns pairs of consecutive selected photographs only, constraint 4 concerns any pair of candidate
photographs. Due to the way repositioning times are computed, based on the Euclidean distance between
two points, the matrix M satisfies the triangle inequality (V(i, j, k) € [l, NP, M; j<Mix + My ;).
Therefore, if i and j are non consecutive photographs, then the repositioning time between i and j is
less than the sum of the repositioning times between the consecutive photographs from i to j. Thus the
constraints do not exclude any solution. The objective function is just a linear combination of the selection
variables and the photograph revenues, Gain = N ri X xj, to be maximized. This basic constraint
model allows a minimum amount of constraint propagation. Eclair performs arc-bound consistency on
the variables. Moreover, let ¢; or ¢ be a disjunctive constraint, if constraint ¢; becomes false then ¢ is
enforced, and vice versa. A lesson from [44] is that more complex constraint propagation mechanisms
such as global scheduling constraints are not powerful enough for this problem because of the mix between
planning (selection of photographs) and scheduling.
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4.3. Refinement-based search scheme

The refinement-based search scheme we used corresponds to a general search procedure for scheduling
problems as described in [47):

while (t, StartTimes, mostUrgent,
let(tinf, delay(inf, t),
do ( splitleq (t, tinf, bestChoice),
if (delay(>7?, t, tinf),
tell(t, >=, delay(postponeRule, StartTimes, t) ¥

The while loop iterates until all the photographs have their start times fixed (selected photographs)
or postponed outside their time windows (rejected photographs). Let StartTimes be the list of start
time variables # sorted by their associated revenue (highest first). The Claire function mostUrgent
returns the first unassigned start time variable with the smallest value in its domain which is com-
patible with the time window constraint, or returns a special value indicating the end of the while
loop. The splitleq choice point implements a schedule or postpone strategy. We use the value
ordering heuristic proposed in [44] to decide whether the start time is fixed to its minimum value
or postponed first. The heuristic approximates the future gain of a photograph in the following way.
Let g/b be the gain of the best solution found so far (recall that this is a maximization problem).
Then,

maxy Ly — inf(1;) — D;
maxg Ly — ming Ej.

rj+glb

is the approximate future gain for photograph j. If the future gain for the photograph returned by
mostUrgent is greater than the future gain for any other related photograph, then the start time is
fixed to its minimum value first, otherwise it is postponed first. The related photographs are restricted to
the ones not selected yet and whose starting time is reduced if the first alternative choice is performed.
We also developed a randomly biased version of this heuristic that performs a random choice only if
the absolute difference between the approximate gain of the current selected photograph and the best
- approximate gain of the related photographs is strictly lower than K, otherwise it acts the same as the
original heuristic. We set K = 15 in our experiments.
Finally, a redundant constraint is added, using the tel1l primitive, when a start time f; is postponed.
The test is performed by an if primitive and uses a predefined function > ? (=2t tdnf) : inf
(t) > tinf).

5> I‘!];iél_l (inf(t;) + Dj + M; ;). ' %)
J#i

This redundant constraint, called a delaying constraint in [47], avoids the search algorithm to enumerate
the possible start time values. We solved to optimality problem instances with less than thirty candidate
photographs. For larger instances, we developed a specific hybrid search algorithm.
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4.4. Customized hybrid search algorithms

For the benchmark, we made some modifications to the generic LNS algorithms described in Section
3.3. The neighborhood subproblem was defined by fixing a subset of the photographs already selected
in the last solution (x; assigned to one), and by enforcing the same temporal order as the one given in
the last solution between pairs of consecutive photoglaph% belonging to this subset. The neighborhood
generator function 1ns was the following:

[Ilns(step:integer, time:integer, trace:list, choose: function, st:Choice)
—> let list (FrozenPhotographs,FrozenDisjunctions)
: =choose (step) in

if (length(FrozenPhotographs) > 0)
do (nodelimit (0, order, splitleq (Zexro, 0)),
forall (¢, FrozenPhotographs,
tell(x, ==, 1)),
forall(d, FrozenDisjunctions,
tell(d, delay(getLastOrder, 4d))),
st)
else unknown]

The function getLastOrder in the tell primitive is used to enforce the left (respectively, the right)
part of constraint 4 (defined in Section 4.2) if f; > 1; (resp. t; > #;) in the last solution. In our experiments,
this neighborhood scheme performed much better than just freezing the start times of a subset of the
previously selected photographs.

