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Abstract

Background: The skills used by winged insects to explore their environment are strongly dependent upon the integration
of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing
contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories
during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these
sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled,
generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent
model system to investigate the developmental variability in relation to natural behavioral polymorphisms.

Methodology/Principal Findings: A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle
using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells
(MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell
precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust
neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth.
Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic
determinants such as the frequency dependent for gene and by environmental cues such as population density.

Conclusions: We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies
emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and
phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much
regarding the ability of Drosophila to robustly adapt to their environment.
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Introduction

Drosophila survival depends on their capacity to exit a niche

that has become unfavorable and/or hostile and find alternative

locations where food resources are more abundant. The efficiency

of this exploration depends upon the simultaneous integration of

neurosensory signals that are used to guide flight trajectories [1,2].

This implies that robust sensory systems are simultaneously in

operation, such as vision adapted to moving objects during flight

and olfaction for odorant detection in air currents. Mechanore-

ceptor feedback also acts in combination with the vision and

olfaction systems to change the flight direction by rapid

stereotyped turns, which characterizes flight behaviour in

Drosophila [3].

Fly wings appear to assume many roles such as taste, touch

perception, propioception, courtship singing, in addition to flight.

However, the physiological relevance of some wing sensory cells

are poorly understood (for example, the presence of taste organs

on the wing). Intriguingly, a spatially restricted expression of taste

receptors has been described for the wing [4] and, surprisingly, a

large gene family of odorant binding proteins is expressed not only

in olfactory organs as expected, but also in wing gustatory sensilla

[5]. Some isoforms of this gene are exclusively expressed in taste

organs including the taste bristle of the wing [5]. Many lines of

evidence using in situ hybridization methodologies have confirmed

that a chemosensory gene family encodes both odorant and taste

receptors [6]. This suggests overlapping roles and functions

between olfactory and gustatory organs in Drosophila or at least a

diffuse physiological frontier between both systems.

To our knowledge, no report has demonstrated in any insect

how mechanosensory cues encoded from wing neurons are

integrated by the nervous system for flight guidance. However,

we have observed previously that an unilateral lesion of the costal

nerve still allows the fly to take off but abolishes the directional

flight [7]. The sensory structures in the Drosophila wing present

some major advantages for use as a model system to investigate the
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dispersion behavior of insects. The first of these is that they are

highly tractable for fluorescent marker based analysis. Second,

these systems have been intensively studied to date. Briefly, two

major neuronal cell types co-exist: the mechanoreceptors which

are sensors of touch perception and proprioception [8] and the

chemoreceptors which express odor-binding proteins but without

any clearly demonstrated function to date [9,5]. The two types of

sensory information that are processed by these receptor types are

simultaneously transported via the same nerve.

The lineage of the neurons that constitute the mechanosensory

and chemosensory bristles on the wing or notum of Drosophila has

been well characterized [10–14]. Some of the sensory hairs

(slender) on the anterior wing margin are chemoreceptors that

express odor-binding proteins. The stout bristles of the anterior

margin, however, are mechanoreceptors. Bristle sensilla are also

located along the anterior wing margin and large campaniform

sensilla are found along the wing median vein (vein III). Briefly, a

sensory organ precursor (SOP) initially divides asymmetrically to

produce pIIa and pIIb cells. PIIa divides to provide a posterior

socket cell and an anterior hair cell. PIIb divides to provide pIIIb

and a glial cell. Finally, pIIIb divides to produce a sheath cell and a

neuron (see [12] for review). The mechanoreceptors comprise a

single unique neuron whereas the chemoreceptors consist of a

cluster of 5–6 neurons [11]. Each division from the SOP is

therefore asymmetric and generates non-neuronal cells such as

posterior socket cells or anterior hair cells [15–20]. The three types

of cell harboring the genetic constructs we utilized in our current

study (pIIb, pIIIb, and mature neurons) would be expected to

show fluorescence because they express elav (In the MARCM

system, the GFP molecules are under the control of the elav

promoter; see supplementary material, figure S1) [21]. Finally each of

the larval sensilla degenerate during metamorphosis and the

generally accepted view is that the precursors of the adult sensilla

appear during the late third larval instar [10–14].

The Drosophila wing is also an excellent system to verify whether

behavioral variants harbor subtle differences in their neuronal

circuitry, and we speculated whether a natural polymorphism

repertoire exists that is used by this species as an adaptive tool to

respond to environmental changes. The scarcity of food resources

or a high population density triggers dispersion and colonization of

new spaces. It is possible that these environmental conditions

regulate and/or control epigenetic mechanisms, as suggested in

many previous studies in Drosophila [22–27].

To further elucidate these phenomena, we reasoned that the

most effective approach would be to use a genetic tool which

allows us to visualize the process of neurogenesis during the life

cycle of Drosophila. The technique used in our present study to

achieve this is based on mitotic recombination induced by the

enzyme ‘flipase’ under the control of a heat shock promoter. A

fluorescent marker is generated in neurons in which genetic

recombination was previously induced in the dividing precursor

cells. This drives fluorescence at any stage of the Drosophila life

cycle in mature neurons, but only when their precursors undergo

division at the time of induction. In other words, there is no

fluorescence in mature neurons in the absence of recombination

events in the progenitor cells (this system is publicly available at

Bloomington Center Indiana University US and was donated by Liqun

Luo and co-workers). Because the recombination in this system is

induced, we aimed to observe whether adult Drosophila undergo

neurogenesis and if so, how environmental cues may affect this

process.

From our initial data, we observed robust neurogenesis in the

adult wing after emergence from the pupa, which cannot be

accounted for simply by a residual completion at the very end of

the developmental process. These unexpected results have not

been obtained previously because the adult wing cuticle is

extremely resistant to any of the treatments used in immunohis-

tology studies.

We then considered the evolutionary advantage of this system

and speculated as to why the process of natural selection did not

lead to the completion of neurogenesis at the end of the pupal

stage, as is commonly accepted. To approach this issue, we

investigated the variability of wing neuronal development when

Drosophila flies are placed under different environmental condi-

tions. To this end, we took advantage of a well established model

whereby exploratory or sedentary larval behaviors are under the

control of a single gene [28–30]. This gene (for) encodes a cGMP-

dependent kinase and controls foraging behavior in order to adapt

the flies to their environmental conditions. High density animal

rearing conditions boost the larval exploratory phenotype over

successive generations, whereas the opposite low density condi-

tions favor the sedentary phenotype. Interestingly, in adult

Drosophila, some of the expressed for alleles induce fidelity to the

site of birth, whereas others induce a predilection to explore new

habitats and engage in foraging [31]. This is therefore a rare case

of a natural behavior polymorphism that is maintained by the

frequency dependent selection of only one gene [32–35]. This

prompted us to investigate whether the expression of alleles of the

well-known for gene in Drosophila that confer Rover behavior might

influence neurogenesis in adult wings.

