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Abstract

We study a one-dimensional nonlocal variant of Fisher’s equation describing
the spatial spread of a mutant in a given population, and its generalization to the
so-called monostable nonlinearity. The dispersion of the genetic characters is as-
sumed to follow a nonlocal diffusion law modelled by a convolution operator. We
prove that as in the classical (local) problem, there exist travelling-wave solutions
of arbitrary speed beyond a critical value and also characterize the asymptotic be-
haviour of such solutions at infinity. Our proofs rely on an appropriate version of the
maximum principle, qualitative properties of solutions and approximation schemes
leading to singular limits.
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1 Introduction
In 1930, Fisher [9] suggested to model the spatial spread of a mutant in a given
population by the following reaction-diffusion equation :

ut −∆u = u(1− u), (1.1)

where u represents the gene fraction of the mutant. Dispersion of the genetic char-
acters is assumed to follow a diffusion law while the logistic term u(1−u) takes into
account the saturation of this dispersion process.

Since then, much attention has been drawn to reaction-diffusion equations, as
they have proved to give a robust and accurate description of a wide variety of
phenomena, ranging from combustion to bacterial growth, nerve propagation or
epidemiology. We point the interested reader to [8, 13, 11] and their many references.

In this work, we consider a variant of (1.1) where diffusion is modeled by a
convolution operator. Going back to the early work of Kolmogorov - Petrovskii-
Piskounov (see [12]), dispersion of the gene fraction at point y ∈ Rn should affect
the gene fraction at x ∈ Rn by a factor J(x, y)u(y)dy where J(x, ·) is a probability
density. Restricting to a one-dimensional setting and assuming that such a diffusion
process depends only on the distance between two niches of the population, we end
up with the equation

ut − (J ? u− u) = f(u), (1.2)

where J : R → R is a nonnegative even function of mass one and for x ∈ R,
J ? u(x) =

∫
R J(x− y)u(y) dy. More precisely, we assume in what follows that

J ∈ C1(R), J ≥ 0, J(x) = J(−x) and
∫

R
J = 1, (H1)

We make the additional technical assumption

∃λ > 0,

∫

R
J(x)eλxdx < +∞. (H2)

For example, (H2) is satisfied if J has compact support or if J(x) = 1
2λe−λ|x| for

some λ > 0.
The nonlinearity f in (1.2) can be chosen more generally than in equation (1.1).

In the literature, three types of nonlinearities appear, according to the underlined
application: we always assume that f ∈ C1(R), f(0) = f(1) = 0, f ′(1) < 0 and

• we say that f is of bistable type if there exists θ ∈ (0, 1) such that

f < 0 in (0, θ), f(θ) = 0 and f > 0 in (θ, 1)

• f is of ignition type if there exists θ ∈ (0, 1) such that

f |[0,θ] ≡ 0, f |(θ,1) > 0 and f(1) = 0.

• f is of monostable type if
f > 0 in (0, 1)
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In the present article, we will focus on the monostable nonlinearity. Observe that
equation (1.1) falls in this case.

(1.1) can also be seen as a first order approximation of (1.2). Indeed if any given
niche of the species is assumed to interact mostly with close-by neighbours, the
diffusion term is of the form Jε(x) := 1

ε J(1
ε x), where J is compactly supported and

ε > 0 is small. We then have

Jε ? u− u =
1
ε

∫
J(

1
ε
y)(u(x− y)− u(x)) dy =

∫
J(z)(u(x− εz)− u(x)) dz

= −ε

∫
J(z)u′(x)z dz +

1
2
ε2

∫
z2J(z)u′′(x) dz + o(ε2) = cε2u′′(x) + o(ε2),

where we used the fact that J is even in the last equality.

We observe that equation (1.2) can be related to a class of problems studied in
[15, 16]. However, our approach differs in at least two ways : firstly, from the tech-
nical point of view, inverting the operator u → ut − (J ? u − u) in any reasonable
space yields no a priori regularity property on the solution u and the compactness
assumptions made in [16] no longer hold in our case.

Secondly, whereas the author favored discrete models over continuous ones to
describe the dynamics of certain populations, we remain interested in the latter. In
particular, we have in mind the following application to adaptative dynamics : in
[10], the authors study a probabilistic model describing the microscopic behavior
of the evolution of genetic traits in a population subject to mutation and selection.
Averaging over a large number of individuals in the initial state, they derive in the
limit a deterministic equation, a special case of which can be written as

∂tu = [J ? u− u] + (1−K ? u)u, (1.3)

where J(x) is a kernel taking into account mutation about trait x and K(x) is a
competition kernel, measuring the ”intensity” of the interaction between x and y.
Taking K(x) = δ, we recover equation (1.2) as a special case of (1.3).

The aim of this article is the study of so-called travelling-wave solutions of equa-
tion (1.2) i.e. solutions of the form

u(x, t) = U(x + ct),

where c ∈ R is called the wave speed and U the wave profile, which is required to
solve the equation





[J ? U − U ]− cU ′ + f(U) = 0 in R
U(−∞) = 0
U(+∞) = 1,

(1.4)

where U(±∞) denotes the limit of U(x) as x → ±∞.
Such solutions are expected to give the asymptotic behavior in large time for

solutions of (1.2) with say compactly supported initial data : in the Fisher equation,
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this is equivalent to saying that the mutant propagates (after some time) at constant
speed and along the profile U . It is therefore of interest to prove existence of such
solutions.

The first results in this direction are due to Schumacher [14], who considered
the monostable nonlinearity, under the extra assumption that f(r) ≥ h0r −Kr1+α,
for some h0,K, α > 0 and all r ∈ [0, 1]. In this case, his results imply existence of
travelling waves with arbitrary speed c ≥ c∗, where c∗ is the smallest c ∈ R such
that ρc : R→ R defined by

ρc(λ) = −λc +
∫

J(z)eλz dz − 1 + f ′(0),

vanishes for some λ > 0. Observe from assumption (H1) that
∫

J(z)eλz =
∫

J(z)e−λz .
So finding λ > 0 such that ρc(λ) = 0 amounts to looking for an explicit solution of
the form v(x) = eλx of the equation

J ? v − v − cv′ + f ′(0)v = 0,

obtained by linearizing (1.4) near x = −∞. v then yields the expected asymptotic
decay near x = −∞ of solutions of (1.4).

Finally, if c > c∗ and under some extra assumptions on f , Schumacher shows
that the profile U of the associated travelling wave is unique up to translation.

Recently, Carr and Chmaj [3] completed the work of Schumacher. For the ”KPP”
nonlinearity (i.e. if f is monostable and f(r) ≤ f ′(0)r for all r ∈ [0, 1]) and if J has
compact support, they show that the above uniqueness result can be extended to
c = c∗.

Concerning the bistable nonlinearity, Bates-Fife-Ren-Wang [1] and Chen [4] showed
that there exists an increasing travelling wave U with speed c solving (1.4). Further-
more if V is another nondecreasing travelling wave with speed c′ then c = c′ and
V (x) = U(x + τ) for some τ ∈ R.

Coville [6] then looked at the case of ignition nonlinearities and proved again
the existence and uniqueness (up to translation) of an increasing travelling wave
(U, c). Coville also obtained the existence of at least one travelling-wave solution in
the monostable case.

Our first theorem extends some of the afore-mentioned results of Schumacher to
the general monostable case:

Theorem 1.1.
Assume (H1) and (H2) hold and assume that f is of monostable type. Then there exists a
constant c∗ > 0 (called the minimal speed of the travelling wave) such that for all c ≥ c∗,
there exists an increasing solution U ∈ C1(R) of (1.4) while no nondecreasing travelling
wave of speed c < c∗ exists.

Our second result extends previous work of Coville [6] regarding the behavior
of the travelling front U near ±∞.

Proposition 1.1.
Assume (H1) and (H2) hold. Then given any travelling-wave solution (U, c) of (1.4) with
f monostable, the following assertions hold :
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1. There exist positive constants A, B, M , λ0 and δ0 such that

Be−δ0y ≤ 1− U(y) ≤ Ae−λ0y for y ≥ M.

2. If f ′(0) > 0 then there exists positive constants K, N and λ1 such that

U(y) ≤ Keλ1y for y ≤ −N.

