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 propose a two-stage approach which tries to capture the shape of the cloud of points near its frontier by providing parametric approximations of a nonparametric frontier. In this paper we propose an alternative method using the nonparametric quantile-type frontiers introduced in Aragon, Daouia and Thomas-Agnan (2005) for the nonparametric part of our model. These quantile-type frontiers have the superiority of being more robust to extremes. Our main result concerns the functional convergence of the quantile-type frontier process. Then we provide convergence and asymptotic normality of the resulting estimators of the parametric approximation. The approach is illustrated through simulated and real data sets.

widely applied to examine efficiency in a variety of industries; see [START_REF] Lovell | Functional convergence of quantile-type frontiers with application to parametric approximations[END_REF] and [START_REF] Seiford | Data envelopment analysis: The evolution of the state-of-the-art (1978-1995[END_REF] for comprehensive bibliographies of these applications. Aside from the production setting, the problem of estimating monotone boundaries also naturally occurs in portfolio management. In capital asset pricing models (CAPM), the objective is to analyze the performance of investment portfolios. Risk and average return on a portfolio are analogous to inputs and outputs in models of production; in CAPM, the boundary of the attainable set of portfolios gives a benchmark relative to which the efficiency of a portfolio can be measured. These models were developed by [START_REF] Markovitz | Portfolio Selection: Efficient Diversification of Investments[END_REF] and others; [START_REF] Sengupta | Maximum probability dominance and portfolio theory[END_REF] and [START_REF] Sengupta | Portfolio efficiency tests based on stochastic dominance and cointegration[END_REF] provide links between CAPM and nonparametric estimation of frontiers.

We will follow the probabilistic formulation of the frontier problem proposed by Cazals, Florens and Simar (2002, CFS hereafter). Let us denote by F (y|x) = F (x, y)/F X (x) the nonstandard2 conditional distribution function of Y given X ≤ x, where F is the joint distribution function of (X, Y ) and F X (x) = F (x, ∞). From now on we assume that x ∈ R p + is such that F X (x) > 0. The monotone upper surface of Ψ can be then characterized through the graph of the frontier function This value represents the upper boundary of the support of the nonstandard conditional probability measure of Y given X ≤ x.

In our approach, we focus on a deterministic frontier model where the support Ψ contains all the observations (X i , Y i ) with probability 1. Parametric approaches have been first proposed in the econometric literature (this includes, among others, [START_REF] Aigner | On estimating the industry production function[END_REF] and [START_REF] Greene | Maximum likelihood estimation of econometric frontier functions[END_REF]). Here we assume the frontier function ϕ(x) can be written as a specified analytical function ϕ θ (x) depending on a finite number of parameters θ ∈ R k . We denote this parametric model by

Y i = ϕ θ (X i ) -U i with U i ≥ 0 a.s.
(1.1)

If we specify an appropriate stochastic model for the error terms U i , [START_REF] Greene | Maximum likelihood estimation of econometric frontier functions[END_REF] proposes estimators of θ based on Ordinary Least Squares (shifted-or corrected-OLS to take into account for the positiveness of the error term) or on maximum likelihood methods. In these approaches, U i are i.i.d. random variables, supposed to be independent of X i , so that from

(1.1) we have ϕ θ (X i ) = E(Y i |X i ) + µ U where µ U = E(U i ).
On one hand parametric models are very appealing because the parameters are easy to estimate and to interpret (in terms of elasticities or returns to scale,. . . ) but on the other hand their properties rely on restrictive assumptions on the stochastic part of the model (parametric specification of the law of U , homoscedasticity,. . . ) and they are based on standard regression tools which capture the shape of the cloud of points {(X 1 , Y 1 ), • • • , (X n , Y n )} near its center rater than near its optimal boundary, because, at a constant shift µ U , ϕ θ (X)

is the regression function of Y on X (see [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF] for a careful discussion).

To overcome these drawbacks, [START_REF] Simar | Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-parametric and semi-parametric methods with bootstrapping[END_REF] proposed (without analyzing the statistical properties of the obtained estimators) to identify in a first step, where is located the upper frontier by using a nonparametric method, then in a second step, to adjust the parametric model to the obtained nonparametric frontier. From an economic point of view, the first step can be viewed as a kind of "filtering" for eliminating from the sample clearly inefficient units which certainly do not provide substantial information to analyse how to transform efficiently inputs into output. We can use in this first step filtering the flexible nonparametric Free Disposal Hull (FDH)

estimator [START_REF] Deprins | Measuring labor inefficiency in post offices[END_REF],

ϕ n (x) = inf{y ∈ R + | F n (y|x) = 1} = max i|X i ≤x Y i ,
where F n (y|x) = F n (x, y)/ F X,n (x), with F n (x, y) = (1/n) n i=1 1(X i ≤ x, Y i ≤ y) and F X,n (x) = F n (x, ∞). The asymptotic of ϕ n (x) was first derived by Korostelev, Simar and Comment citer ce document : Daouia, A., Florens, J.-P., Simar 

ϕ m (x) = ϕ(x) 0 (1 -[F (y|x)] m )dy,
which can be nonparametrically estimated by

ϕ m,n (x) = ϕn(x) 0 (1 -[ F n (y|x)] m )dy.
The order m can be viewed as a trimming parameter which tunes the robustness of the estimator since, as pointed in CFS, when m → ∞, ϕ m (x) converges to the full frontier ϕ(x)

and ϕ m,n (x) converges to the FDH estimator ϕ n (x). [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF] provide the asymptotic properties of the resulting "semiparametric" estimators of θ when these two nonparametric estimators of the frontier are used in the first "filtering" stage. In this paper we propose an alternative method using the nonparametric quantile-type frontiers introduced in Aragon, Daouia and Thomas-Agnan (2005). The interest is that these quantile-type estimators are more resistant to extremes than the CFS order-m estimators as established in Daouia and Ruiz-Gazen (2004) from a robustness theory point of view (qualitative robustness and influence function). See also [START_REF] Daouia | Nonparametric efficiency analysis: a multivariate conditional quantile approach[END_REF] for theoretical robustness properties in a full multivariate setup.

Similarly to the order-m partial frontier, the order-α partial frontier function increases w.r.t. the continuous order α ∈ [0, 1] and converges to the full frontier ϕ(x) as α 1. It is defined, for a given level x, by the α-quantile of the distribution of Y given X ≤ x,

q α (x) := F -1 (α|x) = inf{y ∈ R + |F (y|x) ≥ α}.
A simple estimator of q α (x), which increases and converges to the FDH ϕ n (x) as α 1, is easily derived by inverting the empirical version F n (y|x) of F (y|x),

q α,n (x) := F -1 n (α|x) = inf{y ∈ R + | F n (y|x) ≥ α}.
This estimator is very fast to compute, and the value of the tunning parameter α is easy to interpret (for a unit located on the α-quantile frontier (x, q α (x)), there is a probability 1α of being dominated by firms using less inputs than the level x). The nonparametric estimator satisfies very similar statistical properties to those of the CFS estimator. In summary, it converges at the rate √ n, it is asymptotically unbiased and normally distributed.

Moreover, when the order α is considered as a function of n which tends to one as n → ∞, q α(n),n (x) estimates the true frontier function ϕ(x) and shares the same asymptotic distribution (Weibull) of the FDH estimator ϕ n (x), as described in [START_REF] Park | The FDH Estimator for Productivity Efficiency Scores : Asymptotic Properties[END_REF], provided that n (p+2)/(p+1) (1α(n)) → 0, but for finite n, the estimator will not envelop all the data points and so is more robust to extremes and outliers.

