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summary: Spatial independence of objects is a strong hypothesis when
using Boolean models. Methods to test it have then been developed, but only
when the objects are convex. We propose here to replace this assumption
by a bound assumption of the objects which can be more easily assumed
when modeling spatial patterns in ecology and agricultural science. A test is
then proposed, based on the length of the voids of the intersection between
transect lines and a dilation of the original process related to the bound value.
Its application is shown to several examples, together with its extension to
an epidemiological case on orchards, where this problem comes from.

key-words: area, boolean model, spatial pattern
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introduction

Boolean models are used in spatial statistics to model the spatial repartition
of objects. They assume that these objects, generally called grains, are inde-
pendently located and have independent shapes. The boolean model is then
obtained as the union of all these objects. Boolean models are used in very
different fields as for example in ecology where they can be used to describe
the spatial repartition of plants when these plants cannot be assumed punc-
tual (Diggle 1981), or in soil science when modeling the soil surface roughness
(Bertuzzi et al 1995, Kamphorst et al 2005), this surface being considered as
the union of independent 3D shapes, the easiest one being the half-sphere.

A less classical case can be encountered in spatial epidemiology when
looking at diseases transmitted by insects on regularly planted plots. For
exemple, European stone fruit yellows (ESFY) is a disease affecting apricot
orchards, where it is transmitted by an insect species (Cacopsylla pruni)
that spends only a short part of its life cycle in the orchards and lives mostly
on pine trees several kilometers away (Thébaud 2005). Phytoplasmas can
be transmitted only after spending several weeks inside their insect vector;
in the case of ESFY, the healthy insects landing onto an infectious tree
can acquire the phytoplasma but they do not spend enough time in the
apricot orchards to become infectious before disappearing (Thébaud 2005).
Therefore, only the insects that are already infectious when they arrive into
the orchard from distant pine trees are responsible for contaminating the
apricot trees. Moreover suppose that, once this large flight from pine trees
to the orchards is done, the insects perform only a few flights at short distance
(to the nearest trees or the next ones), unless they are disturbed in which
case they will perform very large ones. Assuming independence of insects,
i.e. that they arrive independently to each other and independently to trees
already carrying ESFY, the pattern of ESFY trees can be considered as the
sampling of a boolean process. In this boolean process each object is formed
by the union of the surfaces formed by meshes centered on the successive
insect positions on the crown, supposed to cover all the orchard area. For
young trees whose crowns do not connect, the same applies if one can assume
that the arrival point process is Poisson on the area formed by the union of
the tree crowns.

In all these cases, independence hypothesis is a crucial assumption as it
influences all statistical properties of the model. Testing it is then a pre-
liminary step before going to spatial modeling when only global statistical
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properties are of interest, or an important step for itself in cases like plant
epidemiology as it can give some insight into insect behavior, which is difficult
to observe directly.

Such a test has been developed by Laslett (Laslett et al. 1985, Cressie
1991, Molchanov 1997). It is based on the analysis of the spatial pattern of
observed extrema. It remains thus very general, the only needed assump-
tion being that of convexity. On the other side, this assumption is seldom
met in agricultural science and ecology where convexity assumption can be
more easily replaced by other assumptions as for example boundedness of
the grain, on the basis of biological knowledge. In the ESFY example given
above, a grain is the union of plants contaminated by one insect and will
not generally be convex. Field observations on insect behavior can lead to
a maximum number of short distance flights and a maximum distance of
flight, and the bound will be given by the product of the two parameters.
In ecology, boolean models can be used to describe the spatial repartition
of plants whose crown can be observed. The underlying assumption is then
that seedlings are independently spread and grow independently, a bush be-
ing an isolated plant or the union of several plants with connected crowns.
In general, the crown of one plant is not convex, except for some species with
very regular growth.