We were also interested in analyzing the link between adult

neurogenesis and the complex gene networks that are involved in

larval development. We thus investigated how the pleiotropic

disorders generated during the larval stages by environmental

stresses such as food scarcity might interfere with adult neurogenesis

when the newly born animals have access to optimal food

conditions. Valuable insight was previously gained from normally-

proportioned but small adults (definitive reduction in body size)

when the larvae were bred under poor nutritional conditions [22–

26, 36 for review]. These newborn adults were found to be able to

revert to normal size in succeeding generations that were placed in

optimal food conditions [22–26,36]. The completion of wing

neurogenesis at the end of pupa stage would likely preclude any

chance of adult fly survival if the larvae faced environmental stress.

Conversely, we reasoned that unfinished neurogenesis might allow

newborn animals that had experienced stress as larvae, to ‘‘jump’’ to

a nearby source of nutritious food and to complete their neuronal

development. We reasonned that newly born flies are capable of

awkward displacement by poorly controlled flight on short distance

which should increase the chance of ramdom discovering of food

source. Alternatively the transfer of newly born adults to the next

fruit might be partially guided depending on the degree of

completion of olfactory and visual systems. Hence, we have

attempted in our present study to determine whether incomplete

neurogenesis in newborn flies constitutes an adaptation mechanism

in fluctuating and unstable environments. This phenomenon allows

flies that are newly born after enduring poor nutritional conditions

during larval stages to rescue their wing neuronal architecture and

complete their development if they are able to find nutrients in close

proximity. This stretched development process might constitute a

broad mechanism selected by evolution to correct flaws inflicted by

unfavorable environmental conditions in precedent stages of

growth.

We analyzed then whether fluctuating environmental conditions

(food resources versus population density) might influence the

neuronal wing development in Drosophila in combination with

genes such as the frequency-dependent alleles of for. Because the

pupa stage in Drosophila lasts 5 days, during which time

Neurogenesis in Drosophila
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environmental conditions might change drastically, incomplete

neurogenesis in the newborn adult wings might constitute a time

window for plasticity influenced by heritable traits. Breeding

conditions in the laboratory provide insights into how natural

fluctuating environments might affect the phenotypic outcome.

The effects of population density were investigated to determine

whether non heritable variants involving wing neuronal compo-

nents are recruited. Strictly Rover or sitter mutants were also

analyzed in this context. Overall, the genetic tools employed in this

study allowed us to analyze how environmental cues can shape an

unfinished neuronal architecture in insects. This methodology thus

turned out to be a useful approach to addressing some of the

challenging questions about how this overall system works. To our

knowledge little is known about adult wing neurogenesis in insects.

Neurogenesis in adult Drosophila brain has never been reported.

However, adult neurogenesis is intense in brain of some insects like

crickets. Adult crickets reared in an enriched sensory environment

present a stronger neurogenesis as compared with crickets reared

in an impoverished environment [37]. Moreover, the exposure of

odours stimulates the neuroblast proliferation in mouse and the

outcome of newborn mature neurons in the adult olfactory bulb

[38]. Adult neurogenesis in brain in mammals or birds seems to

play a role in establishing a temporal order of events by clearing

out old traces of experiences and consolidating new memory [39].

Many reports suggest that environmental cues are able to

influence adult neurogenesis and newly born neurons participate

to learning, odours integration and adaptation to environment

[37]. To our knowledge, the plasticity of neurosensory cells in

insect wing has never been described. In this report, we expose few

elements. i) first, we observed a novel neurogenesis pattern in

Drosophila adult wing after emergence from pupae. ii) We

hypothesized that this may be an adaptation to fluctuating

environment, so that when larvae suffer from poor food

conditions, unfinished wing neurogenesis in newly born adults

might constitute a second chance if they encounter optimal food

conditions. We investigated also whether this late neurogenesis

might be waiting for some epigenetic events depending on

environmental conditions. iii) We examined whether a well-

described natural genetic polymorphism that affects exploratory

behaviour was correlated with wing neurogenesis patterns. iv) We

investigated whether population density, as a cue for whether

dispersal should be favoured, influences wing neurogenesis

patterns. v) We examined finally whether exploratory behavior

in conditions where flies are allowed only to walk, is affected by

lesioning the wing costal nerve in which the neurogenesis occurs.

This set of experiments was performed in order to propose some

putative functions of the wing late neurogenesis. We advance

arguments on the evolutionary advantages of uncompleted wing

neuronal network at the end of pupae stage.

Results

Evidence for a continued process of maturation in the
sensory organs of the Drosophila adult wing

We first investigated whether adult Drosophila wings undergo

neurogenesis, which would imply the presence of dividing

precursor neuronal cells in situ. The method used in this analysis

(the MARCM system) was originally described by Lee and Luo and

is based upon a repressible neuronal cell marker and a mitotic

recombination enzyme under the control of a heat-shock promoter

[40]. This technique facilitates the induction of a fluorescent

marker in axons at any stage of the fly life cycle, but with the

condition that the neuroblasts and/or precursors must first

undergo cell division. The recombination event is triggered by

the flipase enzyme which is expressed under the control of a heat-

shock promoter that physically separates the Gal4 transcriptional

activator or the Gal80 inhibitor in each sibling cell (see Figure S1)

[40]. Controls without heat shock are shown in Figure S2.

The labeled adult wings obtained from flies in which mitotic

recombination was induced at an early pupal stage clearly show

that the neuronal cells are organized according to stereotyped

paths: the anterior wing margin (vein 1) and the median path (vein

3). The fluorescence in the proximal fork of the anterior wing

margin was first analyzed and very small fluorescent cells were

found initially in the adult wing. The appearance of doublets was

then distinctly observed, which suggested binary cell division

(Figure 1). In other cases, we observed intense fluorescence in

clusters of 4 cells, in doublets or single cells in the same wing, when

the fly had aged by a few hours (Figure 1). Intense fluorescence

was also seen in one particular cell within clusters, again suggesting

cell division (Figure 1). Because each fluorescence spot is supposed

to be a trace of an initial sensory organ precursor (SOP), these data

argue in favor of a heterogeneous process of neuronal division in

the adult Drosophila wing before the sensory organs are completed.

The variability of labeling in the proximal fork between individuals

at the same age after birth is shown in Figure S3.

We next analyzed the fluorescent signals in the anterior wing

margin (vein 1). After their emergence, the labeled cells were

readily identifiable and projections were absent (Figure 2). A dorsal

row of cells was found to be intensely fluorescent. Interestingly,

some flies showed a second dorsal row of weakly fluorescent cells,

which once again suggests cell division (Figure 2). Finally, the

fluorescence in the adult wing along the median vein (vein 3) was

analyzed (Figure 2). Doublets of labeled cells and single labeled

cells were clearly seen. A more refined analysis showed that four

labeled cells co-exist in the same sensilla. We obtained many flies

in which spots of fluorescence consisting of four cells, two cells or

single cells entering anaphase (yellow protruding spot), co-existed

in the same wing. These differing labeled patterns were also found

randomly in our test population, such that none of the young flies

seems to be identical.