The paper is organized as follows. Section 2 extends previous results of convergence of q α,n (x), by establishing the functional convergence of √ n( q α,nq α ) as being a process indexed by x. Section 3 proposes then the parametric approximations of the quantile frontier and develops the asymptotic distribution of the resulting estimators, for linear parametric models as well as for general parametric models. It also provides new results for estimating the parametric model for the full frontier itself, by using the more robust order-m or orderα frontiers in the first step. It establishes the convergence at an exponential rate of the estimators of the parametric models for the true frontier, by chosing m and α as appropriate functions of n. Section 4 illustrates and compare the different approaches with simulated and real data sets. Section 5 concludes. All the proofs are reported in the appendix.

Functional Convergence Theorem

Let x be a fixed value such that F X (x) > 0. Assume that the conditional distribution function F (•|x) is differentiable at q α (x) with derivative f (q α (x)|x) > 0. Aragon et al. (2005) have proved

q α,n (x) -q α (x) = α F X,n (x) -F n (x, q α (x)) f (q α (x)|x)F X (x) + R α n (x) (2.1)
where the remainder term R α n (x) becomes negligible as n → ∞. More precisely, they have shown

√ nR α n (x) = o p (1)
as n → ∞. This result has been improved in [START_REF] Daouia | Asymptotic Representation Theory for Nonstandard Conditional Quantiles[END_REF] who extends (2.1) to a Bahadur-type asymptotic representation, namely R α n (x) = O(n -3/4 (log n) 1/2 (log log n) 1/4 ) as n → ∞, with probability 1. He also proves the functional convergence of √ n( q α,n (x)-q α (x)) as a process indexed by the order α in the space L ∞ (]0, 1[) of bounded functions on ]0, 1[. However, [START_REF] Daouia | Asymptotic Representation Theory for Nonstandard Conditional Quantiles[END_REF] raises the question of finding the asymptotic limit of √ n( q α,n (x)q α (x)) as a process indexed by x ∈ R p . This issue is addressed in the next theorem.

Throughout this section the order α is arbitrarily fixed in ]0, 1[ and K ⊂ R p + is an arbitrarily fixed set such that inf x∈K F X (x) > 0. The support of Y is assumed to have a finite upper boundary. 

at q α (x) is uniform in x ∈ K.
If furthermore F is continuous, then the conditional empirical quantile process √ n( q α,nq α ), indexed by x ∈ K, converges in distribution in L ∞ (K) to a centered Gaussian process with covariance function defined, for any x 1 , x 2 ∈ K, by

Γ α (x 1 , x 2 ) = f (q α (x 1 )|x 1 )F X (x 1 ) f (q α (x 2 )|x 2 )F X (x 2 ) -1 × (2.2) α 2 F X (x 1 ∧ x 2 ) -αF (x 1 ∧ x 2 , q α (x 2 )) -αF (x 1 ∧ x 2 , q α (x 1 )) + F (x 1 ∧ x 2 , q α (x 1 ) ∧ q α (x 2 )) .
Theorem 2.1 and the following corollary will serve our purposes to prove the asymptotic normality of our semi-parametric estimators described in Section 3.

Corollary 2.1. Under the conditions of Theorem 2.1, we have

sup x∈K √ n|R α n (x)| P -→ 0 as n → ∞.

Parametric Approximations of Frontiers

Throughout this section µ is a finite positive measure on the support of X. Consider a parametric family of functions ϕ θ (x) defined on R p + and depending on a finite number of parameters θ ∈ R k . We will consider two parametric approximations: one for the order-α frontier function q α and one for the full frontier function ϕ. The best parametric approximation of the true frontier function ϕ in the parametric family {ϕ θ |θ ∈ R k }, in the L 2 (K, µ) norm, is defined through the pseudo-true value of θ :

θ(K, µ) = arg min θ∈R k K (ϕ(x) -ϕ θ (x)) 2 dµ(x). (3.1) 
If model (1.1) is true, this coincides with the true value θ. A weakly consistent estimator of θ(K, µ) has been suggested in [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF]. It is defined as follows:

θ n (K, µ) = arg min θ∈R k K ( ϕ n (x) -ϕ θ (x)) 2 dµ(x). (3.2) 
But this estimator suffers from the dramatic lack of robustness of the FDH frontier ϕ n .

In place of estimating θ(K, µ), [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF] rather propose to estimate the pseudo-true value for the order-m frontier:

θ m (K, µ) = arg min θ∈R k K (ϕ m (x) -ϕ θ (x)) 2 dµ(x), (3.3) 
where m ≥ 1 is an integer, by its nonparametric estimator: As an alternative, we rather propose in this paper to estimate a pseudo-true value for the order-α frontier, defined as

θ m,n (K, µ) = arg min θ∈R k K ( ϕ m,n (x) -ϕ θ (x))
θ α (K, µ) = arg min θ∈R k K (q α (x) -ϕ θ (x)) 2 dµ(x).
(3.5)

Our quantile-based procedure has the merit to be more robust to extremes since the order-α quantile frontiers have the superiority of being more resistant to extremes than the FDH ϕ n and the order-m frontiers ϕ m,n when estimating the true full frontier ϕ as showed in Daouia and Ruiz-Gazen (2004). By a plug-in argument of the robust quantile frontier q α,n , we obtain the estimator

θ α,n (K, µ) = arg min θ∈R k K ( q α,n (x) -ϕ θ (x)) 2 dµ(x). (3.6) 
As pointed in [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF], the existence and uniqueness of the pseudo-true values (3.1), (3.3) and (3.5) are based on technical conditions (integrability, identification, structure of the functional space {ϕ θ | θ ∈ R k }). We will not explicit these technical hypothesis here but the implicit set of functions we consider is the set of square integrable functions with respect to the density dµ(x). This set is an Hilbert space provided by its norm topology.

If, for instance, the subset {ϕ θ | θ ∈ R k } is closed and convex, then the pseudo-true values exist and are unique. So, in what follows, we assume that these pseudo-true values exist and are unique.

We first derive the asymptotic distribution of θ α,n (K, µ) as an estimator of θ α (K, µ) and then we will propose robust and strongly consistent estimators of θ(K, µ).