We tried three different strategies for choosing a subset of the photographs which belongs to the
last solution (function choose). The first basic approach, called LNSs, e in the experiments, chooses
the photographs at random. The number of relaxed photographs, belonging to the last solution and not
inserted in that subset, is randomly chosen between s and e before each neighborhood search. The second
approach, called LNSs , e sw, adds the restriction that the relaxed photographs are temporally consecutive.
The third approach, called VNDSs, e, is an extension of the previous one. In both cases, the number
of different neighborhoods is quadratic in the size of the last solution rather than exponential as in the
LNSs, e approach.'® For this reason, we chose in the third approach to enumerate the neighborhoods
from the smallest to the largest in a systematic way rather than randomly, by following the Variable
Neighborhood Search principle. So, the first neighborhood has all the previously selected photographs
except s photographs. If there is no improvement, the number of relaxed photographs is increased by
one, and so on, until the maximum value e is overcome (then, VNDSs, e stops). If a better solution is
found, this number is reset to s. This reseting feature improved the results. The relaxed photographs are
chosen in a deterministic way using a sliding window of consecutive photographs. Therefore, if there are
n selected photographs in the last solution, and the current number of relaxed photographs is equal to
k, then VNDSs, e will generate n — k + 1 neighborhoods containing n — k frozen photographs before
increasing k. In practice, this deterministic strategy was always more effective than choosing the bounds
of the sliding window at random as it was done in LNSs, e sw.

1011 there are n photographs selected in the last solution, then LNS1,n has up to 2" — 1 different neighborhoods, and
LNS1,nsw and VNDS1,n have (n(n + 1))/2 only.
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Fig. 3. Comparison of iterative weakening methods.

4.5. A comparative analysis of partial and hybrid search algorithms

We generated 100 random instances for three different numbers of candidate photographs (50, 100,
and 200).'1 All the algorithms are using the same refinement-based search scheme defined in Section
4.3. Iterative sampling algorithms and LNS-based methods whose name ends with the “ (random) *’
keyword use the randomized value ordering heuristic as described in Section 4.3, We also implemented the
sequence-based greedy algorithm (Greedy) and the dynamic programming algorithm (DPA) described
in [44,45]. DPA provided very good (nonoptimal) results and was really fast (less than a second for 200
photographs). However, this is a very specialized algorithm which cannot cope with new constraints. In
fact the benchmark corresponds to the simplest problem defined in [44] (with a linear criterion) and the
dynamic programming approach is not applicable to the more complex problem (with a nonlinear criterion
and stercoscopic constraints). The constraint programming approach is applicable to both versions. Our
goal was to assess and compare the quality of the results obtained by CP algorithms, and DPA results
were used as reference values,

We tried different settings for the algorithm parameters. The complete results are presented in Tables
I and 2. These results were obtained on a 2.4 GHz Intel XEON with Linux 2.4. Figs. 3—7 show the solution
quality (mean gain over 100 problems) as time passes for problems with 50 candidate photographs (200
for Fig. 6). In the legends, algorithms are sorted by decreasing efficiency (the first one produced the best
solution quality after 5 min of CPU time).