Because each of the fluorescent spots will eventually become

mature campaniform sensilla, our data suggest that continued

active division and maturation of the sensory organ occurs after

the emergence of the adult and that this is a weakly synchronized

process. In conclusion, we observed variations in the same wing,

between the two wings of the same fly, and between flies of the

same age in terms of the maturation process of the mechano/

chemosensory organs (see also Figure S3). These variations

observed between the emerged flies in terms of their wing

neuronal development were also observed using an additional

construct expressing an hybrid synaptotagmin-green fluorescent

protein (GFP-syt) in the neurosecretory vesicles (see Figure S4).

The growth of axons and axonal bundle formation occurs
in the adult wing

After day one, the projections in the Drosophila wing margin first

start to fasciculate (bundle) in the proximal part of the wing

(Figure 3). Photos show that when the axons gradually fasciculat-

ed, the fluorescence in the cell bodies tended to disappear. By day

5, labeled cell bodies are absent, and there are straight labeled

lines visible that correspond to axonal bundles. Axonal ‘pathfind-

ing’ with irregularities such as hairpin structures and zigzag lines

were also observed (Figure 3). This might be a consequence of the

stress provoked by heat shock in these experiments. Taken

together, these results demonstrate that the timing of neuronal

development in the adult Drosophila wing can be extended and is

capable of plasticity.

Neurogenesis in Drosophila
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Induced mitotic recombination reveals the birth of
neuronal cells in the adult wing

We heat-shocked the progeny at the adult emergence stage in

our model system and then analyzed the time course of the

resulting fluorescence (Figure 4). A similar pattern of labeling as

previously seen was obtained, except that the fluorescence was

generally weaker than that generated by heat shock at the late

third instar larva (or early pupa). The emergence of labeled cell

bodies appeared first with weakly-labeled neuronal processes, and

then a single straight axonal bundle was constantly seen. This

fluorescence tends to disappear as the fly ages (only residual

fluorescence is evident after 3 weeks). This strongly suggests that

some neuronal cells are ‘‘born’’ in the emerged adult wing.

The induction of mitotic recombination at different develop-

mental stages confirms that the SOP originates from the late third

instar and early pupal stages, but that the maturation process

continues after the adults emerge from the pupae (Figure 5). The

application of heat shock at the first and second instar larval stages

resulted in substantial fluorescence in the wing, probably because

some cells in the neuroectoderm, capable of generating an SOP,

have already undergone recombination.

The variability of adult wing neurogenesis in Drosophila
is linked to a natural behavior polymorphism

We next investigated whether behavioral differences between

larvae might account for the variations in neurogenesis in the wing

at the adult stage. We utilized the well known natural

polymorphism in Drosophila of larval foraging behavior to roughly

establish two populations, one that remains on an ideal yeast food

niche (sedentary), and one in which the flies migrate to ‘assess’

their environment (exploratory). This natural polymorphism seems

to be preserved in the MARCM(A*B) progeny despite the use of

the constructs allowing recombination. When flipase was induced

in very late third instar larvae (the beginning of pupation), the

number of flies showing fluorescence in the wing above an

arbitrary threshold was higher for the exploratory larvae (Figure 5).

We confirmed that flies originating from the exploratory larvae

showed quantitatively more measured fluorescence compared with

flies originating from sedentary larvae (Figure 5). However, only

minor differences between the two behavioral categories were

observed when the flipase enzyme was induced during the early

larval stages or at the adult stage.

We also placed the homozygous alleles Rover or sitter (164) (Rover

is dominant over sitter [29,30]) in one parent of the MARCM

system so that the progeny were either Rover, or enriched in the

sitter allele. Wing analysis showed again that the Rover allele confers

slightly more fluorescent signals and more anti-synaptotagmin

immunoreactivity than the sitter allele (Figure 6). The number of

fluorescent punctua in the wing margin after emergence is also

greater in Rover than in sitter (legend in Figure 6). Moreover, the

number of stout bristles in adult flies (mechanoreceptors) was

compared and a small variability between individuals of the same

sex was constantly observed in different genotypes but no

significant variation was observed between explorer and sedentary

Figure 1. Recombination induced at the early pupal stage: fluorescence analysis in the Drosophila wing after adult emergence.
Analysis of fluorescence in the proximal fork of the anterior wing margin of the adult fly: Progenies of the A+B cross (see Materials and Methods) were
heat-shocked at the early pupal stage and the adult wings were analyzed for GFP fluorescence. The images shown represent the proximal part of the
wing (see part 6 in photo). The anterior wing margin bifurcates in two directions. The inner branch drives the bundle of axons toward the thoracic
structures. The wing structures (margin and veins) appear in red. (1) Tiny fluorescent cells appear first. (2) Tiny doublets indicating cell division are
evident and axons appear to elongate in a ‘‘pioneer tract’’ (one day after emergence). (3) Heterogeneous spots comprising one, two or four labeled
cells are visible. (4) Homogeneous clusters comprising one highly-labeled cell and a string of weakly-labeled cells are visible. The wings samples
indicated in panels (3) and (4) are about 5 hours old. (5) Wing from a 5 day old adult. An axonal bundle is evident, as is the absence of cell body
labeling. (6) Representative photograph of a Drosophila wing shows the three neuronal paths (A,B,C) and the proximal part of the wing.
doi:10.1371/journal.pone.0002395.g001
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larvae at adulthood (see Figure S5). This may indirectly indicate

tiny stochastic differences in the number of mechanoreceptors.

Because some expressed alleles of the for gene induce fidelity to

the site of birth, whereas others induce a predilection to explore

new habitats and engage in foraging [31], the differences in

neurogenesis in the young adult wings Cantonese-S (C-S) was

examined between these two behavioral populations i.e. flies (C-S)

showing fidelity to their birth site and flies (C-S) flying away to find

an alternative food spot. The anti synaptotagmin (syt ) and anti

synaptobrevin (e-syb) immunoreactivity levels (two components of

the neurosecretory vesicles measured as synaptic markers) were

stronger in the two day old explorer adult wings (C-S) compared

with the sedentary adult wing (C-S) (Figure 7). We show also that

the completion of wing neurogenesis is correlated to exploration

skills (Figure 7).

The population density influences adult wing
neurogenesis

The wing neuronal maturation of newborn Drosophila adults of

the same genotype was examined to verify whether transient and

non-heritable variants might be recruited from an undecided fate

after adult emergence. This might also suggest that stochastically-

generated variants in a limited window of time after adult birth

constitute a natural transient polymorphism repertoire. We

reasoned that this scenario, if verified, would facilitate a better

adaptive response to the environment, including dispersion and

consequently lower population density in crowdy niche where food

ressources become limited to sustain demographic expansion.