As mentioned by Molchanov (1997), testing the boolean hypothesis with-
out any assumption on the grain is impossible, and we propose here to replace
the convexity assumption by a boundedness condition. The principle of the
test, presented in section one, is first to dilate the process in one dimen-
sion, then to sample transect lines parallel to that direction and compare the
length distribution of voids with the expected distribution of voids under the
assumption of total randomness conditional on the number of segments and
the total void length. In section two we show how the test works on three
simulated examples, where the typical point process is successively a Poisson
point process, a Strauss process and an aggregated point process. In section
three we apply the test on two examples, one from soil surfaces description,
the second from ecology and interested in box (Buxus sempervirens) bushes
distribution. In section four, we show how the test can be adapted to the
example of ESFY epidemics, and how finiteness of the orchards can be dealt
with. Limits of the method will be discussed in a last section.
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1 The boolean model in IR2

1.1 The boolean model

Definition of the boolean model can be found in (Cressie 1991, Hall 1988,
Molchanov 1997, Stoyan 1995) together with an extensive description of its
properties. We just recall here its definition.
Let X = (Xi)i∈IN, an homogeneous Poisson point process and M = (Mi)i∈IN

a set of measurable independent random sets. For b a bounded set, let
Sb = S ⊕ b denote the dilation of S by b. The boolean model B = (X, M) is
defined as B =

⋃
i Xi ⊕ Mi. In the following, we assume that the grains are

bounded, that is, there exists 0 < r < ∞ so that Mi ∈ A(0, r), the disk of
center O and radius r.

Note that the dilation of B, Bb = B ⊕ b =
⋃

i Xi ⊕ (Mi ⊕ b), is also a
boolean process. Therefore, if B is a boolean process with bounded grain,
the process obtained by dilating each grain by a disk of radius r (resp. by
an oriented segment of length r) is a boolean process. In the first case, the
intersection of any dilated grain by a given line D is a segment. In the second
case, the intersection of any dilated grain by a given line D parallel to the
dilating segment is also a segment.

1.2 the intersection of a boolean model by a straight
line

If D is a given straight line, the intersection B∩D of the boolean process B by
D is a boolean process. This can be easily understood in the case of bounded
grains: grains Xi⊕Mi intersecting D have their typical point Xi in a cylinder
C of width 2r and axe parallel to D. B∩D is then equal to

⋃
P (Xi)⊕Mi∩D

where P is the orthogonal projection of C onto D. Therefore, the intersection
by a line D of the dilation of the bounded boolean process by a segment of
length r parallel to D is a boolean process of segments. If Di is a series of
parallel lines separated by more than r, the boolean processes Bi defined as
the intersections with the lines Di of the dilation of B by the segment of
length r parallel to D0 are independent.

If B0 is a boolean segment process on the lines, let us denote Vi the void
segments, that is the segments not intercepting B0. The length li of the void

5
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segments are independent and exponentially distributed. So, the length dis-
tribution of the n segments Vi, knowing that

∑n
i=1

li = L, is the distribution
of segments obtained by throwing n − 1 points uniformly independently on
a segment of length L.

1.3 The proposed test

Let B∩W be the observation of the boolean process B through a rectangular
sampling window W = [0, a] × [0, b]. Suppose that the grains of the boolean
process are bounded by a positive bound r.

We propose in a first step to dilate the observed process by the segment
[0, r] parallel to one of the sides of W , say the first one, then restrict the
observation of the dilated process to the window Wr = [r, a] × [0, b] so as to
avoid border effect.

In a second step, we consider a series of N parallel transects Di, parallel
to the first side of W , and separated by r. The K intersections Di ∩Br ∩Wr

are then K independent realizations of a boolean segment process on the line
observed through a segment of length a − r.

In a third step, we consider the lengths li,j j ≤ Ji of the Ji void segments
of Di ∩ Br ∩ Wr which do not intercept the border of Wr.

Under the boolean assumption, the distribution of the (li,j) lengths know-
ing the total length of Ji uncensored void segments per transect Li =

∑Ji

j=1
li,j >

0 is the distribution of length of the consecutive segments obtained by throw-
ing Ji − 1 points randomly uniformly on the segments Li.

The statistics that we propose to use is then the length distribution of
void segments g(x, (li,j)) = 1∑N

i=1
Ji

∑N
i=1

∑Ji

j=1
1I{li,j≤x}

The test can be performed by either:

• comparing the observed statistics to its individual confidence band,
obtained by simulation,

• computing the p-value of the observed segment length variance.