The analysis of experimental results shows:

e Fig. 3 compares iterative weakening methods. DFS is classical DFS without any search limit, except
for the time limit. LDS clearly outperformed DFS and DDS. Our explanation is that the quality of

I These instances are available at hitp:/ifwww.inra fr/bia/fip/T/bep/finstances.tar.gz
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Fig. 5. Comparison of LNS-based methods.

the value ordering heuristic does not depend on the depth of the search. As it has been previously
observed for scheduling problems in [42], adding a limited amount of backtracks near the leaf nodes
(L.DS-BBS1) slightly improved the results for LDS. DDS with a large amount of backtracks near
the leaf nodes (DDS-BBS32) was also a bit better than DFS. Other LDS strategies for increasing the
discrepancy more rapidly (DBDFS2) were counterproductive.

e Fig. 4 compares iterative sampling methods. Again, limiting the number of discrepancies
(ISamp/LDSk-BBS1) was better than limiting the number of backtracks (ISamp/DFSk). Moreover,
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the limit was more readily ascertainable. Here, ISamp/DFSO0 corresponds to iterative sampling with a
greedy search, but DFS got better results after 30 s only. Note that LDS, which is potentially a complete
method, was as good as ISamp/LDS2~-BBS1 after about 5 min for 50-photograph instances.

e Fig. 5 compares LNS-based methods on problems with 50 photographs. All these methods are clearly
superior to iterative weakening or sampling methods. LDS as a partial search method for the neighbor-
hood search is reported only, other combinations produced worse results as it was the case for TSamp.
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As shown in Table 2 on large scale problems, using a complete neighborhood search rather than a partial
search performed badly when the size of the neighborhood is large. After a short period, choosing the
relaxed photographs at random (LNS1, 3 /LDS2-BBS1 and LNS1, 3/LDS2-BBS1 (random) ) was
better than choosing temporally consecutive photographs (VNDS1,n/LDS2-BBS1 and
VNDS1,n/LDS2-BBS1 (random) where 1 is the maximum number of selected photographs). Sur-
prisingly, LNS and especially VNDS both using LDS with a randomized value ordering heuristic
performed better than without any randomization. Randomized VNDS was able to find solutions
in larger neighborhoods on the average than without randomization. Moreover, the randomized al-
gorithm does not stop when the maximum neighborhood size is reached (after around 230s for
VNDS1,n/LDS2-BBS1), but continues by reseting the neighborhood size to the minimum size, As
for iterative sampling methods, randomization helps the search to escape from local optima obtained
by using the same value ordering heuristic at every search. The number of neighborhood searches is
significantly lower for VNDS (350 iterations and 527 iterations for randomized VNDS) than for LNS
(5523 iterations) due to the difference in neighborhood sizes.!?

If we increase the problem size or reduce the CPU time, then choosing temporally consecutive pho-
tographs can be a good strategy. Fig. 6 gives an example before 100s of CPU time. This can be
explained by the fact that the sliding window approach plus the VNS principle focussed the beginning
of the search on small neighborhoods in a systematic way which is not the case for LNS and that it
can reschedule consecutive photographs in order to reduce repositioning times with the opportunity to
add new photographs elsewhere in the solution. In addition, the figure shows the advantage of using
the VNS principle rather than using a random neighborhood size as in LNS1, 2sw. Besides, tuning
the neighborhood size for LNS is a critical step (see Tables 1 and 2), whereas VNDS has an automatic
tuning.

If the time limit is large enough, after 82s for 50-photograph instances, two-level VNDS can out-
perform one-level VNDS, as it is shown in Fig. 7. Two-level VNDS was able to find solutions in
larger neighborhoods than one-level VNDS. The number of master/slave neighborhood searches was
626/13169 on 50-photograph problems. Tuning the slave VNDS parameters was based on the fact that
more than 80% of the solutions found by one-level VNDS have one or two relaxed photographs only.
As far as we know, this is the first published experimental results for two-level VNDS [36] in CP.

Verfaillie and Lemaitre [44] gave the results obtained by a constraint programming algorithm (CPA)

using classical depth-first search. For two problems with 106 and 147 photographs respectively, they report
a relative distance from CPA to DPA (100(DPA — CPA)/DPA) of 26.7% and 13.3%. We dramatically
reduce the main relative distance

100 (mean(DPA) — mean(LNS1, 2/LDS2 — BBSI(random)))
mean(DPA)

to respectively, —0.05% and 0.82% for 100 and 200 photographs by using a hybrid search method.

