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Abstract

A set of sunflower recombinant inbred lines (RILs) was used to study

agronomical traits under greenhouse and field conditions each with

two water treatments and three replications. The difference among

RILs was significant for all the traits studied in all conditions; and

water treatment · RILs interaction was also observed for most of the

traits in both field and greenhouse conditions. Because of the low rate

of drought stress, this part of field data are not informative. Several

quantitative trait loci (QTLs) were identified for yield-related traits

with the percentage of phenotypic variance explained by QTLs (R2)

ranging from 4% to 40%. Several QTLs for grain yield per plant

(GYP) under four water treatments were identified on different linkage

groups, among which two were specific to a single treatment

(GYPN.4.1, GYPI.7.1). Three QTLs for GYP were overlapped with

several QTLs for drought-adaptative traits detected in our previous

study (Poormohammad Kiani et al. 2007b). The whole results do

highlight interesting genomic regions for marker-based breeding

programmes for drought tolerance in sunflower.

Key words: sunflower — water stress — grain yield — QTL —

yield-related traits

Sunflower (Helianthus annuus L.) is one of the most important
sources of vegetable oil in the world. Identification of genetic
factors affecting agronomic and economically important traits

in sunflower could help to improve breeding methods. Yield
components as well as other quantitative traits are controlled
by several genetic loci with additive and non-additive gene

actions, and genotype · environment interactions are impor-
tant components of variance decreasing their heritability (Fick
1978, Fick and Miller 1997).

Progress in increasing yield and its stability through a direct
selection has been hampered by the low heritability of yield,
particularly under drought and by its large genotype · envi-

ronment interaction (Blum 1988, Ceccarelli and Grando 1996,
Tuberosa et al. 2002). As an alternative to the direct selection
for yield under drought conditions, morpho-physiological traits
genetically correlated with yield, have been targeted in selection

programmes pursued in collaboration between physiologists
and breeders (Blum 1988, Chimenti et al. 2002, Tuberosa et al.
2002). Correlation coefficients have been used by many

researchers in determining interrelationships between seed yield
and other characters in sunflower under both well-watered and
drought conditions (Fereres et al. 1986, Alza and Fernandez-

Martinez 1997, Chimenti et al. 2002, Flagella et al. 2002).
Fereres et al. (1986) showed that physiological traits respon-

sible for drought tolerance were not correlated with yield

potential in sunflower, indicating that both can be combined in

improved cultivars. Chimenti et al. (2002) demonstrated that
osmotic adjustment (OA), a parameter directly related to
drought tolerance, contributes to yield maintenance of sun-

flower under pre-anthesis drought conditions. However, the
capacity of sunflower for OA was different depending on
genotype (Maury et al. 1996). Gimenez and Fereres (1986) and

Prieto Iosada (1992) showed that duration of leaf area is
related to rainfed sunflower yield. The yield differences were
also associated with variation in total biomass (BIO) (Alza and
Fernandez-Martinez 1997). However, these phenotypic rela-

tionships have not been shown at molecular level, i.e. by
mapping quantitative trait loci (QTLs) for yield and morpho-
physiological traits in the same mapping population.

Progress in plant genome analysis has made it possible to
examine naturally occurring allelic variation underlying com-
plex traits such as yield. There are several reports, especially

over the last years that deal with drought tolerance on the
physiological and molecular levels in sunflower (Poormoham-
mad Kiani et al. 2007a,b, 2008). Many studies have been
undertaken to find genetic variation in agronomical traits in

sunflower, and QTLs controlling yield components and
morphological traits have been identified in sunflower RILs
(Rachid Al-Chaarani et al. 2004) or F2/F3 populations (Mok-

rani et al. 2002, Bert et al. 2003). However, the studies
mentioned above have been conducted under well-watered
conditions and to our knowledge QTL mapping of agronom-

ical traits and yield in sunflower under drought conditions has
not been reported in literature.
The objectives of the present study were to identify QTLs in

a population of RILs for yield-related traits by using our
recently saturated simple sequence repeat (SSR) and amplified
fragment length polymorphism (AFLP) linkage map (Poor-
mohammad Kiani et al. 2007b), and to compare QTLs

controlling these traits in controlled (greenhouse) and natural
(field) well-watered and water-stressed conditions.