This prompted us to analyze whether the larval or adult

population densities could influence wing fluorescence. An

alternative strategy was used for this analysis which involves a

Figure 2. Recombination induced at the early pupal stage: fluorescence analysis in the Drosophila wing after adult emergence.
Analysis of fluorescence in the anterior wing margin after emergence of the adult fly (1–6): Progenies of the A+B cross (see Materials and Methods) were
heat-shocked at the early pupal stage and the adult wings were analyzed for GFP fluorescence. (1–4) Representative images of two typical wings are
shown. Note the alignment of the fluorescent cells, and that there are no axons visible as yet (alignment of ‘‘boutons’’). Note also the disparity
between differentiation processes in the same wing. (5) Heavily fluorescent dorsal row of sensilla along the wing margin. (6) Another typical wing
shows two dorsal rows of fluorescence: one is intense, the other weak. The latter weak row does not exist in (5), although the wings are of roughly
the same age. (see photo 1 in this panel and figure 1 photo 6 for dimensions and orientation). Analysis of fluorescence in the median vein III of the adult
wing at between 5 and 10 hours after emergence (7–10): (7–10) Campaniform sensilla along vein III of an adult wing. One sensilla has four labeled cells,
another shows two labeled cells, and two other sensilla show one labeled cell undergoing division (planar anaphase). (see photo 1 in this panel and
figure 1 photo 6 for dimensions and orientation).
doi:10.1371/journal.pone.0002395.g002

Neurogenesis in Drosophila
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transgenic fly bearing the GFP-syt construct. This system was

employed to overcome the risks of any side effects provoked by the

heat shock step in the induced recombination procedure. The

newly emerged homozygous female adults GFP-syt showed

stochastic variations in their fluorescence levels as expected (see

Figure S4). We then investigated whether a directional influence

caused by environmental factors might modify wing sensory cell

development. The breeding conditions in laboratory allowed us to

control the larval and/or adult densities. A high density of adults

or larvae significantly up-regulated the fluorescence patterns in the

wing during the early stages of adulthood. After three days, the

labeling tended to become weaker and no differences could

eventually be detected among the animals (Figure 8). On the other

hand, the Rover allele conferred transiently more syt immunoreac-

tivity in wings of young adults compared with sitter when the flies

were raised at a high density (see Table S1).

Adult neurogenesis in Drosophila as a ‘time window’ for
generating non-heritable variants in a fluctuating
environment

We analyzed how the nutritional conditions of the larvae might

influence adult wing neurogenesis. It has been well documented in

Drosophila larvae that defects in the insulin transduction pathway

and/or starvation results in proportioned but smaller adult flies

[41]. In our current experiments, when the mutant dnc

(phosphodiesterase) was reared in a food-poor environment, the

adults had smaller body and wing sizes (up to a 45% reduction).

Wing analysis of these flies showed that this is mostly due to a

decrease in cell size as the cell number seemed to be little affected

(Figure 9). These definitive tiny flies retained a full flight capability

when the newly-emerged adults were placed on an optimal food

source. In addition, although their fecundity was reduced, these

mutant flies were able to rescue their original body dimensions,

including both wing and cell sizes, after two or three generations

(Figure 9). The tiny newborn syt-GFP flies obtained after larval

starvation also showed the ability to recover their wing

neurogenesis when they were placed back on optimal food

conditions. However, this neurogenesis appeared to be more

chaotic and delayed compared with the controls (well fed larvae)

(Figure 10). Wing neurogenesis restarts once optimal food

conditions return, but develops according to the reduced

dimensions imposed by the sizes of the pupae. We speculate that

this incomplete neuronal architecture that follows the emergence

of the adult flies from their pupae constitutes a ‘second chance’

mechanism that can overcome drastically unfavorable food

conditions that exist during the larval stages.

A unilateral lesion of the anterior wing margin nerve
abolishes exploratory skills

We designed a system to analyze exploratory skills in an

experimental arena where flies are prevented from flying using

physical constraints. Flies therefore explore by walking. The

experimental design and our results are summarized in Figure 11.

The attractive combination of ethanol and grape juice odorants

injected in the arena induced strong exploratory behaviour in

individually tested flies. A behavioural sexual dimorphism was also

observed; the males were very active and explored widely whereas

the females were less active and only investigated the nearby origin

Figure 3. Analysis of fluorescence in the anterior wing margin of the adult fly at 5 days after emergence from the pupa (mitotic
recombination was induced at an early pupal stage). (1,2) Representative images of wings at 1 day after emergence for comparison. Labeled
sensilla in the external branch (fork) of the wing margin and a strongly labeled axonal bundle in the proximal wing are present. Grape-like groups of
cell attached to the bundle of axons, suggest recent neuronal differentiation events. (3,4) 5 day old wings. The absence of labeled cell bodies and
clusters but a strongly fluorescent axonal bundle is observed. (5–8) ‘‘Mistakes’’ in the pattern of fluorescence in 5 day old wings. Bundles of axons
along the anterior wing margin and the absence of labeled cell bodies are observed. (5,6) Hairpin-like axonal bundle. (6,7) ‘‘Errors’’ in the axonal
bundle showing zigzag path-finding at the proximal part of the anterior wing margin. See photo 6 in figure 1 for dimensions and orientation.
doi:10.1371/journal.pone.0002395.g003
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of the odorant source. In both sexes, the typical pattern of

trajectory was drastically perturbed after wing nerve lesion.

Interestingly, the young flies with an unfinished wing neuronal

wiring produced the same type of pattern as the flies with a wing

nerve lesion. These data suggest that the wing neuronal

architecture plays a role in space exploration and in navigation

through odorant gradients. This might thus provide a hypothesis

for a wing chemoreceptor function.

Conclusions
In our present study, evidence for neurogenesis in the adult

Drosophila wing is presented. This has not been previously

elucidated for this structure but is a well documented phenomenon

in the CNS of both adult insects and mammals [37–39,42–46].

Our present data show that cell division in the adult wing is

continued to complete the sensory neuronal architecture. The

reason why this has not been reported previously is likely due to

the extreme resistance of the cuticle to covalent bond breakage or

dissolution by chemical agents or proteases. These technical

difficulties have also greatly impaired immunohistological analysis

of these structures. The MARCM system, however, allowed us to

generate neuron-specific fluorescence under restrictive conditions

i.e. a recombination event is required in the dividing precursor. By

inducing this recombination at any stage of the Drosophila life cycle,

we can track the point at which a cell division event occurs to

produce a mature neuron. This approach turned out to be a

powerful method for elucidating certain cellular events in the wing

that have not been previously described.

By using this genetic method we were able to highlight

previously unexpected steps during cell division in Drosophila.