12 There are 19 photographs per solution on the average. Each new solution implies up to 12520 =190 different neighborhoods
for VNDS and Clg + C}y + € = 19+ 171 + 969 = 1159 different neighborhoods for LNS1, 3.
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Table |
A comparative analysis of partial and hybrid search algorithms for 50 candidate photographs in 3s, 30s, and 5 min

Problem size 50 50 50
CPU time 3s 30s S5min

Mean (%) Mean (%) Mean (%)
Greedy 3600 0 3600 0 3600 0
DFS 3711 48 3734 58 3754 66
DDS 3685 36 3713 49 3731 56
DDS-BBS8 37141 48 3735 58 3752 66
DDS-BBS16 3716 50 3739 60 3756 67
DDS-BBS32 3709 47 3736 59 3764 71
LDS 3757 68 3793 83 3818 94
LDS~-BBS1 3759 69 3795 84 3818 94
LDS-BBS2 3756 67 3793 83 3817 94
LDS-BBS4 3754 66 3789 82 3814 93
DBDFS2 3751 65 3792 83 3811 91
DBDFS4 3747 63 3790 82 3806 89
ISamp/DFS0 3730 56 3734 58 3734 58
ISamp/DFS100 3753 66 3760 69 3760 69
ISamp/DFS1000 3750 65 3766 72 3770 73
ISamp/DFS10000 3720 52 3762 70 3779 77
ISamp/LDS1-BRS1 3768 73 3793 83 3796 85
ISamp/LDS2-BRS1 3768 73 3800 86 3817 94
ISamp/LDS4-BBS1 3729 56 3771 74 3815 93
LNS1,2/DFS 3792 83 3841 104 3843 105
LNS1,2/LDS1-BBS1 3817 94 3833 i01 3833 101
LNS1,2/LDS2-BBS1 3812 92 3837 103 3837 103
LNS1,2/LDS2-BBS1 (random) 3815 93 3842 105 3844 106
LNS1,3/DFS 3750 65 3829 99 3847 107
LNS1,3/LDS1-BBS1 3811 91 3838 103 3840 104
LNS1,3/LDS2-BBS1 3806 89 3842 105 3846 106
LNS1,3/LDS4-BBS1 3776 76 3837 103 3847 107
LNS1,3/LDS2-BBS1 (random) 3809 90 3842 105 3848 107
LNS1,5/DFS 3712 48 3758 68 3828 99
LNS1,5/LDS1-BRS1 3808 90 3834 101 3839 103
LNS1,5/LDS2-BBS1 3791 83 3837 103 3844 106
LNS1,5/LDS4-BBS1 3738 60 3820 95 3847 107
LNS1, 2sw-LDS2-BBS1 3799 86 3801 87 3801 87
LNS1, 2sw-LDS2-BBS1 (random) 3796 85 3800 86 3800 86
LNS1,3sw-LDS2-BBS1 3805 89 + 3813 92 3813 92

LNST1, 3sw~LDS2-BBS1 (random) 3804 88 3816 93 3816 93
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Table | (continued)

Problem size 50 50 50
CPU time 3s 30s 5min

Mean (%) Mean (%) Mean (%)
LNST1, 5sw-LDS2-BBS1 3794 84 3827 98 3828 99
LNST1, 5sw-LDS2-BBS1 (random) 3785 80 3827 98 3829 99
VNDS1,n/DFS 3802 87 3818 94 3825 97
VNDS1,n/LDS1-BBS1 3805 89 3822 96 3822 96
VNDS1,n/LDS2-BBS1 3807 90 3828 99 3834 101
VNDS1,n/LDS4-BBS1 ‘ 3804 88 3822 96 3834 101
VNDS1,n/LDS2-BBS1 (random) 3807 90 3830 100 3842 105
VNDS2,n/Random+VNDS1, 2/LDS1-BBS1 3781 78 3827 98 3844 106
VNDS2,n/Random+VNDS1, 2/LDS1-BBS1 (random) 3791 83 3823 96 3847 107
DPA 3830 100 3830 100 3830 100

Mean is the mean value of the best solution found after a given CPU time for 100 randomly generated instances. The percentage
is equal to 100 (mean(Algorithm) — mean(Greedy))/(mean(DPA) — mean(Greedy)).