The first point is an easy consequence of a similar result when f is of bistable or
ignition type, proved in [6].

Regarding Theorem 1.1, our proof is based on the study of two auxiliary prob-
lems and the construction of adequate super and subsolutions. We work in three
steps.

We start by showing existence and uniqueness of a solution for




Lu + f(u) = −hr(x) in Ω,
u(−r) = θ,

u(+∞) = 1,
(1.5)

where given ε > 0, r ∈ R, c ∈ R and θ ∈ (0, 1),

Ω = (−r,+∞), (1.6)

Lu = L(ε, r, c)u = εu′′ +
[∫ +∞

−r
J(x− y)u(y)dy − u

]
− cu′, (1.7)

hr(x) = θ

∫ −r

−∞
J(x− y)dy. (1.8)

The existence is obtained via an iterative scheme using a comparison principle
and appropriate sub and supersolutions.

In the second step, with a standard limiting procedure (as r → +∞), we prove
Theorem 1.1 for the problem




Mu + f(u) = 0 in R

u(−∞) = 0
u(+∞) = 1,

(1.9)

where given ε > 0, c ∈ R,

Mu = M(ε, c)u = εu′′ + [J ? u− u]− cu′. (1.10)

We stress the fact that unlike (1.5), (1.9) does not have an (increasing and smooth)
solution u for arbitrary values of c ∈ R.

Finally, in the last step we send ε → 0 and extract converging subsequences.
Though elementary in nature, the proofs require a number of lemmas which we

list and prove in the Appendix. We construct sub and supersolutions for (1.5) and
(1.9) in Section 2. After obtaining some useful a priori estimates in Section 3, we
prove existence and uniqueness of solutions of (1.5) in Section 4. In Section 5, we
show the existence of a speed c∗(ε) > 0 such that (1.9) admits a solution for every
c ≥ c∗(ε). We complete the proof of Theorem 1.1 in Section 6. Section 7 is devoted
to the proof of Proposition 1.1.
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2 Existence of sub and supersolutions
We start with the construction of a supersolution of (1.9) for speeds c ≥ κ̄(ε) for
some κ̄(ε) > 0.

Lemma 2.1.
Let ε > 0. There exists a real number κ̄(ε) > 0 and an increasing function w̄ ∈ C2(R)

such that, given any c ≥ κ̄(ε)



Mw̄ + f(w̄) ≤ 0 in R,
w̄(−∞) = 0,
w̄(+∞) = 1,

where M = M(ε, c) is defined by (1.10). Furthermore, w̄(0) = 1
2 .

Proof:
Fix positive constants N, λ, δ such that λ > δ and (H2) holds.
Let w̄ ∈ C2(R) be a positive increasing function satisfying

• w̄(x) = eλx for x ∈ (−∞,−N ],

• w̄(x) ≤ eλx on R,

• w̄(x) = 1− e−δx for x ∈ [N, +∞),

• w̄(0) = 1
2 .

Let x0 = e−λN and x1 = 1− e−δN . We have 0 < x0 < x1 < 1.
We now construct a positive function g defined on (0, 1) which satisfies g(w̄) ≥ f(w̄).
Since f is smooth near 0 and 1, we have for c large enough, say c ≥ κ0,

λ(c− λ)s ≥ f(s) for s ∈ [0, x0] (2.1)

and

δ(c− δ)(1− s) ≥ f(s) for s ∈ [x1, 1]. (2.2)

Therefore we can achieve g(s) ≥ f(s) for s in [0,1], with g defined by:

g(s) =





λ(κ0 − λ)s for 0 ≤ s ≤ x0

l(s) for x0 < s < x1

δ(κ0 − δ)(1− s) for x1 ≤ s ≤ 1
(2.3)

where l is any smooth positive function greater than f on [x0, x1] such that g is
of class C1.

According to (2.3), for x ≤ −N i.e. for w ≤ e−λN , we have

Mw̄ + g(w̄) = εw̄′′ + J ? w̄ − w̄ − cw̄′ + g(w̄)
= ελ2eλx + J ? w̄ − eλx − λc eλx + λ(κ0 − λ)eλx

≤ ελ2eλx + J ? eλx − eλx − λceλx + λ(κ0 − λ)eλx

≤ eλx[
∫

R
J(z)eλzdz − 1− λ(c− κ0)− λ2(1− ε)]

≤ 0,

6
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for c large enough, say

c ≥ κ1 =

∫
R J(z)eλzdz − 1 + λκ0 − λ2(1− ε)

λ
.

Furthermore for w̄ ≥ 1− e−δN we have,

Mw̄ + g(w̄) = εw̄′′ + J ? w̄ − w̄ − cw̄′ + g(w̄)
= εδ2e−δx + J ? w̄ − (1− e−δx)− δc e−δx + δ(κ0 − δ)e−δx

≤ εδ2e−δx + 1− 1 + e−δx − δce−δx + δ(κ0 − δ)e−δx

≤ e−δx[1− δ(c− κ0)− δ2(1− ε)]
≤ 0,

for c large enough, say

c ≥ κ2 =
1 + δκ0 − δ2(1− ε)

δ
.

Thus by taking c ≥ sup{κ0, κ1, κ2}, we achieve

g(w̄) ≥ f(w̄) and J ? w̄ − w̄ − cw̄′ + g(w̄) ≤ 0
for 0 ≤ w̄ ≤ e−λN and w̄ ≥ 1− e−δN .

For the remaining values of w̄, i.e. for x ∈ [−N,N ], w̄′ > 0 and we may increase
c further if necessary, to achieve

εw̄′′ + J ? w̄ − w̄ − cw̄′ + g(w̄) ≤ 0 in R. (2.4)

The result follows for

κ̄(ε) := sup{κ0, κ1, κ2, κ3},

where

κ3 = sup
x∈[−N,N ]

{ε|w̄′′|+ |J ? w̄ − w̄|+ g(w̄)
w̄′

}.

¤

Remark 2.1. κ̄(ε) is a nondecreasing function of ε.

Remark 2.2. Observe that given any r ∈ R, then for c ≥ κ̄(ε), w̄ also satisfies:



Lw̄ + f(w̄) ≤ 0 in Ω

w̄(−r) ≥ 0
w̄(+∞) = 1,

(2.5)

where L = L(ε, c, r) is defined by (1.7).

Next, we construct super and subsolutions of (1.5).
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Remark 2.3. Let ε ≥ 0, r ∈ R, c ∈ R, θ ∈ (0, 1). Then the constant functions u = θ and
ū = 1 are respectively a sub- and a supersolution of problem (1.5), i.e.




Lu + f(u) ≥ −hr(x) in Ω ( resp. Lū + f(ū) ≥ −hr(x) in Ω),

u(−r) ≤ θ ( resp. ū(−r) ≤ θ),
u(+∞) ≤ 1, ( resp. ū(+∞) ≤ 1).

We now construct a subsolution of (1.5) satisfying stronger conditions on the
boundary of Ω.

Lemma 2.2.
Let ε > 0, r ∈ R, θ ∈ (0, 1). There exists κ(ε) ∈ R and an increasing function w ∈ C2(R)

such that, given any c ≤ κ(ε),



Lw + f(w) ≥ −hr(x) in Ω,
w(−r) = θ,
w(+∞) = 1.

Proof:
Let fb be a smooth bistable function (i.e. fb(0) = fb(1) = 0 and ∃θ ∈ (0, 1)

such that fb < 0 in (0, θ), fb(θ) = 0 and fb > 0 in (θ, 1)) such that fb ≤ f and∫ 1
0 fb(s) ds > 0. Let (ub, cb) denote the unique (up to translation) increasing solution

of (1.9) with fb instead of f . Such a solution exists, see [1] for details. Moreover
cb > 0. Using the translation invariance of (1.9), one can easily show that for any
c ≤ cb, uτ

b := ub(.+ τ) is a subsolution of (1.5) for some τ ∈ R. Indeed, choose τ such
that uτ

b (−r) = θ.
Since uτ

b is increasing we have

hr(x) = θ

∫ −r

−∞
J(x− y)dy ≥

∫ −r

−∞
J(x− y)uτ

b (y)dy.

