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Abstract

A set of sunflower recombinant inbred lines (RILs) was used to study
agronomical traits under greenhouse and field conditions each with
two water treatments and three replications. The difference among
RILs was significant for all the traits studied in all conditions; and
water treatment x RILs interaction was also observed for most of the
traits in both field and greenhouse conditions. Because of the low rate
of drought stress, this part of field data are not informative. Several
quantitative trait loci (QTLs) were identified for yield-related traits
with the percentage of phenotypic variance explained by QTLs (R
ranging from 4% to 40%. Several QTLs for grain yield per plant
(GYP) under four water treatments were identified on different linkage
groups, among which two were specific to a single treatment
(GYPNA4.1, GYPL.7.1). Three QTLs for GYP were overlapped with
several QTLs for drought-adaptative traits detected in our previous
study (Poormohammad Kiani et al. 2007b). The whole results do
highlight interesting genomic regions for marker-based breeding
programmes for drought tolerance in sunflower.

Key words: sunflower — water stress — grain yield — QTL —
yield-related traits

Sunflower (Helianthus annuus L.) is one of the most important
sources of vegetable oil in the world. Identification of genetic
factors affecting agronomic and economically important traits
in sunflower could help to improve breeding methods. Yield
components as well as other quantitative traits are controlled
by several genetic loci with additive and non-additive gene
actions, and genotype X environment interactions are impor-
tant components of variance decreasing their heritability (Fick
1978, Fick and Miller 1997).

Progress in increasing yield and its stability through a direct
selection has been hampered by the low heritability of yield,
particularly under drought and by its large genotype X envi-
ronment interaction (Blum 1988, Ceccarelli and Grando 1996,
Tuberosa et al. 2002). As an alternative to the direct selection
for yield under drought conditions, morpho-physiological traits
genetically correlated with yield, have been targeted in selection
programmes pursued in collaboration between physiologists
and breeders (Blum 1988, Chimenti et al. 2002, Tuberosa et al.
2002). Correlation coefficients have been used by many
researchers in determining interrelationships between seed yield
and other characters in sunflower under both well-watered and
drought conditions (Fereres et al. 1986, Alza and Fernandez-
Martinez 1997, Chimenti et al. 2002, Flagella et al. 2002).

Fereres et al. (1986) showed that physiological traits respon-
sible for drought tolerance were not correlated with yield

potential in sunflower, indicating that both can be combined in
improved cultivars. Chimenti et al. (2002) demonstrated that
osmotic adjustment (OA), a parameter directly related to
drought tolerance, contributes to yield maintenance of sun-
flower under pre-anthesis drought conditions. However, the
capacity of sunflower for OA was different depending on
genotype (Maury et al. 1996). Gimenez and Fereres (1986) and
Pricto lIosada (1992) showed that duration of leaf area is
related to rainfed sunflower yield. The yield differences were
also associated with variation in total biomass (BIO) (Alza and
Fernandez-Martinez 1997). However, these phenotypic rela-
tionships have not been shown at molecular level, i.e. by
mapping quantitative trait loci (QTLs) for yield and morpho-
physiological traits in the same mapping population.

Progress in plant genome analysis has made it possible to
examine naturally occurring allelic variation underlying com-
plex traits such as yield. There are several reports, especially
over the last years that deal with drought tolerance on the
physiological and molecular levels in sunflower (Poormoham-
mad Kiani et al. 2007a,b, 2008). Many studies have been
undertaken to find genetic variation in agronomical traits in
sunflower, and QTLs controlling yield components and
morphological traits have been identified in sunflower RILs
(Rachid Al-Chaarani et al. 2004) or F,/F5; populations (Mok-
rani et al. 2002, Bert et al. 2003). However, the studies
mentioned above have been conducted under well-watered
conditions and to our knowledge QTL mapping of agronom-
ical traits and yield in sunflower under drought conditions has
not been reported in literature.

The objectives of the present study were to identify QTLs in
a population of RILs for yield-related traits by using our
recently saturated simple sequence repeat (SSR) and amplified
fragment length polymorphism (AFLP) linkage map (Poor-
mohammad Kiani et al. 2007b), and to compare QTLs
controlling these traits in controlled (greenhouse) and natural
(field) well-watered and water-stressed conditions.