5. Related work

Localizer [5] was proposed for local search algorithms. It is based on invariants instead of constraints,
and does not use constraint propagation. SaLSA [7] was a first attempt to provide a language that unifies
global and local search methods extending the concept of choice point into a versatile move operator.
Partial search methods are expressed by using the filtering predicates for moves; several examples are
described in [12]. A first implementation was made at Thales. The complexity of the language and its
lack of operators for building iterative or LNS methods induced us to restrict the scope of the search
functionalities and to focus on a specific class of local/global hybridization. OPL [6] was a major step
towards the proposal of a high-level language for global search. The readability of the language, due
to its imperative programming approach, which is very important from a software engineering point of
view, convinced us to follow the same approach. The expressiveness of OPL is very high but it is a
“closed’’ language (the interface with other general-purpose languages such as C/C++ is at the compiled
level) and difficult to extend. ToOLS is an extensible object-oriented library part of Eclair. Adding new
primitives and new templates (encapsulating parts of search algorithms) is easy. ToOLS and Eclair are
written in the Claire [10] programming language which offers most of the programming facilities given
by OPL: objects (classes are objects also), efficient set operators, associative arrays (for sparse arrays),
garbage collecting and support for backtracking. Calling any Claire functions during the search is possible
thanks to the delay primitive. Pure local search could be inserted into a tree search by calling an
external procedure.

Perron [48] introduced aunified approach for the design of partial search methods, later included in OPL
[49], based on a priority queue used to store the current set of open search nodes (as in best-first search).
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Table 2
A comparative analysis of partial and hybrid search algorithms for 50, 100, and 200 candidate photographs in 5 min
Problem size 50 100 200
CPU time Smin S5min Smin

Mean (%) Mean (%) Mean (%)
Greedy 3600 0 4205 0 4732 0
DFS 3754 66 4290 36 4790 21
DDS-BBS16 3756 67 4313 45 4807 27
LDS~BBS1 3818 94 4364 67 4855 46
ISamp-LDS1-BBS1 3796 85 4383 75 4874 52
ISamp-LDS2-BBS1 3817 %4 4381 74 4842 41
LNS1,2-DFS 3843 105 4434 97 4864 49
LNS1,2-LDS1-BBS1 3833 101 4428 94 4955 83
LNS1,2-LDS2-BBS1 3837 103 4438 99 4948 80
LNS1,2-LDS2-BBS1 (random) 3839 103 4438 99 4958 84
LNSl,2—LDS2—-BBSl(_rand0m) ’ 3844 106 4442 100 4959 84
LNS1,3-DFS 3847 107 4384 76 4805 27
LNS1,3-LDS1-BBS1 3840 104 4433 97 4951 81
LNS1,3-LDS2-BBS1 3846 106 4437 98 4937 76
LNS1, 3-LDS1-BBS1 (random) 3843 105 4438 29 4959 84
LNS1,3-LDS2-BBS1 (random) 3848 107 4442 100 4944 79
LNS1, 2sw/LDS1-BBS1 3795 84 4396 81 4936 76
LNS1, 2sw/LDS2-BBS1 3801 87 4403 84 4935 75
LNS1, 2sw/LDS1-BBS1 (random) 3793 83 4406 85 4944 79
LNS1, 2sw/LDS2~-BBS1 (random) 3800 86 4408 86 4941 77
LNS1,3sw/LDS1-BBS1 3805 89 4401 83 4930 73
LNS1,3sw/LDSZ2-BBS1 3813 92 4411 87 4929 73
LNS1, 3sw/LDS1-BBS1 (random) 3810 91 4413 88 4947 80
LNS1, 3sw/LDS2-BBS1 (random) 3816 93 4419 91 4938 76
LNS1, 5sw/LDS1-BBS1 3816 93 4408 86 4935 75
LNS1,5sw/LDS2-BBS1 3828 99 4420 91 4908 65
LNS1, 5sw/LDS1-BBS1 (random) 3826 98 4422 92 4950 81
LNS1, 5sw/LDS2-BBS1 (random) 3829 99 4424 93 4908 65
VNDS1,n/LDS1-BBS1 3822 96 4411 87 4941 %
VNDS1,n/LDS2-BBS1 3834 101 4420 91 4940 77
VNDS1,n/LDS1-BBS1 (random) 3835 102 4427 94 4951 81
VNDS1,n/LDS2-BBS1 (random) 3842 105 4424 93 4946 79
VNDS2,n/Random+VNDS1, 2/LDS1-BBS1 3844 106 4428 94 4936 76
VNDS2,n/Random+VNDS1, 2 /LDS1-BBS1 (random) 3847 107 4430 a5 4939 77
DPA 3830 100 4440 100 5000 100