A simple computation shows that

Luτ
b + hr(x) + f(uτ

b ) ≥ Luτ
b +

∫ −r

−∞
J(x− y)uτ

b (y) dy + fb(uτ
b ) in Ω

≥Muτ
b + fb(uτ

b ) = (cb − c)(uτ
b )
′ in Ω.

Hence for c ≤ cb,



Luτ

b + hr(x) + f(uτ
b ) ≥ (cb − c)(uτ

b )
′ ≥ 0 in Ω,

uτ
b (−r) = θ,

uτ
b (+∞) = 1.

¤

3 L2 estimates
In this Section, we obtain L2 estimates for solutions u of the problems (1.5) and (1.9).
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3.1 L2 estimates for solutions of (1.9)
Lemma 3.1.
Assume ε > 0, c ∈ R and let u be a smooth increasing solution of (1.9) then

(i) u′, u′′ ∈ L2(R)

(ii) 1− u ∈ L2(R+).

Proof of Lemma 3.1:
Let u be a smooth increasing solution of (1.9). We start out by showing that u′ and

u′′ vanish at infinity. We restrict to the case u′(+∞) = 0, the other cases u′(−∞) = 0
and u′′(±∞) = 0 being similar.

Assume by contradiction that there exists an increasing sequence (xp)p∈N con-
verging to +∞ and α > 0 such that

∀ p ∈ N u′(xp) ≥ α. (3.1)

Let (up)p∈N defined by

up(x) := u(x + xp) for x ∈ R.

Clearly, up solves (1.9) and 0 ≤ up ≤ 1. By definition of (up)p∈N, we have on every
compact set,

lim
p→+∞up(x) ≡ 1.

Since up satisfies (1.9), using standard elliptic estimates, up → 1 in C2,β
loc . In particular,

up → 1 in C2,β(−1, 1) and u′p(0) → 0 as p goes to +∞. Using now (3.1), we have

0 < α ≤ u′(xp) = u′p(0) → 0,

which is our desired contradiction.
We show next that f(u) ∈ L1(R). Integrating (1.9) over (−r, r) leads to:

ε(u′(r)− u′(−r)) +
∫ r

−r
(J ? u− u) dx− c(u(r)− u(−r)) = −

∫ +r

−r
f(u).

Assume for the moment that J ? u− u ∈ L1(R), then we can pass to the limit as
r → +∞ in the above expression. So we get

∫ +∞

−∞
(J ? u− u) dx− c = −

∫ +∞

−∞
f(u).

Therefore f(u) ∈ L1(R), provided that J ? u− u ∈ L1(R).

Claim 3.1.
J ? u− u ∈ L1(R). Moreover,

‖J ? u− u‖L1 ≤
∫

R
J(z)|z|dz and

∫

R
(J ? u− u) = 0.

9
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Proof:
Clearly,

∫ r

−r
|(J ? u− u)| ≤

∫ r

−r

∫

R
J(x− y)|u(y)− u(x)|dy dx. (3.2)

Using the change of variable in y, z := y − x, (3.2) becomes
∫ r

−r
|(J ? u− u)| ≤

∫ r

−r

∫

R
J(z)|u(x + z)− u(x)|dz dx. (3.3)

Since u ∈ C1(R), |u(x + z)− u(x)| = |z| ∫ 1
0 u′(x + sz)ds.

Plug this equality in (3.3) to obtain:

∫ r

−r

∫

R
J(z)|u(x + z)− u(x)|dydx =

∫ r

−r

∫

R
J(z)|z|

∫ 1

0
u′(x + sz)ds dz dx. (3.4)

Since all terms are positive, using Tonnelli’s Theorem, we can permute the order
of integration and obtain

∫ r

−r

∫

R
J(z)|z|

∫ 1

0
u′(x + sz)ds dz dx =

∫

R
J(z)|z|

∫ r

−r

∫ 1

0
u′(x + sz) ds dx dz

=
∫ 1

0

∫

R
J(z)|z|[u(r + sz)− u(−r + sz)]dz ds.

Hence,
∫ r

−r

∣∣∣∣
∫

R
J(x− y)(u(y)− u(x))dy

∣∣∣∣ dx ≤
∫ 1

0

∫

R
J(z)|z|[u(r + sz)− u(−r + sz)]dz ds.

Using now Lebesgue dominated convergence, we can pass to the limit in the above
expression to get

‖J ? u− u‖L1 ≤
∫

R
J(z)|z|dz. (3.5)

Let us now compute
∫
R(J ? u− u) dx. Since J is symmetric, we have

∫

R
(J ? u− u) dx =

∫

R2

J(x− y)(u(y)− u(x))dy dx

=
∫

R2

J(y − x)(u(y)− u(x))dy dx =
∫

R2

J(x− y)(u(x)− u(y))dy dx.

Hence,

2
∫

R2

J(x− y)(u(y)− u(x))dy dx = 0.

¤
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We now prove (i). Multiplying (1.9) by u and integrating over R yields

ε

∫

R
u′′u +

∫

R
(J ? u− u) u− c

∫

R
u′u = −

∫

R
f(u)u.

Integrating by parts the first term yields

−ε

∫

R
(u′)2 +

∫

R
(J ? u− u) u− c

2
= −

∫

R
f(u)u.

Since u is bounded and f(u), J ? u− u ∈ L1, we conclude that u′ ∈ L2.
We obtain u′′ ∈ L2 similarly. Indeed, multiplying (1.9) by u′′ and integrating

over Rwe get

ε

∫

R

(
u′′

)2 +
∫

R
(J ? u− u) u′′ − c

∫

R
u′u′′ =

∫

R
f(u)u′′.

Integration by parts and uniform bounds yield

ε

∫

R

(
u′′

)2 = −
∫

R
(J ? u− u) u′′ −

∫

R
f(u)u′′ (3.6)

=
∫

R

(
J ? u′ − u′

)
u′ +

∫

R
f ′(u)

(
u′

)2 (3.7)

≤ C0

∫

R
u′ + C1‖u′‖2

L2(R), (3.8)

where C0 and C1 are positive constants. This ends the proof of (i).
We can now show that 1 − u ∈ L2(R+). Again multiplying (1.9) by 1 − u and

integrating over R yields to

ε

∫

R

(
u′

)2 −
∫

R
(J ? u− u)u− c/2 +

∫

R
f(u)(1− u) = 0.

Using now Claim 3.1 and choosing R so large that f(u) ≥ |f ′(1)|
2 (1 − u) on [R,∞),

we achieve

|f ′(1)|
2

∫ ∞

R
(1− u)2 ≤

∫ ∞

−∞
f(u)(1− u) ≤ C(‖u′‖2

L2(R) + 1) < ∞, (3.9)

which proves (ii).
¤

Remark 3.1. Note that these estimates easily extend to solutions of a bistable problem.

Finally, we obtain some useful L2 estimates on J ? u− u. Namely, we have

Lemma 3.2.
‖J ? u− u‖L2 ≤ C‖u′‖L2 .
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Proof:
Using the Fundamental Theorem of Calculus, we have

∫ +∞

−∞
J(x− y)u(y)dy − u(x) =

∫ +∞

−∞
J(x− y)(u(y)− u(x))dy

=
∫ +∞

−∞
J(z)z

(∫ 1

0
u′(x + tz) dt

)
dz.

By the Cauchy-Schwartz inequality, it follows that
∣∣∣∣
∫ +∞

−∞
J(x− y)u(y)dy − u(x)

∣∣∣∣
2

=
(∫ +∞

−∞
J(z)z

(∫ 1

0
u′(x + tz) dt

)
dz

)2

≤ C

[∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x + tz)dt dz ·

∫ +∞

−∞
J(z)|z| dz

]

≤ C ′
[∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x + tz)dt dz

]
.

Hence, using Tonnelli’s Theorem and a standard change of variables
∫ +∞

−∞

∣∣∣∣
∫ +∞

−∞
J(x− y)u(y)dy − u(x)

∣∣∣∣
2

dx ≤ C ′
[∫ +∞

−∞

∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x + tz)dt dz dx

]

≤ C ′′
∫ +∞

−∞
(u′)2(s) ds.