Materials and Methods

Plant materials and genetic linkage map: The characteristic of mapping
population (RILs) and their parents (PAC2 and RHA266) used in the
present study has been explained in detail in our previous study
(Poormohammad Kiani et al. 2007b). Briefly, the mapping population
was developed through single seed descent from F, plants derived from
a cross between PAC2 and RHA266 and a map was constructed with
304 AFLP and 191 SSRs. Both parental lines (PAC2 and RHA266) are



public inbred lines of sunflower (Zhang et al. 2005). RHA266 is a
branched restorer inbred line, obtained from a cross between wild
H. annuus and Peredovik by USDA and PAC2 is a non-branched
restorer inbred line obtained from a cross between H. petiolaris and
‘HAG61’ by INRA-France (Gentzbittel et al. 1994, 1995). RHA266 is a
branched line with higher values for yield, 1000-grain weight and oil
percentage compared with PAC2 (Gentzbittel et al. 1995, Rachid Al-
Chaarani et al. 2004). The recent map from the cross PAC2 x R-
HA266 (Poormohammad Kiani et al. 2007b), was used in the present
work for identification of QTLs for yield-related traits under different
water treatments.

Greenhouse experiment: A population of 78 RILs were randomly
selected and grown together with their parents (PAC2 and RHA266) in
the greenhouse under controlled conditions. Plants were individually
grown in plastic pots (4.0 I) containing a mixture of 40% soil, 40%
compost and 20% sand. Temperature was maintained at 25/18 + 2°C
(day/night) and relative humidity was about 65-85 = 5%. Supple-
mentary light giving an approximately 16-h light and 8-h dark period
was maintained during experiment.

A split-plot experimental design with three blocks was used with
water treatments (well-watered and water-stressed) as the main plot
factor and genotypes (RILs and parental lines) as sub-plot factor. The
RILs and their two parents were randomized within each treatment—
block combination. To simulate water deficit conditions similar to
field, a progressive water stress was imposed at stage near flower bud
formation (R1, Schneiter and Miller 1981) by decreasing progressively
the irrigation to 30% field capacity during 12 days. Both well-watered
and water-stressed plants were weighed and water lost replaced
carefully. Well-watered (control) plants received sufficient water to
maintain soil water content close to field capacity. Water-stressed
plants were subjected to a progressive water stress and irrigated with a
water volume of 60%, 50%, 40% and 30% of field capacity (each for
3 days) during 12 days. Water-stressed plants were then irrigated at
30% of field capacity until harvest.

Field experiment: Two experiments were undertaken in the field
conditions during April-September in 2005 with irrigated and non-
irrigated (rain fed) water treatments and three replications per each
water treatment. Both irrigated and non-irrigated experiments were
located in the same field to have the same condition with a distance
sufficient enough to not allow water to reach non-irrigated field. The
experiment consisted of a split-plot design with three replications. The
main plot contains water treatments (irrigated and non-irrigated) and
genotypes (RILs and parental lines) were considered as sub-plot.
A population of 100 RILs comprising 78 RILs used in the greenhouse
experiment, together with their parents was sown in each water
treatment with three replications. Each replication consisted of two
rows 4.6-m long, with 50 cm between rows and 25 cm between plants
in rows, giving a total number of about 32 plants per plot. The
so-called ‘irrigated’ field was irrigated two times at two critical stages,
just before flowering (33 mm) and at about grain filling (44 mm),
according to sunflower irrigation programme determined by INRA-
France for the region (Fig. 1). A sprinkler irrigation system was used
because of the uniformity of water application. The ‘rainfed’ exper-
iment was not irrigated. Three plants per genotype per water
treatments were randomly chosen for evaluation of the studied traits.

Trait measurements: Days from sowing to flowering (DSF) were
recorded when individual plants in greenhouse and 50% of the plants
per plot in the field were at anthesis. Leaf number per plants (LN),
plant height (PH) and leaf area were measured at flowering stage. Leaf
length (L) and width (W) of all green leaves were measured in both
well-watered and water-stressed conditions at flowering stage, and
total leaf area at flowering (LAF) was calculated with the formula:
LAF = X 0.7L x W (Alza and Fernandez-Martinez 1997). Green leaf
area of the plants was determined weekly from flowering to harvest to
evaluate green leaf area with respect to time. An integral of weekly leaf
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Fig. 1: Total monthly rainfall and the minimum, maximum and
average of temperature for the year 2005 at INRA experimental field —
Toulouse, France. The arrows show the date of first (33 mm) and
second (44 mm) supplementary irrigation for ‘irrigated’ experiment
determined by INRA. Sprinkler irrigation systems was used for
irrigation because of the uniformity of water application

area was considered as being an estimate of leaf area duration (LAD,
cm? days). At maturity, total dry matter ‘BIO’ per plant and head
weight per plant (HW) were determined for three plants per genotype
per water treatment. All plants of plots were also harvested at maturity
and grain yield per plant (GYP) was determined using whole plot
weight divided by the number of plants per plot for all genotypes in
each replication and water treatment.