Parametric approximation of the quantile frontier

A natural choice for µ is the law P X of X, but since P X is usually unknown, we can define sample versions of the pseudo-true values by using the empirical probability measure P

X,n = 1 n n i=1 δ X i , putting a mass 1/n at each X i , θ α (K, P X,n ) = arg min θ∈R k 1 n n i=1 (q α (X i ) -ϕ θ (X i )) 2 1I K (X i ), θ α,n (K, P X,n ) = arg min θ∈R k 1 n n i=1 ( q α,n (X i ) -ϕ θ (X i )) 2 1I K (X i ).
In order to simplify the presentation, we first restrict our parametric family to the class of linear models 

ϕ θ (x) = g T (x)θ, where g T (x) = (g 1 (x), • • • , g k (x)),
√ n θ α,n (K, P X,n ) -θ α (K, P X,n ) L -→ N (0, M Σ α M ) as n → ∞,
where

M = {E[1I K (X 1 )g(X 1 )g T (X 1 )]} -1 , Σ α = V ar F {E F [H ((X 2 , Y 2 ), (X 1 , Y 1 )) |(X 1 , Y 1 )]} with H(•, •) being defined in (A.13).
Let us now turn to the more general case where we consider a general parametric model and a general measure µ. By applying Theorem 2.1 in conjunction with a technique of proof of [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF], the next theorem shows the asymptotic normality of θ α,n (K, µ). Theorem 3.2. Assume that ϕ and {ϕ θ , θ ∈ R k } are bounded on K and that the conditions of Theorem 2.1 hold. Assume furthermore that θ

→ ϕ θ (x) is differentiable on R k for any x ∈ K, that the differentiability at θ α (K, µ) is uniform in x ∈ K and that A, A -1 , B and K ∂ϕ θ ∂θ (x)| θ=θα(K,µ) dµ(x) exist, where A = K ∂ϕ θ ∂θ (x)| θ=θα(K,µ) ∂ϕ θ ∂θ T (x)| θ=θα(K,µ) dµ(x) B = K K ∂ϕ θ ∂θ (x)| θ=θα(K,µ) ∂ϕ θ ∂θ T (z)| θ=θα(K,µ) Γ α (x, z)dµ(x)dµ(z), with Γ α (•, •) being described in (2.2). Then √ n θ α,n (K, µ) -θ α (K, µ) L -→ N (0, A -1 BA -1 ).
Note that for practical purposes (construction of confidence intervals,. . . ), we could use bootstrap estimates of the variance matrix A -1 BA -1 , as suggested in details in Florens and Simar (2005, Appendix).

Parametric approximation of the full frontier itself

Florens and Simar (2005) prove that the estimator θ n (K, µ) defined in (3.2), converges in probability to θ(K, µ). First we will show below how this weak consistency can be extended to the almost sure sense. Putting M (θ) = K (ϕ(x)ϕ θ (x)) 2 dµ(x), it will be required that

m ε := inf M (θ) | θ ∈ R k : d(θ, θ(K, µ)) ≥ ε -M (θ(K, µ)) > 0 (3.7)
for every ε > 0, where d(•, •) is the Euclidean metric on R k . Thus, θ(K, µ) should be a well-separated point of minimum of the map θ → M (θ). -→ θ(K, µ) as n → ∞.

In particular, if the parametric model (1.1) is correctly specified for the frontier, then the estimator θ n (K, µ) converges almost surely to the value θ such that ϕ = ϕ θ .

On the other hand, 

m(n),n (K, µ) and θ α(n),n (K, µ) when estimating θ(K, µ) itself, provided 3 thatm(n) → ∞, m(n) (log n/n) 1/2 → 0 and n(1-α(n)) → 0 as n → ∞. Even more strongly, the next theorem shows that P [d( θ m(n),n (K, µ), θ(K, µ)) > ε] and P [d( θ α(n),n (K, µ), θ(K, µ)) > ε] converge to
0 at an exponential rate, for a fixed ε > 0.

Theorem 3.4. Let the sequences {m(n) ≥ 1} and {0 < α(n) < 1} be such that

lim n→∞ m(n) = ∞, lim n→∞ m(n) (log n/n) 1/2 = 0 and lim n→∞ n(1 -α(n)) = 0.
Given the conditions of Theorem 3.3, there exists a constant C ∈ (0, ∞) such that for all ε > 0 and all r > 0, λ > 1 with λr < m ε /(4(ν + δ)µ(K)), and for all n large enough

P d θ m(n),n (K, µ), θ(K, µ) > ε (3.8) ≤ C exp -nr 2 ( inf x∈K F X (x)) 2 /(4m(n)ν) 2 + exp -n(1 - 1 λ ) 2 ( inf x∈K F X (x)) 2 and P d θ α(n),n (K, µ), θ(K, µ) > ε ≤ C exp -nr 2 ( inf x∈K F X (x)) 2 /(8m(n)ν) 2 (3.9) + exp -n(1 - 1 λ ) 2 ( inf x∈K F X (x)) 2 + exp -n(λ -1) 2 (sup x∈K F X (x)) 2 .
Comment citer ce document : Daouia, A., Florens, J.-P., Simar Note that the full frontier ϕ(•) is monotone and it is natural to try to incorporate this information into the estimation procedure. [START_REF] Daouia | Robust Nonparametric Estimators of Monotone Boundaries[END_REF] proposed nondecreasing estimators ϕ # m(n),n and q # α(n),n of ϕ by isotonizing the original estimators ϕ m(n),n and q α(n),n . These monotone estimators appear to be more stable and more robust to extreme values than the initial versions. Furthermore, they converge uniformly and almost surely to ϕ under the same conditions of Theorem 3.3 (see [START_REF] Daouia | Robust Nonparametric Estimators of Monotone Boundaries[END_REF], Theorems 2.1-2.3) and so, we can introduce the new estimators θ # m(n),n (K, µ) and θ # α(n),n (K, µ) of θ(K, µ) and easily establish their uniform almost sure convergence in the same way as the original ones θ m(n),n (K, µ) and θ α(n),n (K, µ).

Note also that the analysis of the asymptotic distributions of θ n (K, µ), θ m(n),n (K, µ), θ α(n),n (K, µ) and their isotonized versions is more complexe since there is no functional convergence theorem for ϕ n , ϕ m(n),n and q α(n),n to ϕ. Only punctual convergence results to a Weibull distribution for ϕ n (x), ϕ m(n),n (x) and q α(n),n (x) are available, respectively, in Park All the results proved in our approach remain valid if we use w(x)dx instead of dµ(x),

where w(x) is a given weight function which can be viewed as a density on x weighting the error term.

Numerical Illustrations

In this section, we present three simulated examples as in [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF] to illustrate our procedure, we also present a real data example on the activity of Air Controlers in Europe. We confirm the advantages of the robust semi-parametric estimators in the presence of outliers over their full frontier alternative (either using Shifted-OLS or the FDH filter as a first stage) and we compare in these examples the parametric quantile-type frontier approximations with the order-m frontier approximations, indicating some advantages of the former over the latter.

Example 1

We first consider a case where the frontier function ϕ is linear. We choose (X, Y ) uniformly distributed over the region

D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x}. Here ϕ(x) = x, ϕ θ (x) = θx with 0 ≤ θ ≤ 1, and F (y|x) = 2x -1 y -x -2 y 2 , for 0 < x ≤ 1 and 0 ≤ y ≤ x. The conditional α-quantile is q α (x) = x(1 - √ 1 -α), for 0 < x ≤ 1 and 0 ≤ α ≤ 1
, and the order-m frontier can be computed as

ϕ m (x) = x(1 -A m ), where A m = m j=0 ( m j )(-1) m-j 2 j /(2m -j + 1). Therefore θ α = 1 - √ 1 -α and θ m = 1 -A m .
Comment citer ce document : Daouia, A., Florens, J.-P., Simar The parametric approximations { θ m,n } n and { θ α,n } n do not estimate in general the same quantity, except for the limiting case where m tends to infinity and α to one. But in this particular example, if α = 1-A 2 m , then both θ α and θ m coincide and so, the robust proposals of the two sequences of parametric approximations can be compared.

We illustrate in Figure 1 one sample of 100 observations generated according the above scenario, we chose m = 20, so that α = 0.9622 for getting the same parametric approximations. We then compare the results when adding 3 outliers. As expected and already pointed in [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF], in this scenario, the shifted-OLS behaves very badly.