Mean is the mean value of the best solution found after 5 min for 100 randomly-generated instances. The percentage is equal
to 100 (mean(Algorithm)—mean(Greedy))/(mean(DPA) — mean(Greedy)).
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This priority queue mechanism has a potential risk of memory explosion that becomes problematic in case
of large scale combinatorial optimization problems. The search procedure framework [48] also defines
static cutoffs in terms of backtracks, nodes or CPU time, where the priority queue is not necessary and can
be removed. But, if we want to implement for instance LDS with an increasing number of discrepancies,
the priority queue mechanism is needed. On the contrary, the ToOLS primitive increasedScope
changes the cutoffs dynamically from one search to another. ToOLS keeps the depth-first search principle
(chronological backtracking) in all cases. Only the current search path is stored, avoiding any memory
problems. For iterative weakening methods, ToOLS will revisit search nodes while Ref. [48] will perform
state recomputation. DLDS [20] is an attempt to improve the results in [48] by changing the way of
doing state recomputation, but it still has the same worst-case memory complexity. OPL Script [50]
allows several searches to be combined, eventually on different models, but it was not designed for
global/local hybrid search. Compared with OPL [49], the major novelty of ToOLS is the addition of the
third dimension for the sequencing (and interleaving) of distinct algorithms. Such features do correspond
to a novel form of support for trying multiple heterogeneous search procedures without the need for
scripting.

Mozart/OZ [51] is a concurrent constraint programming language. Search strategies are programmed
using primitives which rely on first-class computation spaces. This feature allows explicit manipulation
of search tree states. But this language provides no high level primitive dedicated to partial and hybrid
search. Eclipse [52] provides several incomplete tree search methods by means of parameterized routines.
This CLP solver also includes repair techniques and predefined local searches. CHIP [2] implements the
concept of parameterized search. Parameterized search allows the design of partial search algorithms
thanks to predefined parameterized objects. The CHIP system offers search limits, like fail limitation for
a variable, and combination of subtrees.

6. Conclusions

Recent progress has been made in improving the efficiency of search algorithms used in constraint
programming solvers, including Tlog Solver [1]; CHIP [2] or Eclipse [52] by replacing depth-first search
by partial search methods and with possible extension to large neighborhood search. In our opinion,
these new search methods should not be provided as black-box functions, but rather as a combination
of search primitives in order to be able to exploit the specificities of the problem we want to solve. To
express partial search methods, we found that it was more convenient and comprehensible to represent
them by a set of search limits (number of nodes, number of discrepancies, relative to tree depth intervals)
plus an iterative scheme that specifies how the limits will change from one iteration to another, rather
than by a specification of the order in which nodes are visited. We recommend using a clear decompo-
sition for the design of search algorithms: the definition of a complete search tree, a set of conditions
for which nodes of that tree are visited and a (temporal) strategy for combining several partial explo-
rations. Each part of the decomposition scheme can be reused separately and several combinations can
be tried.