¤
Remark 3.2. Lemma 3.1 and Lemma 3.2 imply that f(u) ∈ L2(R).

3.2 L2 estimates for solutions of (1.5)
Lemma 3.3.
Let ε > 0, r ∈ R, c ∈ R and θ ∈ (0, 1). Let u be a smooth nondecreasing solution of (1.5).
Then

(iii) u′, u′′ ∈ L2(Ω),

(iv) 1− u ∈ L2(R+ ∩ Ω).

Proof:
Following the lines of the proof of Lemma 3.1, one can easily show that

u′(+∞) = u′′(+∞) = 0.
Next we show that f(u) ∈ L1(Ω). Integrating (1.5) over (−r,R) leads to:

ε(u′(R)− u′(−r)) +
∫ R

−r

(∫ +∞

−r
J(x− y)u(y) dy − u(x)

)
dx

− c(u(R)− u(−r)) = −
∫ R

−r
(f(u)− hr(x))dx.
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Assume for the moment that
∫ +∞
−r J(x− y)u(y) dy − u and hr(x) are in L1(Ω). Then

passing to the limit as R → +∞, we deduce that f(u) ∈ L1(Ω). It remains to prove
the following

Claim 3.2.∫ +∞
−r J(x− y)u(y) dy − u and hr(x) are in L1(Ω).

Proof:
Start with hr(x). By definition of hr(x), one has

hr(x) = θ

∫ −r−x

−∞
J(z)dz =: θj(x).

Since J ≥ 0 and satisfies (H2), a simple computation shows that for some λ > 0,

|j(x)| =
∫ −r−x

−∞
J(z)dz ≤ e−λ(r+x)

∫

R
J(z)e−λzdz ≤ Ke−λ(r+x) ∈ L1(Ω). (3.10)

Now, let us prove that
∫ +∞
−r J(x− y)u(y) dy − u ∈ L1(Ω).

Since u is smooth, using uniform bounds and the Fundamental Theorem of Calcu-
lus, we have
∣∣∣∣
∫ +∞

−r
J(x− y)u(y)dy − u(x)

∣∣∣∣ =
∣∣∣∣
∫ +∞

−r
J(x− y)(u(y)− u(x))dy − u(x)

∫ −r

−∞
J(x− y)dy

∣∣∣∣

≤
∣∣∣∣
∫ +∞

−r−x
J(z)(u(x + z)− u(x))dz

∣∣∣∣ + u(x)
∫ −r−x

−∞
J(z)dz

≤
∫ +∞

−r−x
J(z)|z|

(∫ 1

0
u′(x + tz) dt

)
dz + j(x).

Since j ∈ L1(Ω), we only need to prove that

Γ(x) :=
∫ +∞

−r−x
J(z)|z|

(∫ 1

0
u′(x + tz) dt

)
dz ∈ L1(Ω).

Integrating Γ over (−r,R) yields
∫ R

−r
Γ(x)dx =

∫ R

−r

∫ +∞

−r−x
J(z)|z|

∫ 1

0
u′(x + tz)dtdzdx

=
∫ R

−r

∫ +∞

0
J(z)|z|

∫ 1

0
u′(x + tz)dtdzdx +

∫ R

−r

∫ 0

−r−x
J(z)|z|

∫ 1

0
u′(x + tz)dtdzdx.

Using Tonnelli’s Theorem, we end up with

∫ R

−r
Γ(x)dx =

∫ 1

0

∫ +∞

0
J(z)|z|

(∫ R

−r
u′(x + tz)dx

)
dzdt

+
∫ 1

0

∫ 0

−r−R
J(z)|z|

(∫ R

−r−z
u′(x + tz)dx

)
dzdt.
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Hence, we achieve

∫ R

−r
Γ(x)dx =

∫ 1

0

∫ +∞

0
J(z)|z|[u(R + tz)− u(−r + tz)]dzdt

+
∫ 1

0

∫ 0

−r−R
J(z)|z|[u(R + tz)− u(−r + (t− 1)z)]dzdt.

Since 0 ≤ u ≤ 1, we end up with

∫ R

−r
Γ(x)dx ≤ 2

∫ +∞

−∞
J(z)|z|dz,

which shows that Γ ∈ L1(Ω).

¤
To obtain (iii) and (iv), we can then follow the proof of Lemma 3.1.

¤
Finally, we obtain some useful L2 estimates on

∫ +∞
−r J(x − y)u(y)dy − u. More

precisely we have,

Lemma 3.4.∫ +∞
−r J(x− y)u(y)dy − u ∈ L2(Ω). Moreover,

∥∥∥∥
∫ +∞

−r
J(x− y)u(y)dy − u

∥∥∥∥
L2(Ω)

≤ C(‖u′‖L2(Ω) + ‖j‖L2(Ω)),

where j(x) :=
∫ −r−x
−∞ J(z) dz.

Proof:
Again, using the Fundamental Theorem of Calculus, we have

∫ +∞

−r
J(x− y)u(y)dy − u(x) =

∫ +∞

−r−x
J(z)z

(∫ 1

0
u′(x + tz) dt

)
dz − u(x)j(x).

By the Young and the Cauchy-Schwartz inequalities, it follows that

∣∣∣∣
∫ +∞

−r
J(x− y)u(y)dy − u(x)

∣∣∣∣
2

≤ 2

[(∫ +∞

−r−x
J(z)z

(∫ 1

0
u′(x + tz) dt

)
dz

)2

+ u2j2

]

≤ 2
[∫ +∞

−r−x

∫ 1

0
J(z)|z|(u′)2(x + tz)dt dz ·

∫ +∞

−r−x
J(z)|z| dz + u2j2

]

≤ C

[∫ +∞

−r−x

∫ 1

0
J(z)|z|(u′)2(x + tz)dt dz + u2j2

]

Define Γ1(x) :=
∫ +∞
−r−x

∫ 1
0 J(z)|z|(u′)2(x + tz)dt dz. We then have
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∣∣∣∣
∫ +∞

−r
J(x− y)u(y)dy − u(x)

∣∣∣∣
2

≤ C
[
Γ1(x) + j2(x)

]
.

By (3.10), j ∈ L2(Ω). Therefore to complete the proof, it remains to show that Γ1

is in L1(Ω) and satisfies
‖Γ1‖L1(Ω) ≤ C‖u′‖2

L2(Ω). (3.11)

Using Tonelli’s Theorem,

∫ R

−r
Γ1(x)dx =

∫ +∞

0
J(z)|z|

(∫ R

−r

∫ 1

0
(u′)2(x + tz)dtdx

)
dz

+
∫ 0

−r−R
J(z)|z|

(∫ R

−r−z

∫ 1

0
(u′)2(x + tz)dtdx

)
dz.

Using a standard change of variables we get

∫ R

−r
Γ1(x)dx =

∫ +∞

0
J(z)|z|

(∫ 1

0

∫ R+tz

−r+tz
(u′)2(s)dsdt

)
dz

+
∫ 0

−r−R
J(z)|z|

(∫ 1

0

∫ R+tz

−r+(t−1)z
(u′)2(s)dsdt

)
dz.

Since u′ ∈ L2(Ω) we then have

∫ R

−r
Γ1(x)dx ≤

∫ +∞

0
J(z)|z|

(∫ 1

0

∫ +∞

−r
(u′)2(s)dsdt

)
dz

+
∫ 0

−r−R
J(z)|z|

(∫ 1

0

∫ +∞

−r
(u′)2(s)dsdt

)
dz.

Hence,
∫ +∞

−r
Γ1(x)dx ≤

(∫ +∞

−∞
J(z)|z|dz

)
‖u′‖2

L2(Ω),

which is the desired conclusion.
¤

4 Construction of a solution of (1.5)
In this section, we show that for any fixed r > 0, c ∈ R, ε > 0 and for any θ ∈ (0, 1)
there exists a unique increasing solution ur of Problem (1.5). More precisely we
show

Theorem 4.1.
Let ε > 0, r > 0, c ∈ R and θ ∈ (0, 1). Then there exists a unique smooth increasing

solution of (1.5).