The interest here is focused on the comparison of the order-m frontier with the α-quantile, with their common FDH limit. When there are no outliers, the two fitted parametric frontier are, as expected by our choice of m and α, very similar but when the 3 outliers are added, the α-quantile seems to resist more easily to the presence of the 3 serious outliers. We see also that the fit obtained by the FDH estimator is too sensitive to these outliers.

Example 2

We choose here a concave frontier given by the Cobb-Douglas model Y = X 1/2 exp (-U ), where X is uniform on [0, 1] and U , independent of X, is Exponential with parameter λ = 3.

Here ϕ(x) = x 1/2 and ϕ θ (x) = θx 1/2 with 0 ≤ θ ≤ 1. The α-quantile frontier is given by q α (x) = x 1/2 θ α , where θ α = cos arccos(1-2α)+4π We illustrate again, in Figure 2, one sample of 100 observations, where m = 20 and α = 0.9612 for making the comparison possible. Then again, we compare the results when adding 3 outliers to the same sample. Here, the shifted-OLS behaves better since the inefficiency terms U are independent of X. The comparison of the order-m frontier with the α-quantile leads to similar conclusion than in the preceding example: as expected, similar results when there are no outliers and again, the α-quantile seems to resist more to the presence of the 3 outliers.

Example 3

We choose here, as in [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF] the same scenario as in the preceding example but we introduce heterogeneity in the inefficiency term (U is not independent of X): here we choose E(U |X) = 2 3 (1 -X) so that E(U ) = 1/3 as above in Example 2. We do not have explicit analytical expressions for the ϕ m (x) nor for q α (x). But, as suggested by Aragon et al. (2005), for ease of comparison, we fixed a value α = 0.95 and then we selected a value of m in the simulated sample that provided approximatively the same percentage of observed points outside the two estimated partial frontiers (i.e. with values of { θ m,n } and of { θ α,n } greater than one). In our example below, this provided a value of m = 38. Figure 3 displays the results (again, one sample of 100 observations without and with 3 added outliers). Here, the shifted-OLS is a catastrophe (as pointed in [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF]. The comparison of the order-m frontier with the α-quantile leads again to similar conclusion than in the two preceding examples: similar results when there are no outliers and better robustness to the three outliers for the α-quantile fitted frontier.

A real data set

We could use our approach to any model with multiple inputs but in order to provide pictures in two dimensions, we illustrate our estimators with a real data coming from the efficiency analysis of Air Controllers in Europe [START_REF] Mouchart | Efficiency analysis of Air Controlers: first insights[END_REF]. We have data on activity of 37 European air controllers in the year 2000. The activity of each controller can be described by one input (an aggregate factor of different kind of labor) and one output (an aggregate factor of the activity produced, based on the number of air movements controlled, the number flight hours controlled, . . . ).

Here we have n = 37 observations and as explained in the preceding example, we selected α = 0.95 and then fixed the value of m, for comparison, leaving the same percentage of points outside the two partial frontiers: this gave us m = 41 with 13,51% of the observations above the two estimated partial frontiers. The computation time is so fast (less than 0.15 seconds for producing the estimates), that a grid of values for the tuning parameters (m and α) can be chosen and then the practitioner could proceed to a sensitivity analysis. We also chose a Cobb-Douglas specification for the frontier model. Figure 4 displays the obtained results.

Clearly, the shifted-OLS seems to be outperformed by the other estimators, since it is based on a restrictive hypothesis of homogeneous distribution of the inefficiencies. The fit obtained through the first step FDH filter provide a sensible estimate but is very sensitive to extreme values (one around x = 2.8 and the other on the right around x = 7.5). Again, the fit based on the order-m filter is slightly more resistant to these extreme points but since m is large, the fit is not far from the FDH fit. As expected, the fit obtained with the α-quantile frontier is much more robust to the extremes.

Just for illustrative purpose, we reproduce in Table 1 the point estimates of the fitted Cobb-Douglas production frontier. As explained in [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF], standard deviations of the parameters obtained through the order-m and the α-quantile frontier can be obtained by simple bootstrap. The other two approaches (full-frontier estimates) cannot Here α = 0.95 and m = 41.

Conclusion

In this paper we have shown how the parametric approximation of α-quantile frontiers offers an attractive alternative to the approximation of the order-m frontier, as proposed by [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF]. The former benefits from better robustness properties to outliers or extreme values than the latter, both approaches being more robust than the parametric approximation of the full frontier using the FDH as first step.

It confirms also that these approaches are much more appealing than the classical parametric estimators of the frontier, that are mostly based on regression ideas and fit the shape of the center of the cloud of points rather than its boundary.

The paper provides some asymptotic theory. We first prove a functional central limit theorem for the quantile-type frontier process. Then we establish the asymptotic normality of the resulting estimators of the parametric approximation of the partial order-α frontier.

When estimating the parameters of the full frontier itself by using the FDH as first step, we improve the weak consistency obtained by [START_REF] Florens | Parametric Approximations of Nonparametric Frontier[END_REF]. When the robust order-m or order-α partial frontiers are used in the first step, by chosing m and α as appropriate functions of n, we show that the obtained estimators converge exponentially fast.

Finally the good behavior of our method in finite samples is illustrated through simulated and real data sets.

Appendix: Lemmas and Proofs. 

G(x, ∞) > 0 ∀x ∈ K, inf{y ≥ 0| G(∞, y) = 1} ≤ ν.
For any G ∈ G and any x ∈ K, let G -1 (α|x) := inf{y ≥ 0| G(y|x) ≥ α} denotes the αth

quantile of the conditional distribution function G(•|x) = G(x, •)/G(x, ∞) ≡ G(x, •)/G(x, ν).
Then, for any G ∈ G and any x ∈ K, we have

0 ≤ G -1 (α|x) ≤ G -1 (1|x) ≤ inf{y ≥ 0| G(∞, y) = 1} ≤ ν.
Hence the conditional quantile transformation

G -1 (α|•) : x → G -1 (α|x) as a map K → [0, ν] is bounded on K and so, we write G -1 (α|•) ∈ L ∞ (K). Now consider φ : G → G -1 (α|•) as a map G ⊂ L ∞ (D) -→ L ∞ (K)
. We obtain the following result. 