Statistical analysis and QTL mapping: Normality of the different traits
was assessed according to the Shapiro and Wilk test (sas Proc
UNIVARIATE). The data were analysed using the sAs PROC GLM as a
split-plot experimental design (SAS Institute Inc. 2002). A mixed
model with water treatment (main plot factor) as fixed effect and
genotypes (sub-plot factor) as random effect, was used for analysis of
the data in both greenhouse and field conditions. Correlations between
GYP and other traits in each of the four conditions and between
genotypes for the same traits across water treatments were determined
using sAs PROC CORR (SAS Institute Inc. 2002).

Quantitative trait loci mapping of the studied traits was performed
by composite interval mapping (CIM) conducted with QTL Cartog-
rapher, version 1.16 (Basten et al. 2002) using mean values of three
replications for each RIL in each water treatment and growth
condition (field or greenhouse). The genome was scanned at 2-cM
intervals with a window size of 15 ¢cM. Up to 15 background markers
were used as cofactors in the CIM analysis identified with the
programme module Srmapqtl (model 6; Basten et al. 2002). A LOD
threshold of 3.0 was used for considering a QTL significant (Rachid
Al-Chaarani et al. 2004). QTLs for different traits were compared on
the base of overlapping support intervals: a decrease in the LOD score
of 1.0, determined the end point of support interval for each QTL
(Lander and Botestein 1989). Additive effects of the detected QTLs
were estimated with the Zmapqtl programme (Basten et al. 2002). The
percentage of phenotypic variance (R?) explained by each QTL was
estimated by QTL Cartographer (Basten et al. 2002).

Results

Phenotypic variation and effect of water stress

The yield-related traits except GYP and HW under water-
stressed condition in the greenhouse did not show deviation
from normal distribution. As normalizing data through



transformation may misrepresent differences among individu-
als by pulling skewed tails toward the centre of the distribution
(Doerge and Churchill 1994, Mutschler et al. 1996), all
phenotypic analyses were performed on untransformed data.

Considering all the traits studied in different growth
conditions, a high transgressive segregation was observed.
Phenotypic variation of RILs and their parents (PAC2 and
RHAZ266) in the greenhouse and in the field under two water
treatments are shown in Table 1. Under greenhouse condi-
tions, significant water treatment effect was observed for all of
the studied traits except for DSF and the number of leaf per
plant (LN). Under field conditions, water stress had significant
effect on only HW per plant and GYP. Because of low water
stress effect under field conditions, the results obtained from
non-irrigated field are similar to those obtained from irrigated
field. Therefore, the field data are not very informative for the
purpose of this study; but the QTLs identified under field
conditions were compared with those identified under green-
house conditions. The variability was significant for all the
traits studied in all conditions. Water treatment x RILs
interaction was observed for most of the traits in both field
and greenhouse conditions. Parental lines (PAC2 and
RHA266) differed significantly for LAF and LAD under both
water treatments in the greenhouse and under rainfed treat-
ment in the field. The difference between parental lines was
also significant for PH, BIO and HW under both water
treatments in the field.

Correlation analysis

Correlations between GYP and other studied traits together
with correlations between water treatments for each trait are
summarized in Table 2. High significant correlations were
observed between water treatments for the studied traits under
both greenhouse and field conditions. GYP was correlated
with LAF, LAD, HW and BIO in all four water treatments.
GYP was correlated with PH only under field conditions. DSF
and the number of leaf per plant (LN) were not correlated with
GYP.

QTLs mapping

The map position and characteristics of QTLs associated with
the studied traits in the greenhouse and in the field, under two
water treatments are summarized in Table 3. The QTLs were
designated as the abbreviation of the trait followed by ‘W’ or
‘D’ for well-watered or water-stressed in the greenhouse, and
by ‘I° and ‘NI’ for irrigated and non-irrigated (rainfed) in the
field. The corresponding linkage group and the number of
QTLs in the linkage group were also indicated for each QTL.
For an easier overview of overlapping QTLs between traits
and growth conditions, an image of all QTL regions is
presented as Fig. 2.

Two to seven QTLs were found depending on the trait and
growth conditions. QTLs explained from 4% to 40% of the
phenotypic variance of the traits (R%), and both parental lines
contributed to the expression of the different target traits.
Overlapping QTLs were found for different traits on several
linkage groups (Table 3 and Fig. 2).