According to what has been revealed previously regarding the

SOP lineage, fluorescence is expected to ‘‘pass’’ from a progenitor

cell to one daughter cell only, but not to the sibling cell. In such

instances, we would obtain only one labeled cell in the sensilla,

regardless of its developmental stage. However, we detected

distinct spots containing one, two or four labeled cells in

campaniform sensilla of the same wing on the third vein. Because

numerous papers assert that sensilla contain only one neuron, our

data argues in favor of transiently expressed elav in non-neuronal

cells. In the external fork of the anterior wing margin, clusters with

two or four fluorescent cells were observed, which is in accordance

with neuronal division in multiple innervated chemoreceptors. To

distinguish between different scenarios will prove difficult until

reliable markers are established that can discriminate between

these cell identities.

Early reports have shown a first wave of axonogenesis within 1

or 2 hours after the onset of metamorphosis from neuronal cells

born before pupariation [14]. A second wave has been described

to arrive 12 hours later, and by 16 hours the nerve wing pattern is

established [14]. This two steps process has been confirmed also

for the campaniform sensilla on the third vein [47]. Our current

data, however, seem to suggest the existence of extra waves of

neuronal cell birth and axonogenesis after the fly emerges from

pupae.

Many functions of wing sensory receptors (mechano- and

chemoreceptors) are still poorly understood. Hypothetical roles

were investigated in conditions where physical constraints

prevented flight (arena system). When gradients of attractive

odorants are generated inside such an arena, the exploratory mode

was stereotyped and revealed a sexual dimorphism. Interestingly,

the unilateral wing nerve lesion that was induced in 5 day old flies

was found to cause a behavioural phenotype similar to immature

Figure 4. Recombination induced at the adult emergence stage: time course analysis of fluorescence in the corresponding wing.
Progenies of the A+B cross (see Materials and Methods) were heat-shocked after adult emergence and wings were analyzed for GFP fluorescence at
the indicated times. (1) Control heat shock at t = 0. (2,3) 5 hours after heat shock, (3) is a higher magnification of (2). (4) one day (5) five days and (6)
three weeks after heat shock. See photo 6/figure 1 for orientation and dimensions.
doi:10.1371/journal.pone.0002395.g004
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adults (5 hours old). These results unambiguously reveal a role for

sensory cells in the wing which is not limited to the mechanical

control of flight. It is well known that flies spend considerable time

brushing their wings and abdomen with their legs, which might

stimulate some types of mechanoreceptors. Moreover, the

hypothesis that molecules (volatile or not) might be spread

mechanically to facilitate their binding to the taste like organs

on wing is reinforced by the observation that ‘‘brooming’’ precedes

exploration. This raises the fascinating question of what the

behavioural impacts of the wing mechanoreceptors and contact

chemoreceptors are when they are activated simultaneously and

send coincident inputs via the same nerve.

We observed also a good match between the time course of male

sexual maturity (between 2 and 3 days as reported elsewhere [48–

50]) and the wing neurogenesis described in this report. This argues

in favour of the hypothesis that the wingbeat frequency during

courtship singing might be partially under the control of some

sensory stimuli (contact or chemical) conveyed by wing nerves.

On the other hand, the general current belief is that cuticular

structures (socket and hair) are completed at the emergence of the

adult fly. The trichogen and tormogen cells constitutively found in

the sensilla are known to be structured at the end of pupal stage

and we show evidence that at this stage the neurogenesis of

multiple innervated chemoreceptors underlying the gustatory

sensilla are still under development. This delay in the neuronal

architecture strongly supports the scenario that developmental

chemosensory processing is awaiting epigenetic signals as suggest-

ed previously [51]. Specific plasticities for each wing system such

as courtship singing, contact perception, chemical recognition by

taste receptors and/or odorant binding by OBPs might be

disconnected from each other. However, it is intuitive that

mechanoreceptors should not be dependent on the local

environment.

Many researchers have observed over a long period of time that

there are small variations in the number of stout bristles in the

Drosophila wing between male and female populations. We report

herein that such variations also occur within the same genotype.

Because these hairs constitute pierced tubes that shelter the

dendrites of mechanoreceptors and form an intrinsic part of this

sensory structure, we might indirectly assume that the number of

mechanoreceptors slightly varies with the number of bristles. The

fluorescent signals were found to fade as the animals aged, so we

were not able to determine the final number of mechano/

chemoreceptors at five days after adult emergence.

Figure 5. Measurement of adult wing fluorescence induced by recombination at different stages of the Drosophila life cycle using
the MARCM system: influence of larval behavior. Graphs showing the comparative levels of fluorescence in two behavioral phenotypes: the
exploratory and sedentary behaviors. The progenies of both phenotypes from the A+B cross of the MARCM system were separated at the third instar
larval stage as indicated in the Methods. A heat-shock procedure was then carried out at different stages of the Drosophila life cycle. (A) Wings of 5
day old female flies (100 for each heat shock procedure) were dissected and analyzed for fluorescence. Bars are the mean +/2SD, n = 3, * P,0.01
(Student’s t test). (B) Wings from 100 female flies presenting exploratory or sedentary behavior as larvae were analyzed using the five categories of
fluorescence intensity arbitrarily set against standards. (C) Controls without heat-shock are shown. (D) A comparative measure of the total
fluorescence in the adult heads from MARCM progenies (5 day old females flies, 100) corresponding to heat-shock treatments at different stages is
represented.
doi:10.1371/journal.pone.0002395.g005
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Phenotypic plasticity of the wing size and shape of Drosophila

bred over a range of viable temperatures has been reported

[22,24]. Briefly, the wing size decreases when the temperature

increases and at the opposite wing size increases in colder

temperatures. It is generally believed that environmental condi-

tions, such as nutrition, contribute to morphological variation

between individuals by affecting body size or other morphological

traits that are compatible with viable animals [22,24]. The range

of these modifications is also strictly limited, and defines rules for

allometric plasticity in the context of environmental fluctuations

[22]. These observations clearly show that epigenetic factors affect

wing morphology and, consequently, wing neurogenesis. In this

report, we describe that poor nutritional conditions generate non-

heritable variants with a preserved adult neurogenic capacity

which could be reactivated once optimal conditions return.

However, this is far removed of well established discontinuous

polyphenism that had been shown in species like A. pisum and that

generates alternative and distinct morphotypes dependent upon

the environment [52]. The late neurogenesis described in our

present study seems to be an adaptive mechanism and a

continuous ‘reaction norm’ to enable survival in a fluctuating

environment.

On the other hand, our data show that the well characterized

binary natural behavior polymorphism Rover/sitter affects multiple

downstream genes and cellular systems. Rover/sitter is controlled by

frequency dependent alleles of the gene for and its bimodal

distribution suggests that the two groups (exploratory and

sedentary) differ in the range of phenotypic plasticity that they

are capable of manifesting when exposed to the same environ-

mental constraints (see Table S1).