F : h → φ F (h) as a map C(D) -→ L ∞ (K), where φ F (h) : x → αh(x, ν) -h(x, q α (x)) f (q α (x)|x)F X (x) . (A.1)
Proof. Let h t → h uniformly in L ∞ (D), where h ∈ C(D) and F + th t ∈ G for all small t > 0. Write q αt for φ(F + th t ). Following the definition of the Hadamard differentiability (see van der Vaart (1998), p.296), we shall show that (q αt (x)q α (x))/t converges to (αh(x, ν)h(x, q α (x)))/f (q α (x)|x)F X (x) as t 0, uniformly in x ∈ K. By the definition of φ, we have for every x ∈ K and every ε > 0,

(F + th t )(q αt (x) -ε|x) < α ≤ (F + th t )(q αt (x)|x). We choose ε = ε t = o(t) as t 0. Because G(x, ∞) = G(x, ν) > 0 for any G ∈ G and any x ∈ K, we have (F + th t )(x, q αt (x) -ε t ) < α(F + th t )(x, ν) ≤ (F + th t )(x, q αt (x)). Then F (q αt (x) -ε t |x) + th t (x, q αt (x) -ε t ) -αth t (x, ν) F X (x) < α (A.2) ≤ F (q αt (x)|x) + th t (x, q αt (x)) -αth t (x, ν) F X (x) .
Since ε t 0 as t 0, ε t < ν for all t small enough, and so q αt (x)ε t ∈ [-ν, ν] for every x ∈ K and all t sufficiently small. Therefore sup x∈K |h t (x, q αt (x)ε t )h(x, q αt (x)ε t )| ≤ sup (x,y)∈K×[-ν,ν] |h t (x, y)h(x, y)|, for all small t. Since h t converges uniformly to h on K × [-ν, ν] ⊂ D, we obtain th t (x, q αt (x)ε t ) = th(x, q αt (x)ε t ) + o(t) uniformly in x ∈ K. Likewise, th t (x, q αt (x)) = th(x, q αt (x)) + o(t) and -αth t (x, ν) = -αth(x, ν)αo(t), where the o(t) terms are uniform in x ∈ K. By using the fact that sup (x,y)∈K×R f (y|x) < ∞, we also have

F (q αt (x) -ε t |x) = F (q αt (x)|x) + O(ε t ), uniformly in x ∈ K. Hence F (q αt (x)|x) + O(ε t ) + th(x, q αt (x) -ε t ) + o(t) -αth(x, ν) -αo(t) F X (x) < α ≤ F (q αt (x)|x) + th(x, q αt (x)) + o(t) -αth(x, ν) -αo(t) F X (x)
.

By replacing α in the middle of inequalities by F (q α (x)|x), we get

- th(x, q αt (x)) + o(t) -αth(x, ν) -αo(t) F X (x) ≤ F (q αt (x)|x) -F (q α (x)|x) (A.3) < -O(ε t ) - th(x, q αt (x) -ε t ) + o(t) -αth(x, ν) -αo(t) F X (x) .
Let us show that q αt (x) → q α (x) uniformly in x ∈ K, as t 0. In view of the uniform differentiability, in x ∈ K, of F (•|x) at q α (x), there exists a ξ 0 > 0 such that for all |ξ| < ξ 0 we have sup x∈K

F (qα(x)+ξ|x)-α ξ -f (q α (x)|x) < inf x∈K f (q α (x)|x)/2. Let 0 < δ < ξ 0 . Then inf x∈K f (q α (x)|x)/2 < F (qα(x)+δ|x)-α δ and inf x∈K f (q α (x)|x)/2 < α-F (qα(x)-δ|x) δ , for all x ∈ K. Whence sup x∈K F (q α (x) -δ|x) < α < inf x∈K F (q α (x) + δ|x). Let ∆ δ = [inf x∈K F (q α (x) + δ|x) -α] ∧ [α -sup x∈K F (q α (x) -δ|x)]. We have sup x∈K |h t (x, q αt (x)) -αh t (x, ν)| F X (x) ≤ sup x∈K |h t (x, q αt (x)) -h(x, q αt (x))| + sup x∈K |h(x, q αt (x))| + sup x∈K |h t (x, ν) -h(x, ν)| + sup x∈K |h(x, ν)| / inf x∈K F X (x).
The fact that q αt (x) ∈ [0, ν], for every x ∈ K, implies that sup x∈K |h(x,

q αt (x))| is majored by sup (x,y)∈K×[0,ν] |h(x, y)| which is finite since h is bounded on K × [-ν, ν] ⊂ D. Likewise sup x∈K |h(x, ν)| is finite. Hence, the uniform convergence of h t to h yields sup x∈K |th t (x, q αt (x)) -αth t (x, ν)| F X (x) -→ 0 as t 0. (A.4) Since q αt (x) -ε t ∈ [-ν, ν] for every x ∈ K and all small t, sup x∈K |h(x, q αt (x) -ε t )| is majored by sup (x,y)∈K×[-ν,ν] |h(x, y)| which is finite since h ∈ L ∞ (D)
. Thus, we obtain in the same way as for (A.4) that sup Regarding (A.4) and (A.5), there exists t δ > 0 such that for all t < t δ and for every x ∈ K,

x∈K |th t (x, q αt (x) -ε t ) -αth t (x, ν)| F X (x) -→ 0 as t 0. (A.
F (q α (x) -δ|x) ≤ α -∆ δ < α - th t (x, q αt (x)) -αth t (x, ν) F X (x) and α - th t (x, q αt (x) -ε t ) -αth t (x, ν) F X (x) < α + ∆ δ ≤ F (q α (x) + δ|x).
By using the inequalities (A.2), we get F (q α (x) -δ|x) < F (q αt (x)|x) and F (q αt (x)ε t |x) < F (q α (x) + δ|x). It follows by the monotonicity of F (•|x) that -δ < q αt (x)q α (x) < δ + ε t uniformly in x ∈ K, and thus we conclude that

sup x∈K |q αt (x) -q α (x)| -→ 0 as t 0. (A.6)
It can be then easily seen from the uniform differentiability of

F (•|x) at q α (x) that sup x∈K F (q αt (x)|x) -F (q α (x)|x) q αt (x) -q α (x) -f (q α (x)|x) -→ 0 as t 0. (A.7) This yields F (q αt (x)|x) -F (q α (x)|x) = (q αt (x) -q α (x))f (q α (x)|x) + (q αt (x) -q α (x))o(1), uniformly in x ∈ K. Therefore - (q αt (x) -q α (x)) tf (q α (x)|x) o(1) - th(x, q αt (x)) + o(t) -αth(x, ν) -αo(t) tf (q α (x)|x)F X (x) ≤ (q αt (x) -q α (x)) t < - (q αt (x) -q α (x)) tf (q α (x)|x) o(1) - O(ε t ) tf (q α (x)|x) - th(x, q αt (x) -ε t ) + o(t) -αth(x, ν) -αo(t) tf (q α (x)|x)F X (x) .
Thus we arrive at

sup x∈K q αt (x) -q α (x) t - αh(x, ν) -h(x, q α (x)) f (q α (x)|x)F X (x) ≤ 1 inf x∈K f (q α (x)|x)F X (x) (A.8) × sup x∈K |h(x, q αt (x) -ε t ) -h(x, q α (x))| + sup x∈K |h(x, q αt (x)) -h(x, q α (x))| + o(t) t + 1 inf x∈K f (q α (x)|x) sup x∈K |q αt (x) -q α (x)| t o(1) + O(ε t ) t .
Because h is uniformly continuous on the compact D and ε t → 0, it follows from (A.6) that Since q α (x) ∈ [0, ν] for every x ∈ K, sup x∈K |h(x, q α (x))| is majored by sup (x,y)∈D |h(x, y)| which is finite. Likewise sup x∈K |h(x, ν)| is finite. Furthermore, we have by (A.7),

sup x∈K |h(x, q αt (x)) -h(x, q α (x))| → 0, sup x∈K |h(x, q αt (x) -ε t ) -h(x, q α (x))| → 0 (A.9) as t 0. Now, let us show that sup x∈K |q αt (x) -q α (x)|/t is bounded as t 0. It can be easily seen from (A.3) that inf x∈K F (q αt (x)|x) -F (q α (x)|x) q αt (x) -q α (x) × sup x∈K |q αt (x) -q α (x)| t (A.10) ≤ O(ε t ) t + 1 inf x∈K F X (x) sup x∈K |h(x, q αt (x)) -h(x, q α (x))| + o(t) t + sup x∈K |h(x, ν)| + sup x∈K |h(x, q α (x))| + sup x∈K |h(x, q αt (x) -ε t ) -h(x, q α (x))| .
inf x∈K F (q αt (x)|x) -F (q α (x)|x) q αt (x) -q α (x) -→ inf x∈K f (q α (x)|x) > 0 as t 0.
Hence, by using these results in conjunction with (A.9) and (A.10), we get

q αt (x) -q α (x) = O(t), uniformly in x ∈ K. (A.11)
Finally, by combining (A.8), (A.9) and (A.11), we obtain the desired uniform convergence in x ∈ K of (q αt (x)q α (x)) /t to (αh(x, ν)h(x, q α (x))) /f (q α (x)|x)F X (x), as t 0.