Materials and Methods

Plant materials and genetic linkage map: The characteristic of mapping

population (RILs) and their parents (PAC2 and RHA266) used in the

present study has been explained in detail in our previous study

(Poormohammad Kiani et al. 2007b). Briefly, the mapping population

was developed through single seed descent from F2 plants derived from

a cross between PAC2 and RHA266 and a map was constructed with

304 AFLP and 191 SSRs. Both parental lines (PAC2 and RHA266) are



public inbred lines of sunflower (Zhang et al. 2005). RHA266 is a

branched restorer inbred line, obtained from a cross between wild

H. annuus and Peredovik by USDA and PAC2 is a non-branched

restorer inbred line obtained from a cross between H. petiolaris and

�HA61� by INRA-France (Gentzbittel et al. 1994, 1995). RHA266 is a

branched line with higher values for yield, 1000-grain weight and oil

percentage compared with PAC2 (Gentzbittel et al. 1995, Rachid Al-

Chaarani et al. 2004). The recent map from the cross PAC2 · R-

HA266 (Poormohammad Kiani et al. 2007b), was used in the present

work for identification of QTLs for yield-related traits under different

water treatments.

Greenhouse experiment: A population of 78 RILs were randomly

selected and grown together with their parents (PAC2 and RHA266) in

the greenhouse under controlled conditions. Plants were individually

grown in plastic pots (4.0 l) containing a mixture of 40% soil, 40%

compost and 20% sand. Temperature was maintained at 25/18 ± 2�C
(day/night) and relative humidity was about 65–85 ± 5%. Supple-

mentary light giving an approximately 16-h light and 8-h dark period

was maintained during experiment.

A split-plot experimental design with three blocks was used with

water treatments (well-watered and water-stressed) as the main plot

factor and genotypes (RILs and parental lines) as sub-plot factor. The

RILs and their two parents were randomized within each treatment–

block combination. To simulate water deficit conditions similar to

field, a progressive water stress was imposed at stage near flower bud

formation (R1, Schneiter and Miller 1981) by decreasing progressively

the irrigation to 30% field capacity during 12 days. Both well-watered

and water-stressed plants were weighed and water lost replaced

carefully. Well-watered (control) plants received sufficient water to

maintain soil water content close to field capacity. Water-stressed

plants were subjected to a progressive water stress and irrigated with a

water volume of 60%, 50%, 40% and 30% of field capacity (each for

3 days) during 12 days. Water-stressed plants were then irrigated at

30% of field capacity until harvest.

Field experiment: Two experiments were undertaken in the field

conditions during April–September in 2005 with irrigated and non-

irrigated (rain fed) water treatments and three replications per each

water treatment. Both irrigated and non-irrigated experiments were

located in the same field to have the same condition with a distance

sufficient enough to not allow water to reach non-irrigated field. The

experiment consisted of a split-plot design with three replications. The

main plot contains water treatments (irrigated and non-irrigated) and

genotypes (RILs and parental lines) were considered as sub-plot.

A population of 100 RILs comprising 78 RILs used in the greenhouse

experiment, together with their parents was sown in each water

treatment with three replications. Each replication consisted of two

rows 4.6-m long, with 50 cm between rows and 25 cm between plants

in rows, giving a total number of about 32 plants per plot. The

so-called �irrigated� field was irrigated two times at two critical stages,

just before flowering (33 mm) and at about grain filling (44 mm),

according to sunflower irrigation programme determined by INRA-

France for the region (Fig. 1). A sprinkler irrigation system was used

because of the uniformity of water application. The �rainfed� exper-
iment was not irrigated. Three plants per genotype per water

treatments were randomly chosen for evaluation of the studied traits.

Trait measurements: Days from sowing to flowering (DSF) were

recorded when individual plants in greenhouse and 50% of the plants

per plot in the field were at anthesis. Leaf number per plants (LN),

plant height (PH) and leaf area were measured at flowering stage. Leaf

length (L) and width (W) of all green leaves were measured in both

well-watered and water-stressed conditions at flowering stage, and

total leaf area at flowering (LAF) was calculated with the formula:

LAF = S 0.7L · W (Alza and Fernandez-Martinez 1997). Green leaf

area of the plants was determined weekly from flowering to harvest to

evaluate green leaf area with respect to time. An integral of weekly leaf

area was considered as being an estimate of leaf area duration (LAD,

cm2 days). At maturity, total dry matter �BIO� per plant and head

weight per plant (HW) were determined for three plants per genotype

per water treatment. All plants of plots were also harvested at maturity

and grain yield per plant (GYP) was determined using whole plot

weight divided by the number of plants per plot for all genotypes in

each replication and water treatment.