Furthermore, breeding conditions were experimentally manip-

ulated in order to evaluate whether variability in neurogenesis

might be directional, depending on the adult fly or larval

population densities. Results suggest that demographic constraints

confer a qualitative advantage in adult wing neurogenesis that

likely enables exploration to be performed more efficiently at early

stage of adulthood.

Selection should favor genetic/epigenetic intertwined mecha-

nisms that adapt better individuals to adversity and/or hostility in

unpredictable environments. Consistent with previous reports [23–

26,53,54], our current study shows that the Drosophila genome is

thus capable of producing subtle variants in a limited time window

after adult birth and that this phenomenon is under the control of

environmental factors to select the best fitness for the actual

conditions.

Our present data also argue in favor of a non-synchronized

process of adult wing neurogenesis after emergence and raise the

question of the role of environmental cues in shaping appropriate

Figure 6. Quantification of fluorescence punctua in MARCM system progenies bearing the Rover or sitter alleles. Rover and sitter alleles
were placed in the genetic background of one parent of the MARCM system as shown in the indicated scheme. Genetically modified A was crossed
with B and progenies were then submitted to heat shock treatments at the late third instar larval stage. This procedure allows us to obtain a
fluorescent Rover phenotype (Rover is dominant) and/or an enrichment of the fluorescent sitter phenotype. The control is the non-selected (total)
progenies of the MARCM system. The three wing ‘‘pioneer tracts’’ are indicated in the representative image of the adult wing. (A)The fluorescence
intensities were quantified in 3 days old wings from 100 females (see Methods). (B)The dosage of synaptotagmin molecules in 100 female wings
strictly Rover or sitter strains is shown (bottom right). Differences between the two variants fade by day 7. Values represent the mean +/2SE, n = 3, *
p,0,01 (Student test). Punctua were also counted in the costal nerve in one day old wings: control 63+/25 Rover phenotype 68+/25 and sitter
phenotype 54+/27, n = 20, * p,0,01
doi:10.1371/journal.pone.0002395.g006
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variants. The genetic background selected by the prevailing

ecological conditions might work in combination with the window

of the developmental plasticity that we reveal in our present

experiments. This strongly suggests that incomplete neurogenesis

is a target for epigenetic regulation to recruit variants under

control of environmental factors.

Methods

Experimental procedures
Mitotic recombination. The Drosophila flies used in this

study were obtained from the Bloomington Center, Indiana

University US and were A: P(GawB)elav C155 ,w, P[neoFRT]

19A, and B: P[neoFRT] 19 A, P(tubP-gal80)LL1, P[hsFLP]1,w’;

P[UAs-mCD8::GFP]LL5 flies were crossed and the progenies

were heat-shocked 3 times for 15 min at 37uC and kept for 15 min

at room temperature between each heat treatment. These strains

were kindly donated by the Liqun Luo laboratory and have been

described previously [40]. The constructs are on the X

chromosome, which implies that recombination induced by

flipase occurs in females. Wings were cut at different stages,

mounted on a glass slide with a drop of water and fixed with a

cover slip. Samples were analyzed by fluorescence

spectrophotometry at the excitation/absorption wavelengths

recommended by manufacturer for GFP detection and

quantification (Cary 300, Varian).

The flipase enzyme expressed under the heat-shock promoter

exchanges arms after recognition of the FRT motifs. This strategy

dissociates the inhibitor (Gal 80) from the activator transcription

factor (Gal 4) so that the fluorescent axonal marker is expressed

only in one daughter cell [40]. The constructs in the first

chromosome used for recombination are shown. These strains are

available at the Bloomington Center as the MARCM system. When the

arms are exchanged during mitosis, the inhibitor of Gal 4-

mediated transcription (Gal 80) and the activator of its

transcription (Gal 4) become physically separated, the conse-

quence of which is that each transgene will be expressed in one or

the other daughter cell after recombination. In the absence of

recombination, the co-presence of Gal 4 and Gal 80 blocks the

transcription of mCD8:GFP, a neuron membrane targeted

marker. When recombination takes place, mCD8:GFP is ex-

pressed in one daughter cell. This system allows the detection of

dendritic and axonal projections, and the cell body of neurons

also, but only when a recombination event occurs in a progenitor

cell. Moreover, Gal 4 is under the control of the Elav promoter

which is specifically activated in neurons, pIIb and pIIIb [40].

Genetic constructs used in this report. See Figure S1 for a

schematic of the MARCM system.

Figure 7. Dosage of syt and syb in adult wings from the exploratory and sedentary behavioral categories. (A and B): Same aged pupae
(100) were placed in tube 1 with food (fixed around the disc). The flies in tube 2 with food (explorers) and tube 1 (sedentary) were collected two days
after adult emergence. The wings were then cut off and analyzed by western blotting using anti syt or anti syb antibodies and protein A labeled with
I125 (Bolton Hunter labeling, Amersham). Explorers showed significantly more labeling on day 2 (**p,0.01,bar are the mean +/2SD, n = 5) for these
two molecules but these differences had faded by day 7. (C): individual pupae were placed in tube 1 without food. The emerged flies were counted in
the tube 2 with food at the indicated times. The completion of neurogenesis was evaluated as a continuous fluorescent line corresponding to the
nerve of the anterior wing margin. 25 syt-GFP flies were tested one by one and the graph represents the ratio of flies found in tube 2 versus total
pupae and the proportion of achieved wing neurogenesis in those flies.
doi:10.1371/journal.pone.0002395.g007
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P(GawB)elav C155 ,w, P[neoFRT] 19A; Bc[i] Egfr(E1)/Cyo was

crossed with two strains: +/+; Rover or +/+; 164 (sitter allele) on the

second chromosome. The resulting homozygous F2 Rover or sitter

progeny were then crossed with the line P[neoFRT] 19 A, P(tubP-

gal80)LL1, P[hsFLP]1,w’; P[UAs-mCD8::GFP]. The progeny of

this cross were heat-shocked at the third instar larval stage using

the same procedure described above. Adult females were analyzed

as follows: the heads were removed with a razor and squashed to

check the presence/absence of fluorescence. The positive samples

were selected and the corresponding wings were analyzed as

indicated above. Rover is dominant over sitter so one copy is

sufficient to drive Rover behavior. Regarding 164 (sitter allele), this

cross enriched for sitter behavior due to the fact that the P[UAs-

mCD8::GFP] construct is on the second chromosome as the for

gene (double heterozygous) and also that the P[UAs-mCD8::GFP]

homozygous line shows a trend towards sitter behavior. In

indicated experiment, the dnc mutant [55] very sensitive to food

conditions was used to generate proportioned but small bodies

when the larvae are subjected to partial starvation.

We also analyzed the fluorescent patterns in the wing using a

line that expresses Gal4 and syt.GFP under the control of the Elav

promoter (Bloomington Center). This line [UAS-syt.GFP: P[ GawB]

elav[C155], P[UAS-syt.eGFP],w*] was used to follow the fluores-

cence of synaptotagmin, a constitutive component of synaptic

vesicles, and its axonal transport from the cell body to the

terminals in the thoracic structures.