On the other hand, the empirical process

√ n( F n -F ) converges in distribution in L ∞ (R p+1
) to F, a p + 1 dimensional F -Brownian bridge (see , e.g., van der Vaart and Wellner, 1996, p. 82). F is a Gaussian process with zero mean and covariance function

E(F(t 1 )F(t 2 )) = F (t 1 ∧ t 2 ) -F (t 1 )F (t 2 ), for all t 1 , t 2 ∈ R p+1 . Since L ∞ (R p+1 ) ⊂ L ∞ (D)
, we obtain in view of Lemma 18.13 of van der Vaart (1998,

p.261) that √ n( F n -F ) also converges in distribution to F in L ∞ (D). Because F ∈ C(D),
the sample paths of the F -Brownian bridge are continuous on D.

By Lemma A.1, the map φ : G ⊂ L ∞ (D) -→ L ∞ (K) is Hadamard-differentiable at F
tangentially to C(D). Thus, the functional delta method (see Theorem 20.8 of van der Vaart, 1998, p.297) can be applied. It implies that

√ n(φ( F n ) -φ(F )) = √ n( q α,n -q α ) converges in distribution to φ F (F) in L ∞ (K).
Since the process F is Gaussian and the operator φ F is linear, the limiting process φ F (F) is Gaussian with zero mean and covariance function given, for any

x 1 , x 2 ∈ K, by Γ α (x 1 , x 2 ) = E αF(x 1 , ν) -F(x 1 , q α (x 1 )) f (q α (x 1 )|x 1 )F X (x 1 ) × αF(x 2 , ν) -F(x 2 , q α (x 2 )) f (q α (x 2 )|x 2 )F X (x 2 ) .
A.2 Proof of Corollary 2.1

Under the conditions of Lemma A.1, the remainder term R α n (x) of (2.1), considered as a process indexed by x ∈ K, can be expressed in the following way

√ nR α n = √ n ( q α,n -q α ) -φ F √ n( F n -F ) (A.12)
where φ F (h) is described in (A.1) for any h ∈ L ∞ (R p+1 ). Because the linear operator φ F is continuous from L ∞ (R p+1 ) into L ∞ (K), it follows from the continuous mapping theorem that the process φ F √ n( F n -F ) , indexed by x ∈ K, converges in distribution to the tight Gaussian process φ F (F) in L ∞ (K). Therefore, according to Theorem 1.5.4 of van der Vaart and Wellner (1996, p.35), both processes φ F √ n( F n -F ) and √ n ( q α,nq α ) are asymptotically tight under the conditions of Theorem 2.1. The difference process √ nR α n , given by (A.12), is then asymptotically tight under the same conditions (see, e.g., Theorem 1.5.6 of van der Vaart and Wellner, p.36). Moreover, its marginals (

√ nR α n (x 1 ), • • • , √ nR α n (x r
)) converge in probability to 0 ∈ R r , for every x 1 , • • • , x r ∈ K. Thus the nuisance process √ nR α n , indexed by x ∈ K, converges in distribution to the process zero in L ∞ (K) in view of the second part of Theorem 1.5.4 of van der Vaart and Wellner (1996). Since the map g → sup x∈K |g(x)| from L ∞ (K) into R is continuous with respect to the supremum norm, the continuous-mapping theorem immediately implies the result.

A.3 Proof of Theorem 3.1

The values θ α,n (K, P X,n ) and θ α (K, P X,n ) have the following explicit expressions

θ α,n (K, P X,n ) = 1 n n i=1 1I K (X i )g(X i )g T (X i ) -1 1 n n i=1 1I K (X i ) q α,n (X i )g(X i ) , θ α (K, P X,n ) = 1 n n i=1 1I K (X i )g(X i )g T (X i ) -1 1 n n i=1 1I K (X i )q α (X i )g(X i ) .
The estimation error is then given by

θ α,n (K, P X,n ) -θ α (K, P X,n ) = { 1 n n i=1 1I K (X i )g(X i )g T (X i )} -1 V n where V n := 1 n n i=1 1I K (X i )g(X i )( q α,n (X i ) -q α (X i )).
We have from (2.1), for any x ∈ K,

q α,n (x) -q α (x) = 1 n n j=1 (1/f (q α (x)|x)F X (x)) × {α1I(X j ≤ x) -1I(X j ≤ x, Y j ≤ q α (x))} + R α n (x).
Then

V n = 1 n 2 n i=1 n j=1 H((X i , Y i ), (X j , Y j )) + 1 n n i=1 1I K (X i )g(X i )R α n (X i )
where

H ((X i , Y i ), (X j , Y j )) = 1I K (X i )g(X i )(1/f (q α (X i )|X i )F X (X i )) (A.13) × {α1I(X j ≤ X i ) -1I(X j ≤ X i , Y j ≤ q α (X i ))} . Since n i=1 n j=1 H((X i , Y i ), (X j , Y j )) = n i=1 n j=1 H((X j , Y j ), (X i , Y i )), we have 1 n 2 n i=1 n j=1 H((X i , Y i ), (X j , Y j )) = 1 n 2 n i=1 n j=1 H((X i , Y i ), (X j , Y j ))
Comment citer ce document : Daouia, A., Florens, J.-P., Simar where H((X i , Y i ), (X j , Y j )) = (H((X i , Y i ), (X j , Y j )) + H((X j , Y j ), (X i , Y i ))) /2 is a symetric kernel. Hence, V n is by definition (see, e.g., Serfling, 1980, p. 174) the Von Mises statistic associated to the parametric function

θ(F ) = E F [H ((X 1 , Y 1 ), (X 2 , Y 2 ))] = [E F H((X 1 , Y 1 ), (X 2 , Y 2 )) + E F H((X 2 , Y 2 ), (X 1 , Y 1 ))] /2. Let H 1 (X 1 , Y 1 ) = E F [H ((X 1 , Y 1 ), (X 2 , Y 2 )) |(X 1 , Y 1 )
]. For any (x 1 , y 1 ), we have

H 1 (x 1 , y 1 ) = E F [H((x 1 , y 1 ), (X 2 , Y 2 ))] = 0. Then H 1 (X 1 , Y 1 ) = 0, whence E F [H 1 (X 1 , Y 1 )] = 0, i.e., E F [H((X 1 , Y 1 ), (X 2 , Y 2 
))] = 0. We obtain in a similar way

E F [H((X 2 , Y 2 ), (X 1 , Y 1 ))] = 0, which gives θ(F ) = 0. Putting W n = 1 n 2 n i=1 n j=1 H((X i , Y i ), (X j , Y j ))
, we get via Theorem A and Lemma 5.7.3 of Serfling (1980, p. 192 and 206) that