A detailed description of such type of procedure can be found for example in
Diggle (1981) in the case of mapped point pattern exploration.

6
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1.4 Grid approximation

In practice, one very often does not observe the area process in W , but ob-
serve its realization on a regular grid, the realization at the center of each cell
being 1 or 0 whether the cell intersects the boolean process or not. Let S ⊂
ZZ2 a set of indices describing the node number. Let U = (us)s∈S be the in-
tersection of the grid with W , vs = {x ∈ W ; || x − us ||= mins′(|| x − us′ ||)}
the neigbourhood of node us.

Consider for example the case of bush coverage mapping by using aerial
photography, as presented in the next section. The observed process is then
X = (xs)s∈S, where xs = 1I{vs∩B 6=∅} that is the value of the pixel is 1 as soon
as the neighbourhood vs of the node us intercepts the bush pattern.

This can be also the case when looking at a plant disease transmitted
by insects in orchards. Suppose that the trees are old enough so that their
crowns form a continuous surface. Trees being of the same age, species and
cultivar, the crowns of all trees are more or less similar, and equal to v0,
the area of the cell centered at 0, as soon as they do not overlap. If insects
arrive and move independently in the crown, let us denote Yi the position of
insect i at its arrival in the orchard, Zi = ∪j∈Ji

uij the set of its successive
relative positions from Yi. The sets Yi ⊕Zi are independent from each other.
If insects arrive in independent identically distributed small groups, let Yi be
the center of a group, Zi the relative positions of insects of group i around
Yi. Then, one gets also that the sets Yi⊕Zi are independent from each other.
Let us attach v0, the surface of the pixel of the orchard grid, at all insect
landings. The corresponding area process B = ∪i(Yi ⊕ Zi ⊕ v0) is a boolean
process. Suppose that while feeding on trees these insects transmit a disease
observed at the tree level. The observed process of diseased tree X is then
the intersection of U with the boolean process B.

In all these cases, if the value of Xs1
, .., Xsn

on n consecutive points of
the grid is null, then the intersection of the original boolean process with
the segment [Xs1

, Xsn
] is empty, and two consecutive empty segments on the

grid are of independent length. The same tests as above can be applied by
replacing randomness of segment limits on [0, Li] by randomness of segment
limits on [0, Li] ∩ IN and conditioning on the number of segments.

7
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2 Simulation examples

Two simulated examples were performed in order to check the procedure.
In the first one, we used a boolean model with non-convex grains to see if
the boolean hypothesis was not rejected when taking into account the non-
convexity as proposed above, and rejected if not taken into account. In the
second one, we considered a Strauss point process, on which we attached
the same non-convex grains, in order to test if the boolean hypothesis was
rejected when taking into account the non-convexity.

2.1 Boolean model

Figure 1(a) presents a realization of the boolean model . The Poisson process
intensity is λ = 24.3, each grain is formed of 3 discs of radius r = 0.044
disposed on an horizontal line and separated by a distance d = 0.066. The
process is observed on a 5×5 window.

Bound was chosen equal to b = 0.244, distance between consecutive hor-
izontal transects was equal to b. Figure 1(b) illustrates the result of the
dilation on the original process observed on the intersection with the tran-
sects and Wr.

Figure 1(c) presents the result of the test when no dilation of the original
process is performed. The observed segment length distribution remains
generally outside the individual confidence band, leading to a rejection of
the boolean hypothesis. Similarly, the thick line representing the p-value
p(x) remains below 5%.

Figure 1(d) presents the result of the test after dilation. The observed
segment length distribution is presented in thin plain line with its 95% in-
dividual confidence band in broken line. The observed curve lies inside its
individual confidence band under the boolean hypothesis. The thick broken
line presents the changes of the p-value p(x). This last function is never
below 0.42, corresponding to no rejection of the boolean hypothesis.

In this case, not taking into account the non-convexity may lead to falsely
reject the boolean hypothesis.