Another experiment on a military application showed that partial search methods significantly improve
the solution quality compared to an existing customized greedy algorithm [11]. Moreover, it demonstrated
a reduction in development time of customized search algorithms, compared to the traditional approach.
The code is clearer and more concise when using the ToOLS primitives. Efficiency issues were taken
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into account throughout all the design process and the implementation of ToOLS (e.g. search limits
are computed incrementally, the code interpreting choice points is optimized). The whole framework,
Claire, Eclair, and ToOLS, has been successfully integrated in an operational on-board hard real-time system
implemented at Thales [8]:

Following Shaw’s recommendation [4], our experimental results confirmed the efficiency of using
partial search methods inside large neighborhood search, rather than partial search alone. LNS not
only introduces no model overhead, but also enables the exploration of neighborhoods that are large
enough to offer more benefits than classical neighborhood enumeration. If more time is available, two-
level variable neighborhood decomposition search [36] might prove to be a powerful strategy. This
remains to be confirmed on other benchmarks. To deal with the complexity of designing problem-
specific partial and hybrid search algorithms, future work should address the way of learning the val-
ues of search limits, the combination of search limits, and the parameter values of LNS strategies,
as it has been done in genetic programming [53]. In particular, more work should be done
on how to distribute a given time contract to every search included in a hybrid search
method.
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Appendix A. ToOLS syntax chart

<Run> - > solve ( <HybridSearch> [, time] )
- > solveAll { < HybridSearch > [, time] )
- > minimize ( variable, <HybridSearch> [, time] )
-> maximize ( variable, <HybridSearch> [, time] )
< HybridSearch > — > sequence ( [timesharingPolicy,]{ <HybridSearch>}+ )

- > sequence ( [timeSharingPolicy,] generator )

- > interleave ( [timeSharingPolicy,] { < HybridSearch > }+)
- > interleave ( [timeSharingPolicy,] generator )

-> < PartialSearch>

< PartialSearch > - > increasedScope ( thresholds, tuningPolicy, < Choice> )
- > decreasedScope ( thresholds, tuningPolicy, < Choice> )
- > fixedScope ( thresholds, tuningPolicy[i], < Choice > )
-> < Choice>
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< Choice> - > do([ <Choice>}+ )

- > while( variable, <Choice>)
- > while{ identifier, variables [, heuristic], < Choice>)

- > while( identifiers, tuplesOfVariables [, heuristic], <Choice>)
- > while( identifier, disjunctions [, heuristic], <Choice>)
- > case( identifier, expression, {setOfAny, <Choice>}+ [, <Choice>] )
- > If{ expression, <Choice> [, <Choice>] )
- > let( identifier, expression, <Choice>)
- > splitleq ( variable, integer [, heuristic [, markheuristic]] )
- > splitlt ( variable, integer [, heuristic [, markheuristic]] )
- > setval ( variable, integer [, heuristic [, markheuristic]] )
- > enum ( variable [, heuristic [, markheuristic]] )
- > setdisj( disjunction [, heuristic [, markheuristic]] )
- > tell{ variable,{<= | < | >= | > | ==|!=}, integer )
- > tell{ disjunction,{ left | right })
- > FAILURE
-> <Limit>
<Limit> - > nodelimit(threshold, { order | distance } , [ <Scope>,] <Choice>)

- > pathlimit (threshold,sum( order[, weights]), [<Scope>,] <Choice>)

- > pathlimit (threshold,sum ( distance[, weights]), [<Scope>,] <Choice>)
- > treelimit (threshold, { nbbacktracks | nbnodes | nbleaves }, <Choice>)

- > globallimit (threshold, ( nbbacktracks | nbnodes | nbleaves }, < Choice>)

< Scope > - > relDepth( threshold, threshold )
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