Statistical analysis and QTL mapping: Normality of the different traits

was assessed according to the Shapiro and Wilk test (SAS PROC

UNIVARIATE). The data were analysed using the SAS PROC GLM as a

split-plot experimental design (SAS Institute Inc. 2002). A mixed

model with water treatment (main plot factor) as fixed effect and

genotypes (sub-plot factor) as random effect, was used for analysis of

the data in both greenhouse and field conditions. Correlations between

GYP and other traits in each of the four conditions and between

genotypes for the same traits across water treatments were determined

using SAS PROC CORR (SAS Institute Inc. 2002).

Quantitative trait loci mapping of the studied traits was performed

by composite interval mapping (CIM) conducted with QTL Cartog-

rapher, version 1.16 (Basten et al. 2002) using mean values of three

replications for each RIL in each water treatment and growth

condition (field or greenhouse). The genome was scanned at 2-cM

intervals with a window size of 15 cM. Up to 15 background markers

were used as cofactors in the CIM analysis identified with the

programme module Srmapqtl (model 6; Basten et al. 2002). A LOD

threshold of 3.0 was used for considering a QTL significant (Rachid

Al-Chaarani et al. 2004). QTLs for different traits were compared on

the base of overlapping support intervals: a decrease in the LOD score

of 1.0, determined the end point of support interval for each QTL

(Lander and Botestein 1989). Additive effects of the detected QTLs

were estimated with the Zmapqtl programme (Basten et al. 2002). The

percentage of phenotypic variance (R2) explained by each QTL was

estimated by QTL Cartographer (Basten et al. 2002).

Results
Phenotypic variation and effect of water stress

The yield-related traits except GYP and HW under water-
stressed condition in the greenhouse did not show deviation
from normal distribution. As normalizing data through
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transformation may misrepresent differences among individu-
als by pulling skewed tails toward the centre of the distribution
(Doerge and Churchill 1994, Mutschler et al. 1996), all
phenotypic analyses were performed on untransformed data.

Considering all the traits studied in different growth
conditions, a high transgressive segregation was observed.
Phenotypic variation of RILs and their parents (PAC2 and

RHA266) in the greenhouse and in the field under two water
treatments are shown in Table 1. Under greenhouse condi-
tions, significant water treatment effect was observed for all of

the studied traits except for DSF and the number of leaf per
plant (LN). Under field conditions, water stress had significant
effect on only HW per plant and GYP. Because of low water
stress effect under field conditions, the results obtained from

non-irrigated field are similar to those obtained from irrigated
field. Therefore, the field data are not very informative for the
purpose of this study; but the QTLs identified under field

conditions were compared with those identified under green-
house conditions. The variability was significant for all the
traits studied in all conditions. Water treatment · RILs

interaction was observed for most of the traits in both field
and greenhouse conditions. Parental lines (PAC2 and
RHA266) differed significantly for LAF and LAD under both

water treatments in the greenhouse and under rainfed treat-
ment in the field. The difference between parental lines was
also significant for PH, BIO and HW under both water
treatments in the field.

Correlation analysis

Correlations between GYP and other studied traits together
with correlations between water treatments for each trait are
summarized in Table 2. High significant correlations were

observed between water treatments for the studied traits under
both greenhouse and field conditions. GYP was correlated
with LAF, LAD, HW and BIO in all four water treatments.

GYP was correlated with PH only under field conditions. DSF
and the number of leaf per plant (LN) were not correlated with
GYP.

QTLs mapping

The map position and characteristics of QTLs associated with

the studied traits in the greenhouse and in the field, under two
water treatments are summarized in Table 3. The QTLs were
designated as the abbreviation of the trait followed by �W � or
�D� for well-watered or water-stressed in the greenhouse, and
by �I � and �NI � for irrigated and non-irrigated (rainfed) in the
field. The corresponding linkage group and the number of
QTLs in the linkage group were also indicated for each QTL.

For an easier overview of overlapping QTLs between traits
and growth conditions, an image of all QTL regions is
presented as Fig. 2.

Two to seven QTLs were found depending on the trait and
growth conditions. QTLs explained from 4% to 40% of the
phenotypic variance of the traits (R2), and both parental lines

contributed to the expression of the different target traits.
Overlapping QTLs were found for different traits on several
linkage groups (Table 3 and Fig. 2).