We only prove the existence. For the proof of uniqueness, see [6].
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4.1 Preliminaries
Let G be a smooth nondecreasing function such that G(−r) = θ, LG ∈ L2(Ω) and
1−G ∈ L2(Ω). For λ > 0, define

Tλ,r : C0(Ω) ∩ L2(Ω) → C0(Ω) ∩ L2(Ω)
v 7→ z,

where z is the unique solution of



Lz − λz = F (v, x) in Ω,
z(−r) = 0,
z(+∞) = 0,

(4.1)

where F (v, x) = −f(v + G) − λv − LG − hr(x). Using Lemma A.1, to prove that z
is well-defined, it is enough to show that

v ∈ L2(Ω) ∩ C0(Ω) =⇒ F (v, x) ∈ L2(Ω) ∩ C0(Ω).

By definition of G, LG ∈ L2(Ω). By (3.10), hr ∈ L2(Ω). So we are left to prove
that f(v + G) ∈ L2(Ω).

Given v ∈ L2(Ω) ∩ C0(Ω), since f(1) = 0 and 1−G ∈ L2(Ω),

|f(v + G)| ≤ ‖f ′‖∞|v + G− 1| ∈ L2(Ω) and lim
+∞ f(v + G) = 0.

Hence, f(v + G) ∈ L2(Ω) ∩ C0(Ω).

4.2 Iteration procedure
We claim that there exists a sequence of functions (un)n∈N satisfying

u0 = G and for n ∈ N \ {0},



Lun+1 − λun+1 = −f(un)− λun − hr(x) in Ω,
un+1(−r) = θ,
un+1(+∞) = 1.

(4.2)

We proceed as follows. Using the substitution vn = un −G, (4.2) reduces to



Lvn+1 − λvn+1 = F (vn, x) in Ω,
vn+1(−r) = 0,
vn+1(+∞) = 0,

(4.3)

where F (v, x) = −f(v + G) − λv − LG − hr(x). Therefore we want vn+1 = Tλ,rvn.
Using Subsection 4.1 and induction, the sequence (vn)n∈N is well defined provided
that v0 ∈ L2(Ω) ∩ C0(Ω). This is trivial since v0 = 0.

Remark 4.1. Observe that if u0 is a supersolution (resp. a subsolution) of (1.5) and if λ
is chosen so large that −f − λ is nonincreasing, the Maximum Principle (Theorem A.2)
implies that (un)n∈N is nonincreasing (resp. nondecreasing).
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4.3 Passing to the limit as n →∞
Assume that u0 is either a supersolution or a subsolution satisfying θ ≤ u0 ≤ 1.
Recall that the constants θ and 1 are respectively a subsolution and a supersolution
of (1.5).
It follows easily by induction and the Maximum Principle (Theorem A.2) that for all
n ∈ N,

θ ≤ un ≤ 1. (4.4)

Choosing λ > 0 so large that −f − λ is nonincreasing, we prove next by induction
that, given n ∈ N,

x → un(x) is a nondecreasing function. (4.5)

First define

ũn(x) :=
{

θ if x ∈ R \ Ω,
un(x) if x ∈ Ω.

We prove that ũn is nondecreasing, which implies (4.5). Observe that ũn+1 solves



Mũn+1 − λũn+1 = −(f + λ)(ũn(x)) in Ω,
ũn+1(−r) = θ,
ũn+1(+∞) = 1.

(4.6)

For n = 0, we already know that ũ0 is nondecreasing. Fix now n ≥ 1 and assume
that ũn−1 is nondecreasing. Also, given any positive τ , let w(x) = ũn(x+ τ)− ũn(x).
It follows from (4.6) and the assumption that ũn−1 and f + λ are nondecreasing that

Mw − λw ≤ 0 in Ω, (4.7)
w(x) ≥ 0 for x ∈ R \ Ω, (4.8)
w(+∞) = 0, (4.9)

whence by the Maximum Principle, w ≥ 0. In particular, ũn(x + τ) − ũn(x) ≥ 0 for
any positive τ . This shows that ũn is nondecreasing.
Using Remark 4.1 and the assumption on u0, the sequence (un)n∈N is monotone.
Hence, using (4.4), (4.5) and Helly’s lemma, it follows that (un)n∈N converges point-
wise to a nondecreasing function u satisfying

θ ≤ u ≤ 1.

By the dominated convergence theorem, we have for all x ∈ Ω
∫ +∞

−r
J(x− y)un(y)dy − un(x) →

∫ +∞

−r
J(x− y)u(y)dy − u(x), as n →∞.

Rewriting (4.2) as

εu′′n+1−cu′n+1 = un+1−
∫ +∞

−r
J(x−y)un+1(y)dy−λ(un−un+1)−f(un)−hr(x), (4.10)
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observing that the right-hand side in the above equation is uniformly bounded and
using elliptic regularity, we conclude that (un)n∈N is bounded e.g. in C1,α(ω), where
α ∈ (0, 1) and ω is an arbitrary bounded open subset of Ω. Bootstrapping the argu-
ment implies that (un)n∈N is bounded in C2,α(ω). Hence u ∈ C2(Ω) and we can pass
to the limit in the equation to obtain that u solves

Lu + f(u) + hr(x) = 0 in Ω (4.11)

Observing that un(−r) = θ and that (un)n∈N converges pointwise to u, we easily
conclude that u(−r) = θ.

To complete the construction of the solution, we prove that u(+∞) = 1. Indeed,
since u is uniformly bounded and nondecreasing, u achieves its limit at +∞. Using
Lemma 3.3, u′(+∞) = u′′(+∞) = 0. It follows from (4.11) that f(u(+∞)) = 0.
Hence, u(+∞) = 1. We have thus constructed an increasing solution u of (1.5),
provided we have an adequate sub or supersolution u0 of (1.5).

¤

Remark 4.2. In the case where u0 is a subsolution of (1.5), one has

u0 ≤ u ≤ 1.

Hence, u(+∞) = 1 is a direct consequence of u0(+∞) = 1.

The construction of a nondecreasing solution of (1.5) is now reduced to finding
a good sub or supersolution u0 satisfying u0(−r) = θ, Lu0 ∈ L2(Ω) and
1− u0 ∈ L2(Ω) for fixed r > 0, θ ∈ (0, 1), ε > 0 and c ∈ R.

4.4 Construction of a solution of (1.5) for c ≤ κ(ε)

Assume that r > 0, θ ∈ (0, 1), ε > 0 are fixed and let c ≤ κ(ε), where κ(ε) is given by
Lemma 2.2. Recall that w given by Lemma 2.2 is a subsolution of (1.5), with c ≤ κ(ε).

Using Lemmas 3.1-3.2 and Remark 3.1 yields

w′′, w′, (J ? w − w) ∈ L2(R) and 1− w ∈ L2(R+)

Hence,

|Lw| ≤ ε|w′′|+ |cw′|+
∣∣∣∣
∫ +∞

−∞
J(x− y)w(y) dy − w

∣∣∣∣ ∈ L2(Ω).

We then apply the previous subsection with u0 = w to obtain a nondecreasing solu-
tion of (1.5) for c ≤ κ(ε).

4.5 Construction of a solution for c > κ(ε)

To obtain solutions for c > κ(ε), we argue as follows. Assume as in the previous
subsection that r > 0, θ ∈ (0, 1), ε > 0 are fixed and choose c > κ(ε).

Let us be the smooth nondecreasing solution of (1.5) obtained with c = κ(ε).
Since c > κ(ε) and us is increasing, us is a supersolution of (1.5) with speed c. By
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construction, we have us ≥ θ and θ is a subsolution of (1.5). Therefore to obtain
a solution of (1.5), it is sufficient to prove that Lus ∈ L2(Ω) and 1 − us ∈ L2(Ω).
The latter is easily obtained using the L2 estimates (Lemmas 3.3-3.4) obtained in the
previous section.

5 Construction of solutions of (1.9) for all c ≥ c∗(ε)
In this section, we study problem (1.9) and prove the following

Theorem 5.1.
Let ε > 0, then there exists a positive real number c∗(ε) such that for all c ≥ c∗(ε) there
exists a positive smooth increasing solution uε of (1.9). Furthermore if c < c∗(ε), then
problem (1.9) has no increasing solution.