2.2 Strauss model of typical points

The Strauss model used was defined with the following parameters. Point
process intensity was λ = 24.3, inhibition parameter c = 0.5 and inhibition

8
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distance r = 0.44. The grains attached to each point have same charac-
teristics as above. Observation window was a 5×5 square. For testing, the
bound was chosen equal to b = 0.244 and the distance between consecutive
horizontal transects was equal to b.

Figure 2(a) presents a realization of the process, figure 2(b) the result of
the dilation of this realization observed on the intersection with the transects.

Figure 2(c) presents the result of the test when no dilation is performed.
The observed segment length distribution lies outside the individual confi-
dence band build under H0, its p-value function being always near 0, so that
the boolean hypothesis is rejected. However, rejection is not so much due to
a lack of short length segments as expected from the Strauss process, but to
an excess due to the grain non-convexity. Not taking into account the grain
shape but just looking at such curves may then lead to misinterpretations,
as for example concluding the typical point process is not Poisson but an
aggregative process instead of a regular one.

Figure 2(d) presents the result of the test after dilation of the original
process. The observed segment length lies outside the confidence band for
short lengths, leading to rejection of the boolean hypothesis, but the curve
lies near the limits of the confidence bound.

From the test procedure itself, in the case of a regular process, large void
segments appear less often than expected under the boolean assumption.
The same result should also be true for small segments but, because of the
non-convexity, a grain could give several small void segments. In other words,
ignorance of the non-convexity of the grain could then introduce a balanc-
ing of the small segments distribution and thus lead to a false conclusion
regarding the underlying process. In such a case, taking into account the
non-convexity of the grain is essential.

2.3 Test power

Two series of tests were conducted in order to look at changes in the power of
the test. A first series was based on a Poisson distribution of typical points,
a second one on a Strauss distribution. For each of them, point process
characteristics were the same as above: λ = 24.3 in both cases and c = 0.5,
r = 0.44 for the Strauss process.

We made vary i)the window area (5 × 5, 10 × 10, 15 × 15) in order to
look at how the mixing property well applied to the tests results, and ii)the

9
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distance between circles in order to look at the effect of the non-convexity of
the grain (d = k ∗ 0.066 with k = 1 . . . 4). The bound used in the test varied
consequently. 100 simulations were performed in each case. The statistic
used is the p-value of the segment length variance, which follows a uniform
distribution under the boolean hypothesis.

Figure 3 presents the results in Q-Q plots. The curves corresponding to
the boolean process are given in broken lines, those for the area process based
on Strauss distribution in black lines. The thicker the line, the larger the
distance between consecutive circles in one grain, the more the non convexity.

For a boolean model, Q-Q plot curves (in broken line) stay well around
the diagonal curve. The larger the window, the closer the set of curves
corresponding to a lower variability in the test. For a Strauss model, the
larger the window, the better the test power for all distances d between
consecutive circles. For the smaller window, the test is not powerful for the
largest d (d = 0.198 and d = 0.264). In fact, for such d, the bound used
becomes large and the coverage by the dilated grain is high, so that the
number of segments at our disposal to perform the test drops.

3 Data set examples

3.1 Soil surface modeling

An experiment was conducted in INRA to study small scale roughness mea-
surement techniques and modeling. Roughness is an important factor in
soil surface as it greatly influences water storage and runoff. Several models
have been proposed to model this roughness, among them boolean processes
which offer the advantage of addressing explicitly the notion of clods, which
are represented as union of grains.

In this case, soil clods were arranged on two areas, 1 square meter each,
one in a seemingly random manner, the other one in rows of about 25 cm.
Surface height was measured on a squared grid of 2mm lag by a automated
laser device. Figures 4a and 4b present the area processes obtained by looking
at part of the process above 10 cm height, after removal of the trend due to
rows in the second case. Under boolean 3-D surface hypothesis, this area
process is a boolean process.