Several QTLs were detected for DSF in four different
growth conditions (Table 3 and Fig. 2) and most of them were
common across at least two growth conditions. The most
important QTL for DSF is located on linkage group 7 where

several QTLs under different growth conditions were
co-localized. The positive alleles for these overlapped QTLs
come from RHA266. Seventeen QTLs were identified for leaf
number per plant (LN) under four growth conditions among

which, nine were common across at least two growth condi-
tions and eight were detected under only one condition. Both
parental lines contributed almost equally to QTL expression.

For LAF, 21 QTLs were detected under four growth condi-
tions, their number being from three to six depending on
growth conditions. Among 21 QTLs, nine were detected in

only one of the growth conditions and 12 were detected in at
least two growth conditions. The phenotypic variance
explained by each QTL ranged from 5% to 19%, and both
parental lines contributed to positive alleles. As far as LAD is

concerned, 22 QTLs were identified under four growth
conditions, explaining from 4% to 17% of the total variation.
Eleven QTLs were specific to single water treatment and 11

were detected in at least two water treatments. The positive
alleles for 17 QTLs come from RHA266 and for five QTLs
they come from PAC2. A total of 17 QTLs were detected for

PH being six unique QTLs and 11 QTLs that were detected in
at least two growth conditions. The QTLs explained from 5%
to 23% of phenotypic variance and both parental lines

contributed to trait expression. However, RHA266 contri-
buted to positive alleles at 10 QTLs. For total dry matter �BIO�
per plant, 19 QTLs were identified, explaining from 5% to
23% of variation. The number of QTLs in four growth

conditions varied from two to six; 13 were detected in only one
of the growth conditions and six were common across different
growth conditions. RHA266 contributed to positive alleles at

14 of 19 QTLs.
A total of 24 QTL were identified for HW per plant under

four growth conditions with the phenotypic variance explained

from 4% to 24%. The number of QTLs differed from four to
seven depending on the growth condition. Among 24 QTLs, 16
were detected in only one of the growth conditions and eight

were common across different water treatments. PAC2 con-
tributed positive alleles at 10 QTLs and RHA266 contributed
at 14 QTLs. For GYP, 20 QTLs were identified under four
water treatments with the phenotypic variance explained

ranging from 4% to 40%. Nine of 20 QTLs were identified
in only one growth condition and the rest were common across
at least two growth conditions. PAC2 and RHA266 contrib-

uted equally to QTLs controlling GYP.

Discussion
Phenotypic variation and the effect of water stress

The effect of water stress under greenhouse conditions was

significant for all traits except for DSF and the number of leaf
per plant (LN); whereas under field conditions, the effect of
water stress was significant only for HW and GYP (Table 1),

which suggests that water stress occurred earlier in the
greenhouse when compared with field conditions. Under field
conditions, a low drought stress rate was occurred because of a
wet season in 2005, and the data from field conditions are not

useful for the comparison of different water treatments, but
they were used for the comparison of the QTL locations
identified under greenhouse conditions. Water treatment

responses were affected by significant �genotype · water treat-
ment� interaction for some traits, suggesting that response to
water status by a given genotype in relation to other genotypes

varies between water treatments (Table 1). A large genetic
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variation and transgressive segregation was observed for all
the studied traits under different water treatments, which could
be the result of the accumulation of positive alleles coming
from different parental lines. Transgressive segregation has

already been observed for drought adaptive traits (Poormo-
hammad Kiani et al. 2007b).

Under greenhouse conditions, water deficit was induced in

45-day-old plants near the stage flower bud formation R1
(Schneiter and Miller 1981), with the 14th true leaf fully
expanded. Although the RILs differed for plant size, the

difference among RILs for the days from sowing to R1 (water
stress initiating date) was not significant. The pots were
weighed and water lost replaced carefully in both well-watered

and water-stressed conditions to control drought stress care-
fully regarding each plant size. As plant sizes were taken into
account during water stress and there was no significant
difference among RILs for growth stage, we suggest that, plant

size and/or growth stage could not have introduced experi-
mental error during water-stress period.

Highly significant correlations between performances under

two water treatments for the traits studied in both greenhouse
and field conditions showed that the phenotypic value under
well-watered condition explained a large proportion of the

variation for performance under drought (Table 2). This result
suggests that selection under well-watered and/or irrigated
conditions could partly be effective to improve grain yield and
other agronomical traits under water-stressed and/or non-

irrigated conditions. The same results have been reported in
rice RILs (Zou et al. 2005).