√ nW n L -→ N (0, 4ζ 1 )
, where

ζ 1 = V ar F {E F [H ((X 1 , Y 1 ), (X 2 , Y 2 )) |(X 1 , Y 1 )]} = V ar F {E F [H ((X 2 , Y 2 ), (X 1 , Y 1 )) |(X 1 , Y 1 )]} /4.
This last result follows from the fact that H 1 (X 

n i=1 1I K (X i )g(X i ){ √ nR α n (X i )} converges in probability to 0 as n → ∞. Finally, since { 1 n n i=1 1I K (X i )g(X i )g T (X i )} -1 con- verges to {E[1I K (X 1 )g(X 1 )g T (X 1 )]} -1 in
probability via the law of large numbers, we get the desired conclusion from the following representation

√ n θ α,n (K, P X,n ) -θ α (K, P X,n ) = √ nV n 1 n n i=1 1I K (X i )g(X i )g T (X i ) -1 = √ nW n + 1 n n i=1 1I K (X i )g(X i ) √ nR α n (X i ) 1 n n i=1 1I K (X i )g(X i )g T (X i ) -1 .
A.4 Proof of Theorem 3.2

We have in view of the first order conditions which define θ α,n (K, µ), In this equality, ∂ϕ θ ∂θ (x)| θ= θα,n(K,µ) can be replaced by ∂ϕ θ ∂θ (x)| θ=θα(K,µ) and we note that the second term on the left hand side is then equal to zero, by the definition of θ α (K, µ). By Young's form of Taylor's expansion of the first order, we have for any

K q α,n (x) -ϕ θα,n(K,µ) (x) ∂ϕ θ ∂θ (x)| θ= θα,n(K,µ) dµ(x) = 0. It follows √ n K ∂ϕ θ ∂θ (x)| θ= θα,n(K,µ) ( q α,n (x) -q α (x)) dµ(x) + √ n K ∂ϕ θ ∂θ (x)| θ= θα,n(K,µ) q α (x) -ϕ θα(K,µ) (x) dµ(x) = √ n K ∂ϕ θ ∂θ (x)| θ= θα,n(K,µ) ϕ θα,n(K,µ) (x) -ϕ θα(K,µ) (x) dµ(x).
x ∈ K, ϕ θα,n(K,µ) (x) -ϕ θα(K,µ) (x) = ∂ϕ θ ∂θ T (x)| θ=θα(K,µ) θ α,n (K, µ) -θ α (K, µ) + ε( θ α,n (K, µ) -θ α (K, µ)) θ α,n (K, µ) -θ α (K, µ) where ε( θ α,n (K, µ) -θ α (K, µ)) = o p (1) as n → ∞, uniformly in x ∈ K, since θ α,n (K, µ) - θ α (K, µ) P -→ 0 and the differentiability of θ → ϕ θ (x) at θ α (K, µ) is uniform in x ∈ K. Therefore √ n K ∂ϕ θ ∂θ (x)| θ=θα(K,µ) ϕ θα,n(K,µ) (x) -ϕ θα(K,µ) (x) dµ(x) = K ∂ϕ θ ∂θ (x)| θ=θα(K,µ) ∂ϕ θ ∂θ T (x)| θ=θα(K,µ) dµ(x) √ n θ α,n (K, µ) -θ α (K, µ) + K ∂ϕ θ ∂θ (x)| θ=θα(K,µ) dµ(x) ε( θ α,n (K, µ) -θ α (K, µ)) √ n θ α,n (K, µ) -θ α (K, µ) . It follows √ n θ α,n (K, µ) -θ α (K, µ) = K ∂ϕ θ ∂θ T (x)| θ=θα(K,µ) ∂ϕ θ ∂θ (x)| θ=θα(K,µ) dµ(x) + K ∂ϕ θ ∂θ T (x)| θ=θα(K,µ) dµ(x)ε( θ α,n (K, µ) -θ α (K, µ)) -1 × K ∂ϕ θ ∂θ (x)| θ=θα(K,µ) √ n ( q α,n (x) -q α (x)) dµ(x).
We finally obtain the desired convergence by using Theorem 2.1.

A.5 Proof of Theorem 3.3

Putting M n (θ) = K ( ϕ n (x) -ϕ θ (x)) 2 dµ(x), it can be easily seen that sup θ∈R k |M n (θ) -M (θ)| ≤ 2(ν + δ)µ(K) sup x∈K | ϕ n (x) -ϕ(x)| with probability 1. Then sup θ∈R k |M n (θ) -M (θ)| a.s. → 0 since sup x∈K | ϕ n (x) -ϕ(x)| a.s.
→ 0 by Lemma 3.3 in [START_REF] Daouia | Robust Nonparametric Estimators of Monotone Boundaries[END_REF]. Whence

Z n := M n (θ(K, µ)) -M (θ(K, µ)) a.s. → 0. Since M n ( θ n (K, µ)) ≤ M n (θ(K, µ)) by definition of θ n (K, µ), we obtain M n ( θ n (K, µ)) ≤ M (θ(K, µ)) + Z n . Therefore 0 ≤ M ( θ n (K, µ)) -M (θ(K, µ)) ≤ M ( θ n (K, µ)) -M n ( θ n (K, µ)) + Z n ≤ sup θ∈R k |M n (θ) -M (θ)| + Z n a.s.
-→ 0. (A. Thus M ( θ n (K, µ))

a.s.

-→ M (θ(K, µ)), which is equivalent to lim n→∞ P [sup m≥n |M ( θ m (K, µ))-M (θ(K, µ))| > η] = 0 for every η > 0. Let us now show that θ n (K, µ) a.s.

-→ θ(K, µ), which is equivalent to show that lim n→∞ P [sup m≥n d( θ m (K, µ), θ(K, µ)) > ε] = 0, for every ε > 0. Because inf d(θ,θ(K,µ))≥ε M (θ) > M (θ(K, µ)), there exists a number η ε > 0 such that inf d(θ,θ(K,µ))≥ε M (θ) > M (θ(K, µ)) + η ε . It follows that the event {d( θ n (K, µ), θ(K, µ)) ≥ ε} is contained in {M ( θ n (K, µ)) > M (θ(K, µ)) + η ε }, for all n ≥ 1. Hence it can be easily seen that {sup m≥n d( θ m (K, µ), θ(K, µ)) > ε} is contained in the event {sup m≥n |M ( θ m (K, µ)) -M (θ(K, µ))| > η ε }, which ends the proof.