The proof of Theorem 5.1 will be split in two parts. In the first part, Subsection
5.1, we construct a solution of Problem (1.9) for a specific value of the speed c = κ̄(ε),
using solutions of approximate problems constructed in the previous section and a
standard limiting procedure. Then in the second part, Subsection 5.2, we define the
minimal speed c∗(ε) and construct solutions of (1.9) for speeds c ≥ c∗(ε).

5.1 Construction of one solution of (1.9) for c = κ̄(ε)

In this section, we consider problem (1.5) with c = κ̄(ε), where κ(ε) is given by
Lemma 2.1.

By Theorem 4.1, for any real number r and any θ ∈ (0, 1) there exists a unique
solution of (1.5). For fixed r > 0, we claim that the solution of (1.5) satisfies the
following normalization.

Claim 5.1.
Fix ε > 0 and r > 0. There exists θ0 ∈ (0, 1) such that the corresponding solution uθ0

r of
(1.5) with θ = θ0 satisfies the normalization uθ0

r (0) = 1
2 .

Proof of Claim 5.1
Define

Θ = {θ|uθ
r(0) >

1
2
}.

Choosing any θ ≥ 1
2 and observing that uθ

r is increasing we have [12 , 1) ⊂ Θ. The
uniqueness of the solution uθ

r and standard a priori estimates imply that θ → uθ
r(0)

is continuous over [0, 1]. By continuity, we can therefore conclude that

• Either there exists a positive θ0 such that uθ0
r (0) = 1

2

• Or (0, 1) ⊂ Θ.

We show that the latter case cannot occur, which proves the claim. For this, we
argue by contradiction. Suppose that (0, 1) ⊂ Θ. Let (θn)n∈N be a sequence such
that θn → 0. Let (un)n∈N be the corresponding sequence of solutions of (1.5) with
θ = θn. Using Helly’s Lemma and standard a priori estimates, we can extract a
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subsequence, still denoted (un)n∈N which converges to a nondecreasing function u.
Clearly, u(−r) = 0. Since un(0) > 1

2 , we have u(0) ≥ 1
2 . Hence, u is non trivial and

satisfies 


Lu + f(u) = 0 for x ∈ (−r,+∞)
u(−r) = 0,
u(+∞) = 1.

(5.1)

The fact that u(+∞) = 1 is obtained using Lemma 3.3 and following the arguments
of Subsection 4.3.

Observe that w̄ given by Lemma 2.1 is a supersolution of (5.1).
One can show that w̄ > u, (see [6] for details), which provides a contradiction, since
1
2 ≤ u(0) < w̄(0) = 1

2 .
¤

With the latter normalization, we are ready for the construction of a solution
of (1.9). Let (rn)n∈N = (n)n∈N and (uθn

n )n∈N be the sequence of solutions of the
corresponding approximate problem (1.5) with r = rn and θ = θn, where (θn)n∈N is
such that uθn

n (0) = 1
2 . Define (hn)n∈N by

hn(x) = θn

∫ −rn

−∞
J(x− y)dy. (5.2)

By Theorem 4.1 and Claim 5.1 such sequences are well defined.
Clearly, hn → 0 pointwise, as n →∞. Observe now that (uθn

n )n∈N is a uniformly
bounded sequence of increasing functions. Therefore using Helly’s lemma, there ex-
ists a subsequence which converges pointwise to a nondecreasing function u. Since
ε > 0, using local C2,α estimates, up to extraction, the subsequence converges in
C2,α

loc . Therefore u ∈ C2,α and satisfies

Mu + f(u) = 0 in R. (5.3)

From the normalization and the fact that f(1
2) 6= 0, u is non trivial. Since u

is increasing and bounded, u achieves its limits l± at ±∞. A standard argument,
using Lemma 3.1, implies that f(l±) = 0. Since l− ≤ 1

2 and l+ ≥ 1
2 , we must have

u(−∞) = 0 and u(+∞) = 1. Therefore we have constructed a non trivial solution of
(1.9) for c = κ̄(ε).

Remark 5.1. Observe that the existence of a supersolution w̄ is only needed in the normal-
ization process. Therefore, the previous construction holds with any other supersolution ψ
of (1.9) such that ψ(0) = 1

2 .

Let us now turn our attention to the second part of the proof.

5.2 Definition of c∗(ε)

Define
c∗(ε) := inf{c > 0 : (1.9) admits an increasing solution} (5.4)
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By the previous section, c∗(ε) is well defined. Obviously, from the definition of
c∗(ε), there is no increasing solution to (1.9) for speeds c < c∗(ε). Our goal in this
subsection is to provide a solution of (1.9) for all c ≥ c∗(ε).

First we observe that (1.9) has a solution for c = c∗(ε). Let (cn)n∈N be a minimiz-
ing sequence for c∗(ε). The corresponding solutions un of (1.9) are increasing (and
uniformly bounded by 1) so that we may apply Helly’s lemma and elliptic regular-
ity as in the previous section to conclude that (un)n∈N converges to an increasing
solution of (1.9) for c = c∗(ε), which we denote by uε. Boundary conditions for uε

are obtained as in Subsection 5.1 using the fact that uε(0) = un(0) = 1
2 .

Fix now c > c∗(ε) and observe that w̄ := uε is a smooth increasing supersolution
of (1.9) with speed c. Since uε(0) = 1

2 , by Remark 5.1, the construction of Subsection
5.1 applies. Therefore, we get a solution of (1.9) for all c ≥ c∗(ε) which ends the
proof of Theorem 5.1.

6 Existence of a solution for ε = 0

In the previous section, we were able to prove that for every positive ε, Problem
(1.9) admits a semi infinite interval of solution, i.e for c ≥ c∗(ε) there exists a positive
increasing solution of (1.9). We will see that the same holds true for (1.4). The idea
is to let ε → 0 in (1.9) and to extract a converging sequence of solutions. The main
problem is to control c∗(ε) when ε → 0. We prove the following:

Lemma 6.1.
For every positive ε0, there exists ν0 > 0 such that c∗(ε) ≤ ν0 for all ε ∈ [0, ε0).

Proof:
According to Remark 2.1, κ̄(ε) is an nondecreasing function of ε, therefore

κ̄(ε) ≤ κ̄(ε0). The conclusion easily follows from the definition of c∗(ε),
i.e. c∗(ε) ≤ κ̄(ε).

¤
We now derive existence of a solution of (1.4) for every speed c greater than ν0.

More precisely we have the following:

Theorem 6.1.
There exists ν0 such that for every speed c greater than ν0, there exists a solution u with
speed c of (1.4).

Proof:
According to Lemma 6.1, for ε small, say ε ≤ ε0, equation (1.9) has a solution uε

for every c greater than ν0 and ε ≤ ε0. Without loss of generality we assume that for
all ε, uε(0) = 1

2 . From standard a-priori estimates, uε is a bounded smooth increasing
function. Let ε → 0 along a sequence. As in the previous section, uniform a priori
estimates and Helly’s theorem applied to uε, provide the existence of a monotone
increasing solution u of

[J ? u− u]− cu′ + f(u) = 0 in R. (6.1)
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The solution cannot be trivial, according to the normalisation 1
2 = uε(0) → u(0).

Boundary conditions are obtained as in Section 5 .
¤

We define another minimal speed

c∗∗ = inf{c|∀c′ ≥ c (1.4) has a positive increasing solution of speed c′}. (6.2)

This minimal speed is well defined according to Theorem 6.1.

Remark 6.1. A quick computation shows that

c∗∗ ≤ lim inf
ε→0

c∗(ε).

Nevertheless, to complete the characterization of the set of solutions of (1.4), we
have to prove that there exists no travelling-wave solutions of speed c less than c∗∗.
In other words, if we define :

c∗ = inf{c| (1.4) has a positive increasing solution of speed c}, (6.3)

we have to show that c∗ = c∗∗. Clearly we have c∗∗ ≥ c∗, the main problem is
to prove c∗∗ ≤ c∗. This will be done with the help of the monotony of the speed of
truncated problems and its continuous behavior at zero. More precisely, consider
equation (6.4) below





εu′′ + [J ? u− u]− cu′ + (fχθ)(u) = 0 in R,
u(−∞) = 0,
u(+∞) = 1,

(6.4)

where ε ≥ 0, θ > 0 and χθ is such that

• χθ ∈ C∞
0 (R),

• 0 ≤ χθ ≤ 1,

• χθ(s) ≡ 0 for s ≤ θ and χθ(s) ≡ 1 for s ≥ 2θ.