The correlation analysis indicated that DSF and LN were

not associated with GYP in both greenhouse and field
conditions, and PH was correlated with GYP under only field
conditions (Table 2). Rachid Al-Chaarani et al. (2004) also

reported that, DSF is not correlated with grain yield in
sunflower. HW per plant and BIO per plant were the highest
contributing factor to GYP, and LAD was more important

than LAF in both greenhouse and field conditions. This
indicates that maintaining green leaf area longer after anthesis
is important for a high yield production under both water
treatments. It has been reported that maintaining green leaf

area and consequently a longer duration of photosynthetic
activity has contributed to increased yield in most of major
crops (Evans 1993, Richards 2000). Genetic differences in

photosynthetic duration have also been associated with a

longer grain filling duration and higher yield in maize (Russel
1991).

QTLs for GYP and other traits

The QTLs identified in the present study showed that several
putative genomic regions are involved in the expression of the

studied traits under four growth conditions (Table 3). The
percentage of phenotypic variance explained by the QTLs (R2)
ranged from 4% to 40%. Based on overlapping support

intervals, the co-location of QTL for all eight traits in four
growth conditions was determined. As two important exam-
ples, intervals E38M50_1-HA1848 and E41M62_29-

E38M60_8 on linkage group 7 were significantly associated
with various traits under different growth conditions (Fig. 2).
In these two intervals, the QTLs controlling LN (under
irrigated condition), LAF (under two growth conditions),

LAD (under two growth conditions), PH (under two growth
conditions), DSF (under three growth conditions), HW and
BIO (under two growth conditions) were overlapped (Fig. 2).

Similarly, several other overlapping QTLs were also observed
for the studied traits. These overlapping QTLs indicate the
existence of a partly common genetic base for agro-morpho-

logical traits. Several QTLs for grain yield under four water
treatments were overlapped with the QTL of HW on linkage
groups 2 (GYPN.2.1), 3 (GYPI.3.1 and GYPN.3.1), 4
(GYPD.4.1, GYPI.4.1 and GYPI.4.2), 5 (GYPW.5.1) and 10

(GYPW.10.1, GYPN.10.1) as well as with the QTLs control-
ling several other traits on linkage groups 3, 4, 5, 9, 10, 13, 14
and 16. However, two individual QTLs specific for yield were

also identified on linkage groups 4 (GYPN.4.1) and 7
(GYPI.7.1) under non-irrigated and irrigated field conditions,
respectively.

Identification of QTLs influencing several traits could
increase the efficiency of marker-assisted selection (MAS)
and enhance genetic progress (Upadyayula et al. 2006). The

correlations among different traits as well as their co-localiza-
tion observed are relevant to strive for manipulating multiple
traits simultaneously. As we identified genetic markers linked
to yield-related traits, indirect selection can be targeted at the

presence or absence of markers of interest in breeding lines.
However, the QTLs and related markers need to be validated
in other genetic backgrounds prior to application in MAS.

Some successful MAS have already been reported in rice

Table 2: Phenotypic correlations
between studied traits measured
under two different water treat-
ments, and correlations between
yield and related traits under
greenhouse (well-watered and
water-stressed) and field (irrigated
and rainfed) conditions

Trait

Greenhouse Field

Well-watered with
water-stressed

Grain yield per plant with
other trait

Irrigated with
non-irrigated

Grain yield per plant
with other trait

Well-watered Water-stressed Irrigated Non-irrigated

DSF 0.77*** NS NS 0.99*** NS NS
LN 0.90*** NS NS 0.89*** NS NS
LAF 0.72*** 0.24*** 0.14* 0.67*** 0.45*** 0.46***
LAD 0.81*** 0.55*** 0.41*** 0.85*** 0.68*** 0.59***
PH 0.67*** NS NS 0.81*** 0.37*** 0.30***
BIO 0.51*** 0.66*** 0.36*** 0.57*** 0.74*** 0.74***
HW 0.63*** 0.69*** 0.69*** 0.58*** 0.92*** 0.91***
GYP 0.65*** 0.83***