A.6 Proof of Theorem 3.4

For any ε > 0 and any

η ε ∈ (0, m ε ) we have inf d(θ,θ(K,µ))≥ε M (θ) > M (θ(K, µ)) + η ε in view of (3.7). It follows that the event {d( θ m(n),n (K, µ), θ(K, µ)) ≥ ε} is contained in {M ( θ m(n),n (K, µ)) > M (θ(K, µ)) + η ε }, for all n ≥ 1. Putting M m(n) (θ) = K ϕ m(n),n (x) -ϕ θ (x) 2 dµ(x),
we show in the same way as in (A.14) that

M ( θ m(n),n (K, µ)) -M (θ(K, µ)) ≤ 2 sup θ∈R k |M m(n) (θ) -M (θ)|.
Hence, we obtain for all n ≥ 1,

P [d( θ m(n),n (K, µ), θ(K, µ)) ≥ ε] ≤ P [ sup θ∈R k |M m(n) (θ) -M (θ)| > η ε /2].
On the other hand, we have with probability 1, In solid black line, the true frontier y = x. In cyan solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the order-m frontier ϕ m,n , and its corresponding parametric fit and in dash-dot red the order-α frontier q α,n and its corresponding parametric fit. Here, m = 20 and α = 0.9622. From top to bottom 100 simulated observations without outliers, 100 simulated observations with 3 outliers included. In black dotted, the shifted OLS estimate. In solid black line, the true frontier y = x 0.5 . In cyan solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the order-m frontier ϕ m,n , and its corresponding parametric fit and in dash-dot red the order-α frontier q α,n and its corresponding parametric fit. Here, m = 20 and α = 0.9612. From top to bottom 100 simulated observations without outliers, 100 simulated observations with 3 outliers included. In black dotted, the shifted OLS estimate. In solid black line, the true frontier y = x 0.5 . In cyan solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the order-m frontier ϕ m,n , and its corresponding parametric fit and in dash-dot red the orderα frontier q α,n and its corresponding parametric fit. Here, m = 38 and α = 0.95. From top to bottom 100 simulated observations without outliers, 100 simulated observations with 3 outliers included. In black dotted, the shifted OLS estimate. In cyan solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the order-m frontier ϕ m,n , and its corresponding parametric fit and in dash-dot red the order-α frontier q α,n and its corresponding parametric fit. Here, m = 41 and α = 0.95. In black dotted, the shifted OLS estimate.
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 32 and the order-m frontier can be computed as ϕ m (x) = x 1/2 θ m , where θ m = 1 -B m with B m = m j=0 m j (-2) m-j 3 j /(3mj + 1). In this particular case, if α = 1 2 (1cos[3 arccos( 1 2 -B m ) -4π]), then θ α ≡ θ m can be estimated by { θ m,n } n as well as { θ α,n } n .
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 1 Proof of Theorem 2.1 Let ν > 0 be the upper boundary of the support of Y . The domain D ⊂ R p+1 is used to denote any fixed compact subset which contains both K × [-ν, ν] and the support Ψ of Comment citer ce document : Daouia, A., Florens, J.-P., Simar, L. (2008). Functional convergence of quantile-type frontiers with application to parametric approximations. Journal of Statistical Planning and Inference, 138 (3), 708-725. DOI : 10.1016/j.jspi.2007.01.005 (X, Y ). Define the domain G of distribution functions G(•, •) on R p + × R + whose supports are also contained in D and such that
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 1 Under the conditions of Theorem 2.1, the functional φ is Hadamard-differentiable at F ∈ G tangentially to the set C(D) of continuous functions on D. The derivative is the map φ
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 5 Comment citer ce document : Daouia, A., Florens, J.-P., Simar, L. (2008). Functional convergence of quantile-type frontiers with application to parametric approximations. Journal of Statistical Planning and Inference, 138 (3), 708-725. DOI : 10.1016/j.jspi.2007.01.005
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Figure 1 :

 1 Figure 1: Results for Example 1.In solid black line, the true frontier y = x. In cyan solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the order-m frontier ϕ m,n , and its corresponding parametric fit and in dash-dot red the order-α frontier q α,n and its corresponding parametric fit. Here, m = 20 and α = 0.9622. From top to bottom 100 simulated observations without outliers, 100 simulated observations with 3 outliers included. In black dotted, the shifted OLS estimate.

Figure 2 :

 2 Figure2: Results for Example 2. In solid black line, the true frontier y = x 0.5 . In cyan solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the order-m frontier ϕ m,n , and its corresponding parametric fit and in dash-dot red the order-α frontier q α,n and its corresponding parametric fit. Here, m = 20 and α = 0.9612. From top to bottom 100 simulated observations without outliers, 100 simulated observations with 3 outliers included. In black dotted, the shifted OLS estimate.

Figure 3 :

 3 Figure3: Results for Example 3. In solid black line, the true frontier y = x 0.5 . In cyan solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the order-m frontier ϕ m,n , and its corresponding parametric fit and in dash-dot red the orderα frontier q α,n and its corresponding parametric fit. Here, m = 38 and α = 0.95. From top to bottom 100 simulated observations without outliers, 100 simulated observations with 3 outliers included. In black dotted, the shifted OLS estimate.

  Comment citer ce document : Daouia, A., Florens, J.-P., Simar, L. (2008). Functional convergence of quantile-type frontiers with application to parametric approximations. Journal of Statistical Planning and Inference, 138 (3), 708-725. DOI : 10.1016/j.jspi.2007.

Figure 4 :

 4 Figure4: Air controlers example. In cyan solid, the FDH frontier estimate and its corresponding parametric fit, in blue dashed the order-m frontier ϕ m,n , and its corresponding parametric fit and in dash-dot red the order-α frontier q α,n and its corresponding parametric fit. Here, m = 41 and α = 0.95. In black dotted, the shifted OLS estimate.

  Assume that F (•|x) is differentiable for any x ∈ K, with derivative f (•|x) such that sup (x,y)∈K×R + f (y|x) < ∞, inf x∈K f (q α (x)|x) > 0 and the differentiability of F (•|x)
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  Cazals et al. (2002) derived an estimator ϕ m(n),n of the full frontier function ϕ by an appropriate choice of the order m as a function of the sample size n. This estimator shares the same asymptotic distribution as the FDH estimator ϕ n , but is more robust to extremes. Likewise, Aragon et al. (2005) suggested a quantile-type estimator q α(n),n of ϕ, which keeps the same asymptotic distribution as ϕ n and ϕ m(n),n , but is more stable and resistant to extremes. By applying the same technique of proof of Theorem 3.3 in conjunction with Theorem 2.1 and 2.3 in Daouia and Simar (2005), we obtain the almost sure convergence of θ

Table 1 :

 1 Point estimates of the Cobb-Douglas parameters following the different approaches.

	method	Intercept Elasticity
	Shifted-OLS	0.8238	0.8833
	FDH	0.5886	0.8838
	α-quantile	0.5554	0.7798
	order-m	0.5796	0.8553
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provide, up to now, estimates of the standard deviations of the estimates.
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  1 , Y 1 ) = 0. On the other hand, if the conditions of Theorem 2.1 hold, then sup x∈K

	√ n|R α n (x)|

P -→ 0 by Corollary 2.1. If furthermore the scalar functions g j (•) are bounded on K, then the vector 1 n

For x and x in R p the inequality x ≤ x has to be understood componentwise. A real valued function r on R p is then said to be nondecreasing with respect to this partial order if x ≤ x implies r(x) ≤ r(x ).

We use the word "nonstandard" to focus on the unusual condition X ≤ x in place of the more common X = x.

Note that when α(n) → 1 as n → ∞, q α(n),n (x) is a consistent estimator of ϕ(x). As indicated in Theorem 2.3 in[START_REF] Daouia | Robust Nonparametric Estimators of Monotone Boundaries[END_REF], for q α(n),n to converge uniformly with probability one to ϕ, α(n) should converge to one at the rate n. However, as pointed in Section 1, for q α(n),n (x) to converge to the Weibull distribution, α(n) should converge faster to one, at the rate n (p+2)/(p+1) .
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