The bound was taken as equal to 0.08 m. Figures 4a and 4b present the
two process areas, Figures 5a and 5b the cumulative distribution function of

10
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the segment length of the intersection of the dilated process by the horizon-
tal transects. One may notice an excess of small segments with respect to
the boolean hypothesis in the isotropic case, a lack of such segments in the
anisotropic case. Interestingly, the test based on the variance of the segment
length rejects boolean hypothesis in the anisotropic case (p-value=0.018),
whereas it does not in the isotropic one (p-value=0.16), due to the distribu-
tion of large segments. From a modelling point of view, the isotropic surface
can be modelled by a boolean process, whereas an boolean process cannot
be used for anisotropic surfaces. In this last case, the ondulations due to the
ploughing lead to different radius clod distributions whether we look at them
in the upper and lower parts of the ondulation, or in between which presents
smaller clods.

3.2 Spatial repartition of bushes

Box (Buxus sempervirens) bushes develop on former pasture areas unused
for several years in regions like Causse Méjean in France, from where the
picture presented in figure 4c is taken. Buxus is a slow growing plant which is
invading these pastures since 50 years due to changes in agricultural practices.
The invasion is caused by both bush expansion and seed spread (Rousset et

al 2004).
In this picture, bushes more than 30 cm thick are shown and constitute

the initial source of seeds on which dispersion models are applied. For a given
box coverage, invasion speed will then depend on the spatial repartition of the
seed sources. Mapping the bushes on large scales is not possible, and one has
to rely on bush spatial repartition models, together with local measurements
at several places to take into account possible large scale intensity variations.
Knowing whether a boolean model is an acceptable model or whether a more
specific one is necessary is a preliminary step to invasion prediction before
deciding which kinds of measurements have to be done.

The observed pasture field (Figure 4c) is 130m×160m. The bound was
taken as equal to 9m, largely above the increase in thickness of buxus dur-
ing 50 years (the estimated annual growth of box bushes in this region is
1cm/year in each direction). Such a large bound allowed for presence of
some large bushes 50 years ago for agricultural practices as for example field
delimitation or litter for sheep.

Figure 5b presents the segment length distribution curve. The curve lies
inside the confidence band, near the upper limit. The test based on variance
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of these lengths rejects the boolean hypothesis with a p-value of 0.001.

3.3 plant disease epidemiology

Figure 6a presents the health status of apricot trees in five young orchards,
planted in 1999, where ESFY is present in southeastern France. The total
number of trees is 5794 and the total number of diseased trees is 231. The
distance between consecutive planting rows is 6 m and the distance between
consecutive trees is 3 m. ESFY observation was made in 2004.

Figure 6b illustrates the inter-event distance computed on diseased trees,
together with its confidence band at level 95% under independence hypoth-
esis, conditional on the number of diseased trees in each orchard. Indepen-
dence hypothesis is rejected in favour of an aggregative pattern of diseased
trees. The vector of ESFY is a 2 mm long insect, Cacopsylla pruni, who
transmits the disease during feeding. After a long flight it arrives in or-
chards at very low densities, but it tends to leave the orchard quite quickly
as the apricot trees are not its prefered host plants for reproducing. From
several field observations, for example during insect capture experiments, it
was noted that theses insects move mainly at short distance, or tend to go
far away when disturbed. The hypothesis we want to test then is that in-
sects do not interact. Under these assumptions the pattern of ESFY should
be the result of the addition of individual independent patches, each patch
corresponding to the successive tree infections by a given insect. To test it,
we performed the proposed test, assuming that the diameter is less than 4
consecutive trees (12 m). The tesult of the test is shown in Figure 6c. The
observed curve lies well inside the confidence band and the hypothesis is not
rejected.

4 conclusion

Testing independance assumptions between objects needs various solutions
depending on the properties of the observations. If each object can be com-
pletely observed and distinguished from the other ones, specific approaches
to test independance assumptions can be applied, as for example that of
Wiegand et al. 2006. When the result of the objects superposition only is
observed, as this is generally the case with boolean models, such methods
cannot be used. Other methods have then to be applied, as for example

12



 
Version définitive du manuscrit publié dans / Final version of the manuscript 
published in : Environmetrics, 2008, vol.19, no.2, 123-136 
 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the one we propose to test the boolean hypothesis in the case of non-convex
grains.

Contrarily to the approach proposed by Molchanov(1997), we do not need
an asymptotic approach but we have to rely on an boundedness assumption
of the grain. It can be noted that the same assumption is necessary for its
intensity estimation (Schmitt 1991).