We have the following existence and uniqueness theorem

Theorem 6.2.
Let ε > 0 and θ > 0. There exists a unique speed c = cθ(ε) and, up to translation, a unique
smooth increasing function uθ such that (6.4) holds. Moreover the speed cθ(ε) is positive
and satisfies

cθ(ε) < c∗(ε) (6.5)
lim
θ→0

cθ(ε) = c∗(ε). (6.6)

Remark 6.2. Theorem 6.2 still holds for ε = 0, with c∗(0) := c∗ (where c∗ is given by
(6.3)). We then designate the corresponding speed for (6.4) by cθ := cθ(0).
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A proof of Theorem 6.2 and Remark 6.2 can be found in [6, 7], so we do not
include it. A natural corollary of this theorem is the continuity of the speed cθ(ε)
with respect to ε and θ. Namely, we have

Corollary 6.1.
Under the assumptions of Theorem 6.2, the mapping

(0, 1)× [0, 1] → R+

(θ, ε) 7→ cθ(ε)

is continuous.

Assume Corollary 6.1 holds true. We then conclude that c∗ = c∗∗. Indeed, as-
sume by contradiction that c∗ < c∗∗. Then choose c such that c∗ < c < c∗∗. By Theo-
rem 6.2 and Remark 6.2, since cθ < c∗ for every positive θ, we have cθ < c∗ < c. Fix
θ > 0 : since cθ(ε) is a continuous function of ε, one has on the one hand cθ(ε) < c for
ε small, say ε ∈ [0, ε0]. On the other hand, according to Remark 6.1, we may achieve,

cθ(ε) < c < c∗(ε)∀ε ∈ [0, ε0]. (6.7)

From this last inequality, and according to (6.6), for each ε ∈ (0, ε0] there exists a
positive θ(ε) ≤ θ such that c = cθ(ε)(ε). Let uθ(ε) be the associated solution, normal-
ized by uθ(ε)(0) = 1/2.
Now we take a sequence (θn) converging to 0. From the above construction, for
each n there exists εn ≤ θn and θ(εn) ≤ θn such that c = cθ(εn)(εn) and uθ(εn) is the
corresponding normalized solution. By construction we have

θ(εn) → 0.

Use now, as usual, uniform a priori estimates and Helly’s theorem to get a solution
ū of (1.4) with speed c.

Since c ∈ (c∗, c∗∗) is arbitrary, there exists a non trivial solution of (1.4) for any
speed c > c∗, which contradicts the definition of c∗∗. We summarize the above proof
in the following diagram :

cθ
θ→0−−−−→ c∗ < c∗∗ ≤ lim infε→0 c∗∗(ε)

ε→0

x
xε→0

cθ(ε)
θ→0−−−−→ c∗(ε) = c∗∗(ε)

¤
We are left with establishing the

Proof of Corollary 6.1
We know from Theorem 6.2 and Remark 6.2 that for every ε ≥ 0 and θ > 0 there

exists a unique solution (uε
θ, cθ(ε)) of (6.4).

Fix ε0 ≥ 0 and θ0 > 0. We want to show that for any sequence (εn, θn) → (ε0, θ0),
we have cθn(εn) → cθ0(ε0).
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Let uεn
θn

be the normalized associated solution, i.e uεn
θn

(0) = 1
2 . Since cθ(ε) > 0 and

since (6.5) holds, we have (cθn(εn)) bounded as (εn, θn) → (ε0, θ0). We can extract a
sequence of speeds, which converges to some value γ. From the a priori estimates
on (uεn

θn
)n∈N, there also exists a subsequence which converges to a smooth function

u solution of the following problem with speed γ.




ε0u
′′ + [J ? u− u]− γu′ + fθ0(u) = 0 in R

u(−∞) = 0
u(+∞) = 1.

(6.8)

According to Theorem 6.2, the speed and the profile are unique. Therefore,
γ = cθ0(ε0). Since (cθn(εn)) is precompact and has a unique accumulation point,
the whole sequence (cθn(εn)) must converge to cθ0(ε0). This ends the proof of the
continuity and by means the characterization of the minimal speed c∗.

¤

7 Asymptotic behavior of solutions
In this section we establish the asymptotic behavior of the solution u near ±∞ pro-
vided J satisfies (H2). The behavior of the function near +∞ has been already
obtained in a previous work by one of the authors [6], therefore we only deal with
the behavior of u near −∞.

Remark 7.1. The behavior of u near ±∞ for bistable and ignition type nonlinearities was
also obtained in [6].

We use the same strategy as in [2] and start by proving the following lemma

Lemma 7.1. Assume that (H1) and (H2) hold. Also assume that f is monostable and
f ′(0) > 0. Let u be an increasing solution of (1.4). Then there exists β > 0 such that

∫ ∞

−∞
u(x)e−βx dx < ∞.

Proof
Let ζ ∈ C∞(R) be a nonnegative nondecreasing function such that ζ ≡ 0 in

(−∞,−2] and ζ ≡ 1 in [−1,∞). For N ∈ N, let ζN = ζ(x/N). Multiplying (1.4) by
e−βxζN and integrating over R, we get

∫
(J ? u− u)(e−βxζN )−

∫
cu′(e−βxζN ) +

∫
f(u)(e−βxζN ) = 0 (7.1)
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Since J is even,
∫

(J ? u− u)(e−βxζN ) =
∫

(J ? (e−βxζN )− e−βxζN )u

=
∫

u(x)e−βx

(∫
J(y)eβyζN (x− y) dy − ζN (x)

)
dx

=
∫

u(x)e−βx

(∫
J(y)e−βyζN (x + y) dy − ζN (x)

)
dx

≥
∫

u(x)e−βx

(∫ ∞

−R
J(y)e−βy dy ζN (x−R)− ζN (x)

)
dx,

(7.2)

where we used the monotone behaviour of ζN in the last inequality and where R > 0
is chosen as follows : first pick 0 < α < f ′(0) and R > 0 so large that

f(u)(x) ≥ αu(x) for x ≤ −R. (7.3)

Next, one can increase R further if necessary so that
∫∞
−R J(y) dy > (1−α/2). By

continuity we obtain for some β0 > 0 and all 0 < β < β0,
∫ ∞

−R
J(y)e−βy dy ≥ (1− α/2)eβR. (7.4)

Collecting (7.2) and (7.4), we then obtain

∫
(J ? u− u)(e−βxζN ) ≥

∫
u(x)e−βx

(
(1− α/2)eβRζN (x−R)− ζN (x)

)
dx

≥ (1− α/2)
∫

u(x + R)e−βxζN (x) dx−
∫

u(x)e−βxζN (x) dx

≥ −α/2
∫

u(x)e−βxζN (x) dx, (7.5)

where we used the monotone behaviour of u in the last inequality.
We now estimate the second term in (7.1) :

∫
u′ζNe−βx dx = β

∫
uζNe−βx −

∫
uζ ′ne−βx dx

≤ β

∫
uζNe−βx . (7.6)

Finally using (7.3), the last term in (7.1) satisfies

∫
f(u)ζNe−βx dx ≥ α

∫ −R

−∞
uζNe−βx dx− C. (7.7)

By (7.1), (7.5), (7.6) and (7.7) we then obtain
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(α/2− cβ)
∫ −R

−∞
uζNe−βx dx ≤ C.

Choosing β < α/(2c) and letting N →∞ proves the lemma.
¤

Using Lemma 7.1 it is now easy to see that u(x) ≤ Ceβx for all x ∈ R. Suppose
indeed this is not the case and let xn ∈ R be such that u(xn) > neβxn .
Since 0 ≤ u ≤ 1, we may pick a subsequence (xnk

)k∈N such that xnk+1
< xnk

− 1.
But since u is nondecreasing,

∫
u(x)e−βx dx ≥

∑

k≥1

∫ xnk−1

xnk

u(x)e−βx dx

≥
∑

k≥1

nk

∫ xnk−1

xnk

eβ(xnk
−x) dx

≥
∑

k≥1

nk/β
(
1− e−β

)
= ∞.