Behavioral tests. Exploratory and sedentary behaviors were

sorted at the third instar larval stage as indicated in references 28–

30. When placed in optimal food patches, the larvae that escaped

were deemed to be explorers and the larvae remaining on the

patch to be sedentary.

Furthermore, in order to analyse the wing neuronal component

in exploration and navigation, an arena was designed as indicated

in figures. This system was designed to generate a gradient of

odorants in a controlled manner inside the arena volume where

flies are able to walk but not to fly. This arena is a circle of 30 cm

diameter and 7 mm in depth. The plastic structure contains four

channels smaller to the fly body size, one of which is connected to

the odorants source. This structure is placed in sandwich between

two glass plates. 5 ml of ethanol and grape juice (1/3) in a 30 ml

glass syringe was used to generate odors. The air of the syringe

connected to the arena by a capillary was injected using an

automatic syringe pusher at 1 ml/minute to create a gradient. A

camera linked to a computerized analysis system was placed above

the arena in order to monitor the trajectories as described

elsewhere [56]. Flies were tested as indicated in the figure legends

one by one, male and female. For quantification, four landmarks

as represented in figures were used to count the passages. The

Figure 8. Analysis of the effects of population density on wing fluorescence using the syt-GFP construct. Fluorescence in adult
Drosophila wings was analyzed in 2 day old female flies. Two groups of animals (both males and females) from the same larval conditions were kept
at a high density (100 individuals in 20 ml air volume) and low density (10 flies in 200 ml air volume) after their emergence. At this stage, fluorescence
shows stochastic variation. Fluorescence intensities equal to or above the levels shown in the photograph were determined from a total of 100
females for each experiment. The values shown are the mean +/2SE (n = 3). The same experiment was carried out with high density larvae (100 in
5 ml food volume) versus low density larvae (10 in 5 ml food volume). In this case the population densities of the adults were kept identical (100 in
200 ml volume) and the values are the mean +/2SE (n = 3) (* p,0.01, **p,0.001,Student test). Two day old flies (females) from three generations
reared in high density or low density conditions were also analyzed over the full range of fluorescence (determined as 5 categories). Values are the
mean +/2SE (n = 5 and *p,0.01). The five categories were analyzed in the context of contingency tables: Chi square value 12.0296 for a Prob =
0.0171 and DF: 4 (Fisher’s exact test: table probability (P) 1.914E-06 and Pr, = P 0.0172).
doi:10.1371/journal.pone.0002395.g008
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experiments were conducted for 15 minutes, beyond which time

the arena starts to be saturated (flies starved for 2 hours before

experiments). In the indicated experiments, the time necessary for

5 day old males (C-S) to perform 100 passages was used as a

standard to determine the comparative number of passages for

flies under conditions indicated in the figures.

To generate a unilateral lesion of the wing nerve, flies were

immobilized under CO2 and a razor was used to cut the anterior

wing margin as indicated elsewhere [7]. This procedure does not

alter the life span of the flies [7].

Quantification of fluorescence in the adult wings and

head extracts. Flies A and B were crossed and the resulting

progeny were heated-shocked 3 times for 15 min at 37uC, each

heat treatment being separated by a 15 min incubation at room

temperature. At the third instar larval stage, exploratory and

sedentary behaviors were analyzed and sorted. The heat shock

procedure was carried out at the indicated period of the fly life

cycle (when the heat-shock was delivered at the very late third

instar stage, the exploratory and sedentary behaviors were sorted

out first). At day 5, the heat-shock procedure was carried out a few

hours prior to the fluorescence analysis. Regardless of the timing of

the heat shock treatment, the wings of the flies were excised on day

5 with a razor and placed onto glass slides. An arbitrary level of

fluorescence was determined as the background standard and

wings above or equal to this level were counted. This analysis was

carried out visually with a fluorescence microscope (Leica

MZFLIII) (from 1 X to 10 X original magnification) and

verified by quantification of fluorescence using a Cary

spectrophotometer and multi well plate (one wing was placed in

50 ul of water in each well). Only females were considered for

analysis.

As indicated in the figures, five categories for the intensity of

fluorescence were also determined using fluorescent flies as

standards. The wings were visually attributed to one of these 5

categories using a fluorescence microscope and this was verified by

quantification with a Cary spectrophotometer. One hundred

female flies were analyzed for each experiment and this trial was

repeated 3 times.

Fluorescence was also analyzed in adult head extracts. The

adult heads were removed with a razor and resuspended in a

phosphate buffer (10 mM at pH 7.4) using a dual glass

homogenizer. Because the fluorescent marker is a membrane

hybrid molecule, the extract was sonicated for 1 min (Bioblok

sonicator, power 30) in order to access the fluorescent probe. Fifty

female flies were ground on day 5 in 1 ml buffer under the

conditions described in the figure legends and the fluorescence

values were measured for aliquots of 100 ml in a multi-well plate

with a Cary spectrophotometer (Varian analytical instrument).

This experiment was also repeated 3 times.

Dosage of synaptotagmin (syt) and synaptobrevin (syb) in

adult wings from the exploratory and sedentary behavioral

categories. Two identical tubes were placed in a chamber but

the same aged pupae were placed only in tube 1 (see Figure 7).

Equal amounts of yeast food were then placed inside tubes 1 and

2, which were pierced with holes to allow easy access to the flies.

The flies in tube 2 (explorers) and tube 1 (sedentary) were collected

Figure 9. Analysis of sensory neurons in the small size adult wing generated by poor nutritional conditions. The dnc mutant is very
sensitive to food conditions and generates proportioned but small bodies when the larvae are subjected to partial starvation. These tiny flies were
placed in optimal food conditions after their emergence and showed full flight capabilities. The third generation was analyzed and showed
phenotypic reversal. The number of mechanoreceptor neurons was deduced from the number of stout bristles. The cell number index was deduced
by counting the number of hairs in the cross vein (small and median arrow) and the stout bristles along the wing margin.The relative cell size was the
number of small hairs on the surface of the Drosophila wing each corresponds to a single cell divided by the length of the cross vein. Bar are the
mean+/2SD, n = 10 (**p,0.01, Student test).
doi:10.1371/journal.pone.0002395.g009
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two days after adult emergence of the pupae. The wings from 50

flies were cut off and ground in 100 ml SDS 1% and after brief

centrifugation, the supernatant (50 ml) was analyzed by western

blotting using anti syt or anti syb antibodies and protein A labeled

with I125 (Bolton Hunter labeling, Amersham). The nitrocellose

bands corresponding to the molecular weights were cut and

counted in a Beckman gamma counter.

Supporting Information

Figure S1 Genetic scheme for the mitotic recombination events

that drive fluorescence in Drosophila neurons (constructs obtained

from the Bloomington Center).