The proposed method relies on filling in the empty spaces inside a grain
along horizontal lines, so as to obtain a classical convex boolean model on
the line. Molchanov’s proposal, dilation of the boolean model, then applying
Laslett transform and checking for Poisson hypothesis of the translated tan-
gence points relies through the dilation on the same idea : completing the
empty spaces inside the grain. However, the dilation being then done in all
directions, the proportion of points covered by the dilated process is heav-
ier, as one has to ensure that all the dilated grains are more or less convex.
Moreover, even if a bound of the grain is known, no insurance is given how
much the final grain is near convexity. Dilating a star with five long branches
is a typical example in this case.

More and more data sets are acquired by automatic devices, where data
are given as images. In such cases and for convex grains, it can be very
difficult to locate a tangence point if the convexity radius is large. As a
consequence, tangence point locations are often subject to errors. How these
ones will affect the transformation is unknown but clearly errors add up.
Applying Laslett transform on dilated images of the original process is then
not so easy and needs to find an acceptable compromize between a large
dilation, necessary to approach convexity, and a small dilation, to keep a
convexity radius small enough with respect to the pixel size. The method
we propose avoids the necessity of such a compromize, which is difficult to
accept in practice.

References

Bertuzzi P., Garcia-Sanchez L., Chadœuf J., Guerif J., Goulard

M. & Monestiez P. 1995. Modelling surface roughness by a boolean ap-
proach. EJSS 46, 215-220.
Cressie N. 1991. Statistics for Spatial Data. Wiley, New-York.
Diggle P. 1981. Binary mosaics and the spatial pattern of heather. Bio-

metrics, 37, 531-539.

13



 
Version définitive du manuscrit publié dans / Final version of the manuscript 
published in : Environmetrics, 2008, vol.19, no.2, 123-136 
 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hall P. 1988. Introduction to the theory of coverage processes. Wiley,
New-York.
Kamphorst E.C. , Chadœuf J. , Jetten V. & and Guérif J. 2005.
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Thébaud G. 2005. Etude du développement spatio-temporel d’une maladie
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List of Figures

• Figure 1: (a) realization of a boolean process with Poisson intensity
24.3, each grain being the union of three discs of radius 0.044 lying on an
horizontal axis separated by d = 0.066 (b) observation on the transect
lines of the dilation of Figure 1(a). Bound is equal to 0.244. (c) length
distribution of the void segments of Figure 1(a), computed on the same
transect lines as on Figure 1(b), together with its confidence band under
independence hypothesis. Thick line : p-value of the length distribution
at each distance. (d) length distibution of the void segments of Figure
1(b), together with its confidence band under independence hypothesis.
Thick broken line : p-value of the length distribution at each distance.

• Figure 2: (a) realization of a Strauss process with intensity 24.3,
inhibition parameter c=0.5 and inhibition distance 0.44. Same grains
are attached as in Figure 1(a) (b), (c), (d) similar to Figure 1(b,c,d)
with bound 0.244.

• Figure 3: p-values of the test based on void segment variance against
p-values under independence hypothesis. Same typical point processes
are used as in Figures 1(a) and 2(a). Same grains as in Figures 1(a)
and 2(a) are used, but with disks separating distances varying regularly
from 0.066 (thin lines) to 0.264(thick lines). Three observed window
sizes were considered: (a) 450 x 450, (b) 900 x 900, (c) 1350 x 1350.

• Figure 4: Data examples. (a) isotropic soil surface (0.5m x 0.5m)
intersection at 10cm height from the lowest point. (b) isotropic soil
surface (0.5m x 0.5m) intersection at 10cm height from the lowest point.
(c) box bushes repartition on a 130m x 160m area.

• Figure 5: segment length distribution of the void segments computed
on examples 4(a,b,c) with bounds equal to 80mm, 80mm and 9m re-
spectively.

• Figure 6: (a) health status of apricot trees in 4 orchards. Diseased
trees are in black. (b) inter-event distance distribution of diseased
trees and confidence band under independence hypothesis. (c) length
distribution of void segments, chosen bound is equal to 12m.
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