NS, non-significant.
***,**,*Significant at 0.001, 0.01 and 0.05 probability level.
The traits are: days from sowing to flowering (DSF), leaf number per plant (LN), leaf area at flowering
(LAF; cm2), leaf area duration (LAD; cm2 days), plant height (PH; cm), total dry matter per plant (BIO;
g), head weight per plant (HW; g) and grain yield per plant (GYP; g).
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Fig. 2: Genetic linkage map and the positions of QTLs for the studied traits under different conditions. The QTLs were designated as the
abbreviation of the trait followed by �W� or �D� for well-watered or water-stressed in the greenhouse, and by �I� and �NI� for irrigated and non-
irrigated (rainfed) in the field. The traits are: days from sowing to flowering (DSF), leaf number per plant (LN), leaf area at flowering (LAF), leaf
area duration (LAD), plant height (PH), total dry matter per plant (BIO), head weight per plant (HW) and grain yield per plant (GYP)



breeding programmes. For example, Cho et al. (1994) used
molecular markers for selection of semi-dwarf characteristic in
rice. Wang et al. (2005) successfully introgressed three QTLs
with large effects on spikelet fertility into near isogenic lines

using marker-assisted selection. Introgression of QTLs for OA,
associated with drought tolerance, has been also achieved in
rice by Robin et al. (2003). However, as far as we know, MAS

for drought tolerance has not been reported for sunflower in
the literature.

QTLs identified for a given trait under several growth conditions

Some QTLs are associated with the same trait under different

growth conditions (greenhouse and field) and/or water treat-
ments (well-watered and water-stressed). For example, the
QTLs for BIO, LAD, LAF and LN, located on linkage groups
1 (BIOW.1.1 and BIOD.1.1; interval 61.6–66.4 cM), 2

(LADW.2.1 and LADD.2.1; interval 33.5–38.3 cM) and 3
(LAFW.3.2 and LAFN.3.1; LNI.3.1, LNN.3.1 and LND.3.1;
intervals 17.2–19.2 and 44.3–46.3 cM) were detected in more

than one environment (Fig. 2). Besides these QTLs, several
additional QTLs for a given trait in at least two growth
conditions were detected on different linkage groups, which

shows that some QTLs are detectable under multiple condi-
tions. For GYP 11 of 20 QTLs were detected in two or three
growth conditions and nine under only one of the four
growth conditions. The QTLs for GYP in two or three

growth conditions, are located on linkage groups 3 (GYPI.3.1
and GYPN.3.1), 4 (GYPI.4.1, GYPI.4.2, GYPD.4.1 and
GYPN.4.1), 10 (GYPW.10.1 and GYPN.10.1) and 14

(GYPW.14.1, GYPD.14.1 and GYPN.14.1). The most consis-
tent QTL for yield, which is linked to SSR marker ORS391, is

located on linkage group 14 (interval 73.3–75.3 cM), which is a
relatively major QTL explaining 40%, 31% and 4% of total
phenotypic variance of yield in three growth conditions (well-
watered and water-stressed treatments under greenhouse and

non-irrigated treatment under field conditions, respectively). It
was also overlapped with the QTLs controlling LN and PH
explaining 11% and 8% of phenotypic variance, respectively,

indicating a relationship between grain yield and plant
architecture (Fig. 2). This finding was not supported by
phenotypic correlation between yield and LN. The positive

alleles for the QTLs controlling yield in this region come from
PAC2 and for QTLs conferring PH and LN, the positive
alleles come from RHA266. This DNA region could be

important in marker-based selection for grain yield, as it was
detected in three different growth conditions (Fig. 2).
In the previous study, QTLs controlling plant water status

traits and OA were mapped in the same mapping population

under well-watered and water-stressed conditions (Poormo-
hammad Kiani et al. 2007b). Comparing the QTLs found in
the present study for grain yield and agro-morphological traits

with those previously reported, overlapping QTL indicates a
physiological link between plant water status, OA and
agronomical traits (Table 4). However, increasing the map

resolution would be necessary to determine if this physiolog-
ical link is because of pleiotropy or tight linkage. Some of the
overlapped QTLs were located practically at the same
positions. As an example on linkage group 5, four overlapped

QTLs detected in the present study for GYP, LN and LAF,
(GYPW.5.1, HWW.5.1, LNN.5.2 and LAFN.5.1) has been
previously detected as the most important DNA region for

plant water status traits, such as relative water content (RWC)
in well-watered and water-stressed conditions as well as for
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Fig. 2: Continued



leaf water potential, osmotic potential at full turgor and OA
(Poormohammad Kiani et al. 2007b).

On linkage group 7, the QTLs controlling LN (under
irrigated condition), LAF (under two growth conditions),

LAD (under two growth conditions), PH (under two growth
conditions), DSF (under three growth conditions), HW and
BIO (under two growth conditions) detected in the present

study (Fig. 2, Table 4), were overlapped with the QTL
controlling turgor potential identified in our previous work
(Poormohammad Kiani et al. 2007b). Maintaining turgor

potential under drought conditions is necessary for cell
division and expansion, and consequently for plant growth
and productivity. It has been reported that various biochem-

ical and physiological responses, such as photosynthesis,
photochemistry and stomatal conductance under drought
conditions depend on turgor potential in sunflower (Turner
and Jones 1980, Morgan 1984, Maury et al. 1996, 2000).