Found at: doi:10.1371/journal.pone.0002395.s001 (0.06 MB TIF)

Figure S2 Control of fluorescence in the adult wing of the

MARCM system progeny without heat shock. (a) and (b), the P

[neoFRT]19A, P [tub-Gal80] LL1, P[hs FLP]1, w*; P[UAS-

mCD8::GFP] strain with and without heat shock, respectively.

When this strain is crossed with P [Gaw B] elav C155,

w*,p[neoFRT] 19 A, the progenies bearing one copy of the two

chromosomes do not show any substantial fluorescence signal

without heat shock. However, we did observe very marginal

fluorescence in the wing, likely due to a leaky hsp-flipase. These

data constitute the controls for all the experiments described in this

report. Also shown are representative images of wings from crosses

without heat shock at adult emergence (c), and from 1 day (d) and

5 days old flies (e).

Found at: doi:10.1371/journal.pone.0002395.s002 (0.96 MB TIF)

Figure S3 Heterogeneity of fluorescence in two day old adult

wings generated by the MARCM system. (1-5): wings from a one

day old female fly. Clusters of neuronal cells (chemoreceptors) are

clearly evident. Some clusters show 5 to 6 cells (big arrow) or 2

cells (small arrow), although the mature sensilla are identical. We

also see heterogeneous processes in the same wing margin (middle

left) and observe variable fluorescent patterns between wings from

different flies (top). (6,7): differences in the number of clusters in

the fork from 2 day old wings (6 versus 3). (8): represents a higher

magnification of the wing proximal portion.

Found at: doi:10.1371/journal.pone.0002395.s003 (1.22 MB TIF)

Figure S4 Analysis of fluorescence in the P[ GawB] elav[C155],

P[UAS-syt.eGFP],w* strain. Wings of two day old female flies

show strong variations in the intensity and the pattern of labeling,

which suggests that stochastic processes of sensory neuron

maturation occur. syt. GFP is a hybrid molecule of synaptotagmin

which is constitutively expressed in neurosecretory vesicles. The

fluorescence we see is therefore linked to the synthesis of

neurosecretory vesicles and their axonal transport from the cell

body to the terminals in the thoracic structures. The signal

patterns in these strains are very similar to those obtained using the

Figure 10. Analysis of neurogenesis in the adult wing from larvae subjected to starvation conditions. Larvae were subjected to
starvation conditions (pupae were harvested from a 1 month old vial of stock or alternatively early third instar larvae were placed on agar/water
medium) and the emerged adults were placed in optimal food conditions. This generates a normally proportioned small sized adult fly. (1) (dark
photo): fluorescence in two day old female wings of the syt- GFP strain: (top) wing syt-GFP control and (bottom) wing syt-GFP from starved larva.
These two wings are represented in the bottom right image in panel 2. Note the smaller size of the top wing (larva submitted to starvation). (2, top) :
two day old female syt-GFP wings (a small wing from a starved larva and a control). Note that adult neurogenesis adapts to the smaller wing size. Two
day old (3,5) and three day old (4,6) adult wings from starved syt-GFP larvae. An adult wing from a syt-GFP starved larva immediately after emergence
is shown in (7). Note the delayed and chaotic, but preserved adult wing neurogenesis in the starved animals once optimal food conditions are
returned after emergence. These photographs are representative of most of the reduced size animals. See figure 1 photo 6 for dimensions and
orientation.
doi:10.1371/journal.pone.0002395.g010
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recombination strategy. Panels 1–3 and 7–9 show the proximal

part of the wing margin. Panels 4–5 show the distal part of the

wing margin and 6 and 9 are controls without GFP.

Found at: doi:10.1371/journal.pone.0002395.s004 (1.15 MB TIF)

Figure S5 Number of stout bristles in the wing margin from the

cross vein to the distal extremity. Bristles were counted in females

flies of different genotypes. The white oval area was counted from

the cross vein to the distal part. Photographs above show

significant differences between two female flies. We observed very

small differences between the strains and we detect variability

between individuals in each strain (see below): Rover : 9.28+/

20.275* (p,0.05 versus Cs) [from 8 to 12] sitter : 11.57+/20.375

[from 10 to 14] Y2-2 : 9.4+/20.5* (p,0.05 versus Cs) [from 8 to

11] dnc : 11.1+/20.2 [from 10 to 13] rut : 11+/20.2 [from 10 to

12]

Found at: doi:10.1371/journal.pone.0002395.s005 (0.47 MB TIF)

Table S1 Relationship between population density and syt

synthesis in the Drosophila wing: influence of the Rover/sitter

background. Ratio between the syt levels in a high versus a low

adult population density and in a high versus a low larval

population density. Newborn adults were maintained at high

density (100 flies per vial during the first two days) or low density

(10 flies per vial) and/or 100 larvae (high density) versus 10 larvae

(low density) per vial. The dosage of syt was determined using

Bolton Hunter labeled protein A after gel electrophoresis of two

day old wing extracts. Values represent the mean ratios of the syt

levels in high versus low density populations for three determina-

tions. *p,0.01 versus sitter, Student test). The control experiments

followed the same protocol using head extracts and an anti HRP

antibody (neuronal marker).

Found at: doi:10.1371/journal.pone.0002395.s006 (0.02 MB

DOC)

Acknowledgments

We thank R. Feyereisen for helpful comments and discussions. We also

thank M. Sokolowski for providing the Drosophila mutants Rover and sitter.

We are grateful for the manuscript reading and precious comments

brouught by R. Greenspan, M. Dickinson, T. Daniel, A. Dieudonné and
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Figure 11. Exploration analysis of flies after unilateral lesion of the wing costal nerve and after emergence from pupa. (1–4) Flies
were placed individually in an arena designed so that they can walk but not fly. A source of odorants (ethanol/apple juice, 1/3) is injected by a push
syringe at 1ml/min (arrow) and the exploration of flies is monitored by a camera connected to software to enable analysis. A typical representative
trajectory is shown for female (1,2) and male flies (3,4) (5 day old) with (2,4)or without (1,3) an unilateral wing costal nerve lesion (lesion is indicated as
male wing* and female wing* in graphs). Four ‘‘check point’’ landmarks were used for the counting of fly passages (see top right , black triangle, blue
circle and white oblong shape). Bottom graph: comparative frequency of passages in the black triangle landmark. The time for 100 passages for a
male was used a time period to count the passages on the others flies. Bars are the mean +/2SE Student t test analysis; *p,0.001, n = 10. Right graph:
proportion of time spent in black triangle for the indicated flies. The experiment was carried out on a 15 minutes period and flies were tested one by
one. Bars are the mean +/2SE *Student t test analysis; *p,0.001, n = 20. Five day old flies with or without a wing nerve lesion and 5 hour old young
flies were tested as indicated in the graphs.
doi:10.1371/journal.pone.0002395.g011
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