¤
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A Appendix
Here we prove some maximum principles and existence results for solutions of lin-
ear problems associated to the operator L defined by (1.7).

Theorem A.1. Strong Maximum Principle for L
Let ε ≥ 0, r > 0, c ∈ R and L defined by (1.7) on Ω = (−r,+∞).
Assume further that Int( supp J) ∩ Ω− 6= ∅, where Ω− = (−r, 0).

Let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

Lu ≥ 0 in Ω (resp. Lu ≤ 0 in Ω). (A.1)

Then u may not achieve a positive maximum (resp. negative minimum) inside Ω without
being constant.

Similarly we have

Theorem A.2. Strong Maximum Principle for L+ hr(x).
Let ε ≥ 0, r > 0, c ∈ R, θ ∈ (0, 1) and L, hr(x) defined by (1.7) on Ω = (−r,+∞).
Assume further that Int( supp J) ∩ Ω− 6= ∅, where Ω− = (−r, 0).
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Let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy



Lu ≥ −hr(x) in Ω (resp. Lu ≤ −hr(x) in Ω)
u(−r) = θ
u ≥ θ in Ω (resp. u ≤ θ in Ω).

(A.2)

Then u may not achieve a positive maximum (resp. negative minimum) inside Ω without
being constant.

Proof of Theorem A.1:
We argue by contradiction and assume that u is nonconstant and achieves a pos-

itive maximum at some point x0 ∈ Ω. Since
∫
R J(z)dz = 1 we can rewrite (1.7)

as

Lu = εu′′ +
∫ +∞

−r
J(x− y)[u(y)− u(x)]dy − cu′ − d(x)u, (A.3)

with d(x) =
∫ −r
−∞ J(x− y)dy.

At the point x0 of (positive) maximum, we have on the one hand

εu′′(x0) ≤ 0,

∫ +∞

−r
J(x0− y)[u(y)−u(x0)]dy ≤ 0 and − d(x0)u(x0) ≤ 0. (A.4)

On the other hand by (A.1),

εu′′(x0) +
∫ +∞

−r
J(x0 − y)[u(y)− u(x0)]dy − d̄(x0)u(x0) ≥ 0 (A.5)

Hence εu′′(x0) = d(x0)u(x0) = 0 and
∫ ∞

−r
J(x0 − y)[u(y)− u(x0)] dy = 0. (A.6)

If J > 0 in R, we conclude directly that u(y) = u(x0) for all y ∈ Ω, contradicting our
original assumption.

In general, J is a continuous nonnegative even function with
◦

supp(J) ∩Ω− 6≡ ∅.
In particular, there exist constants 0 < a < b such that [−b,−a]∪ [a, b] ⊂ supp(J) and
[a, b] ⊂ Ω. We deduce from (A.6) that

u(y) = u(x0) for all y ∈ (x0 + [−b,−a] ∪ [a, b]) ∩ Ω

Let z = x0 + b and observe that u(z) = u(x0). We may thus argue as above and
conclude that u(y) = u(z) for all y ∈ (z + [−b,−a] ∪ [a, b]) ∩ Ω. In particular,

u(y) = u(x0) for all y ∈ (x0 + [0, b− a]) ∩ Ω.

Repeating the argument with z = x0 + a, we obtain that u(y) = u(x0) for all
y ∈ (x0 + [−(b− a), 0]) ∩ Ω. Thus,

u(y) = u(x0) for all y ∈ (x0 + [−(b− a), b− a]) ∩ Ω.
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Applying the above successively with x0+b−a and x0−(b−a) in place of x0, we
obtain that u(y) = u(x0) for all y ∈ x0+[−2(b−a), 2(b−a)]∩Ω. Working inductively,
we conclude that u ≡ u(x0) in Ω, which contradicts our original assumption.

¤
Proof of Theorem A.2

Define

ũ(x) :=
{

u(x) in Ω
θ in R \ Ω

and observe that we can rewrite (A.2) as
{ Mũ ≥ 0 in Ω

ũ(x) ≥ θ in Ω,

where Mũ = εũ′′ + [J ? ũ− ũ]− cũ′.
We argue by contradiction and assume that ũ achieves a positive maximum at

some point x0 ∈ Ω and is nonconstant. Since u(x) ≥ θ in Ω we have u(x0) > θ.
Working as in the proof of Theorem A.1 we obtain that u ≡ u(x0) on Ω̄, which is a
contradiction.

¤

Remark A.1. Theorems A.2 and A.1 remain valid when replacing L by L − d0, where d0

is any positive constant.

Next, we provide an elementary lemma to construct solutions of Dirichlet prob-
lems associated to L.

Lemma A.1. Let d0 > 0, ε > 0, r > 0, c ∈ R and L defined by (1.7) on Ω = (−r,+∞).
Assume further that Int( supp J) ∩ Ω− 6= ∅, where Ω− = (−r, 0).

Given f ∈ C0(Ω) ∩ L2(Ω), there exists a unique solution u ∈ C2(Ω) ∩ L2(Ω) of



Lu− d0u = f in Ω
u(−r) = 0
u(+∞) = 0

(A.7)

Proof
Uniqueness follows from the maximum principle. Let X = H1

0 (Ω) and define
the bilinear form A(u, v) for u, v ∈ X by

A(u, v) = ε

∫

Ω
u′v′+

1
2

∫

Ω

∫

Ω
J(x−y)(u(y)−u(x))(v(y)−v(x))dydx−c

∫

Ω
u′v+

∫

Ω
d(x)uv,

where d(x) =
∫ −r
−∞ J(x − y)dy + d0. To solve (A.7), we just need to find u ∈ X such

that A(u, v) =
∫
Ω uv for all v ∈ X . We will show that A is coercive and continuous

in X . Existence will then be given by the Lax-Milgram Lemma. Clearly,

A(u, u) ≥ ε

∫

Ω
(u′)2 − c

∫

Ω
u′u + d0

∫

Ω
u2 = ε

∫

Ω
(u′)2 + d0

∫

Ω
u2
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Thus A is coercive in X . It remains to prove the continuity ofA. Let φ and ψ be two
smooth functions with compact support in Ω.

|A(φ, ψ)| ≤ 1
2

∫

R

∫

R
J(x− y)|φ(y)− φ(x)||ψ(y)− ψ(x)|dydx

By the Fundamental Theorem of Calculus and the Cauchy-Schwartz inequality we
obtain:

|A(φ, ψ)| ≤
∫

R2

∫ 1

0

∫ 1

0
J(z)z2|φ′(x + tz)||ψ′(x + sz)|dz dx dt ds

≤
∫

R

∫

[0,1]2
J(z)z2

∫

R
|φ′(h)||ψ′(h + (s− t)z)|dh ds dz dt

≤
∫

R

∫

[0,1]2
J(z)z2 dz dt ds‖φ′‖L2(R)‖ψ′‖L2(R)

≤(
∫

R
J(z)z2 dz)‖φ′‖L2(R)‖ψ′‖L2(R),

which shows the continuity of A.
¤
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[6] J. Coville Équations de réaction-diffusion non-locale, PhD Thesis, Univ. Paris 6, 2003.

[7] J. Coville, L. Dupaigne Min-Max formula for travelling front speed of Non-local
reaction-diffusion equation, Nonlinear Analysis: Theory, Methods and Applica-
tions Vol. 60-5 pages(797-819).

[8] P. Fife Mathematical aspects of reacting and diffusing systems, Lecture Notes in
Biomathematics, 28. Springer-Verlag, Berlin-New York, (1979).

[9] R. A. Fisher, The genetical theory of natural selection, (English. English summary)
A complete variorum edition. Revised reprint of the 1930 original. Edited, with a
foreword and notes, by J. H. Bennett.Oxford University Press, Oxford, (1999).

29

ha
l-0

02
88

55
7,

 v
er

si
on

 1
 - 

17
 J

un
 2

00
8



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Coville, J., Dupaigne, L. (2007). On a non-local equation arising in population dynamics.

PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 137 (4), 727-755.  DOI :
10.1017/S0308210504000721
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