Therefore, overlapping QTLs for turgor potential and agro-
nomical traits suggest the common genetic basis for turgor
maintenance and plant growth and development in this

genomic region. Although many other overlapping QTLs are
observed on several linkage groups for various drought-
adaptive and morphological and developmental traits (Ta-

ble 4), we are especially interested in relationship between
drought-adaptive and productivity QTLs. Three QTLs for
GYP identified in the present study are overlapped with several
QTLs for drought-adaptive traits. One of them located on

linkage group 5 (GYPW.5.1), is overlapped with the QTLs for
OA (OA.5.2), leaf water potential (LWP.WS.5.1) and RWC

under both water treatments (RWC.WW.5.1 and
RWC.WS.5.1) (Table 4). Another QTL for GYP, located on
linkage group 12 (GYPI.12.1), is overlapped with one QTL for
turgor potential (TP.WW.12.1) and two QTLs for OA

(OA.12.1 and OA.12.2). Seemingly, the third QTL for GYP,
located on linkage group 16 (GYPD.16.1) is overlapped with
the QTLs for turgor potential (TP.WS.16.1), osmotic potential

at full turgor (OPF.WS.16.2 and OPF.WW.16.1), leaf water
potential (LWP.WS.16.1) and RWC (RWC.WS.16.1)
(Table 4).

We have shown a partly common genetic basis for plant
water status, OA and productivity. Detailed characterization
of these genomic regions through the development and

evaluation of near-isogenic lines will lead to an improved
understanding of drought tolerance and might set the stage for
the positional cloning of drought tolerance genes. Prior results
of plant water status and OA have been largely based on

phenotypic association with yield under drought stress in
sunflower (Chimenti et al. 2002). Overlapping QTLs for water
status traits, OA and productivity has been observed in cotton

(Saranja et al. 2004) and barley (Teulat et al. 1998).
In the present study, a mapping population was evaluated

for agronomical traits under greenhouse and field conditions

each with two water treatments. Using the same mapping
population under different water regimes helped us on the
identification of consistent genomic regions (QTL) from those
expressed under specific conditions for several agronomical

and yield-related traits. Although QTLs induced only by
drought may be associated with mechanism(s) of sunflower

Table 4: QTLs controlling agronomical traits under four growth conditions identified in the present study, which are overlapped with QTLs for
plant water status and osmotic adjustment identified in our previous study (Poormohammad Kiani et al. 2007b)

Linkage
group

Agronomical traits in
the present study

Water status traits and osmotic
adjustment (Poormohammad Kiani

et al. 2007b) Overlapped QTLs

LG1 Leaf area at flowering Turgor potential (Yt), �LAFD.1.1�,�LADD.1.1� �TP.WS.1.1�,
�OP.WS.1.1�Leaf area duration Osmotic potential (Ys)

LG5 Days from sowing to
flowering

Osmotic potential (Ys) �DSFW.5.2�, �OP.WS.5.2�

LG5 Grain yield per plant Osmotic adjustment (OA), �YPW.5.1�, �LNN.5.2�, �LAFNN.5.1�,
�HWW.5.1�, �OA.5.2�, �OPF.WS.5.1�,
RWC.WS.5.1�, �RWC.WW.5.1�,

�LWP.WS.5.1�

Head weight per plant Osmotic potential at full turgor (YsFT),
Leaf number per plant Relative water content (RWC),
Leaf area at flowering Leaf water potential (Yw)

LG6 Leaf area duration Relative water content (RWC), �RWC.WW.6.1�,�TP.WW.6.1�,
Turgor potential (Yt) �LADI.6.1�

LG7 Several traits (Fig. 2) Turgor potential (Yt) �Several QTLs (Fig. 2)�, �TP.WS.7.1�
LG7 Leaf number per plant Leaf water potential (Yw), �LWP.WS.7.1�, �RWC.WS.7.1�,

�LNN.7.1�Relative water content (RWC)
LG9 Days from sowing to

flowering
Leaf water potential (Yw) �DSFW.9.1�, �LWP.WS.9.1�

LG12 Grain yield per plant Turgor potential (Yt),
Osmotic adjustment (OA)

�YPI.12.1�, �HWI.12.1�,
�TP.WW.12.1�, �OA.12.1�, �OA.12.2�Head weight per plant

LG13 Plant height Osmotic adjustment �PHD.13.1�, �OA.13.1�
LG16 Grain yield per plant Osmotic potential at full turgor (YsFT),

Turgor potential (Yt), Leaf water
potential (Yw), Relative water

content (RWC)

�YPD.16.1�, �LADW.16.1�,
�LADD.16.1�,�OPF.WS.16.1�,

Leaf area duration �OPF.WS.16.2�,�OPF.WW.16.1�, �TP.WS.16.1�,
�LWP.WS.16.1�, �RWC.WS.16.1�

LG16 Days from sowing to
flowering

Leaf water potential (Yw), �DSFD.16.1�, �LWP.WS.16.2�, �RWC.WS.16.2�,
�OP.WS.16.1�, �OPF.WS.16.2�Relative water content (RWC),

Osmotic potential (Ys),
Osmotic potential at full turgor (YsFT)

LG16 Leaf number per plant Turgor potential (Yt) �LNI.16.2�, �LNN.16.1�
LG16 Total dry matter

per plant (biomass)
Osmotic potential (Ys) �BIOW.16.1�, �OP.WW.16.1�

LG17 Days from sowing
to flowering

Relative water content (RWC) �DSFW.17.1�,�RWC.WW.17.2�,
�RWC.WS.17.1�



drought response, we suppose that the QTLs that can reduce
trait difference between well-watered (irrigated) and water-
stressed (non-irrigated) conditions should have an effect on
drought tolerance because of their contribution to trait

stability. Therefore, the QTLs, which are common across
water treatment are of more interest and most useful for MAS.
Regarding to these points, the most stable genomic region

controlling yield is located on linkage groups 14 (SSR marker:
ORS391), where three QTLs for yield under three water
treatments were overlapped.

One of the major goals for plant breeders is to develop
genotypes with high yield potential and the ability to be stable
across environments. There are two main ways in which a
cultivar can achieve stability. The first one is identification of

the non-environment-specific QTLs or QTLs with minor
interaction with environments (as those located on linkage
group 14), which should be particularly useful in MAS for

yield. The second is the development of widely adapted
cultivars by pyramiding different QTLs each controlling
adaptation to a different range of environments (as nine

environment-specific QTLs for yield).
We compared the position of QTLs obtained in the present

study with the results obtained by Rachid Al-Chaarani et al.

(2004) for yield-related traits using the same mapping popu-
lation (PAC2 · RHA266) under well-watered conditions.
According to the authors, the most important DNA regions
controlling thousand grain weight and yield are located on

linkage groups 4, 6 and 9, which correspond to the linkage
groups 7, 5 and 10 in the present study with public common
linkage group nomenclature. One QTL for yield reported by

Rachid Al-Chaarani et al. (2004) on linkage group 6 was
confirmed in the present study on the corresponding linkage
group 5 (GYPI.5.1). Their two other QTLs are co-located with

the QTLs controlling biomass on linkage groups 7 (BION.7.3
and BIOI.7.2) and 10 (BIOW.10.1) in the present study. The
latter, however, is close to two QTLs controlling GYP

(GYPN.10.1 and GYPW.10.1).
Another application of QTL analysis is the genetically

determination of the trait association by evaluation of over-
lapping QTLs. In the present study we identified the genomic

regions controlling productivity (BIO per plant, HW per plant
and GPY), which overlapped with the QTLs previously
reported for plant water status and OA (Poormohammad

Kiani et al. 2007b). The results showed a partly common
genetic basis for physiological traits (plant water status and
OA) and grain yield in RILs. The whole results do highlight

interesting genomic regions for marker-based breeding pro-
gramme for drought tolerance in sunflower. Knowledge of the
number and likely position of loci for drought adaptive traits
and yield can provide the information required to select

optimal combinations of alleles by the use of marker-assisted
selection. For example, combining the major QTL for yield on
linkage group 14 (nearest SSR marker ORS391) with another

QTL of yield on linkage group 5 (nearest SSR marker
ORS523_1), considering that the latter marker was also linked
to the QTLs for several plant water status traits and OA with

high phenotypic variance explained, could be beneficial for
pyramiding higher grain yield and drought tolerance QTLs in
the same genotype. However, like any other quantitative trait,

there is a requirement to confirm the position of the QTL and
carry out fine-scale mapping before MAS becomes a viable
proposition.
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