Several QTLs were detected for DSF in four different
growth conditions (Table 3 and Fig. 2) and most of them were
common across at least two growth conditions. The most
important QTL for DSF is located on linkage group 7 where

several QTLs under different growth conditions were
co-localized. The positive alleles for these overlapped QTLs
come from RHA266. Seventeen QTLs were identified for leaf
number per plant (LN) under four growth conditions among
which, nine were common across at least two growth condi-
tions and eight were detected under only one condition. Both
parental lines contributed almost equally to QTL expression.
For LAF, 21 QTLs were detected under four growth condi-
tions, their number being from three to six depending on
growth conditions. Among 21 QTLs, nine were detected in
only one of the growth conditions and 12 were detected in at
least two growth conditions. The phenotypic variance
explained by each QTL ranged from 5% to 19%, and both
parental lines contributed to positive alleles. As far as LAD is
concerned, 22 QTLs were identified under four growth
conditions, explaining from 4% to 17% of the total variation.
Eleven QTLs were specific to single water treatment and 11
were detected in at least two water treatments. The positive
alleles for 17 QTLs come from RHA266 and for five QTLs
they come from PAC2. A total of 17 QTLs were detected for
PH being six unique QTLs and 11 QTLs that were detected in
at least two growth conditions. The QTLs explained from 5%
to 23% of phenotypic variance and both parental lines
contributed to trait expression. However, RHA266 contri-
buted to positive alleles at 10 QTLs. For total dry matter ‘BIO’
per plant, 19 QTLs were identified, explaining from 5% to
23% of variation. The number of QTLs in four growth
conditions varied from two to six; 13 were detected in only one
of the growth conditions and six were common across different
growth conditions. RHA266 contributed to positive alleles at
14 of 19 QTLs.

A total of 24 QTL were identified for HW per plant under
four growth conditions with the phenotypic variance explained
from 4% to 24%. The number of QTLs differed from four to
seven depending on the growth condition. Among 24 QTLs, 16
were detected in only one of the growth conditions and eight
were common across different water treatments. PAC2 con-
tributed positive alleles at 10 QTLs and RHA266 contributed
at 14 QTLs. For GYP, 20 QTLs were identified under four
water treatments with the phenotypic variance explained
ranging from 4% to 40%. Nine of 20 QTLs were identified
in only one growth condition and the rest were common across
at least two growth conditions. PAC2 and RHA266 contrib-
uted equally to QTLs controlling GYP.

Discussion
Phenotypic variation and the effect of water stress

The effect of water stress under greenhouse conditions was
significant for all traits except for DSF and the number of leaf
per plant (LN); whereas under field conditions, the effect of
water stress was significant only for HW and GYP (Table 1),
which suggests that water stress occurred earlier in the
greenhouse when compared with field conditions. Under field
conditions, a low drought stress rate was occurred because of a
wet season in 2005, and the data from field conditions are not
useful for the comparison of different water treatments, but
they were used for the comparison of the QTL locations
identified under greenhouse conditions. Water treatment
responses were affected by significant ‘genotype x water treat-
ment’ interaction for some traits, suggesting that response to
water status by a given genotype in relation to other genotypes
varies between water treatments (Table 1). A large genetic
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Table 2: Phenotypic correlations
between studied traits measured
under two different water treat-

Greenhouse Field

Grain yield per plant with Grain yield per plant

ments, and correlations between h ¥ ith oth .

yield and related traits under . other trait . . with other trait

reenhouse  (well-watered  and Well-watered with Irrigated with

%vater-stresse d) and field (irrigated Trait water-stressed Well-watered Water-stressed  non-irrigated  Irrigated Non-irrigated

and rainfed) conditions DSF 0.77%%* NS NS 0.99%* NS NS
LN 0.90%*** NS NS 0.89%** NS NS
LAF 0.72%** 0.24%** 0.14* 0.67*%* 0.45%** 0.46%**
LAD 0.81%** 0.55%** 0.41%%* 0.85%** 0.68%** 0.59%**
PH 0.67*** NS NS 0.81%** 0.37%** 0.30%**
BIO 0.51%** 0.66%** 0.36%** 0.57%** 0.74%** 0.74%**
HW 0.63%** 0.69%** 0.69%** 0.58%** 0.92%** 0.91%**
GYP 0.65%** 0.83%**

NS, non-significant.

wrk #% *Significant at 0.001, 0.01 and 0.05 probability level.

The traits are: days from sowing to flowering (DSF), leaf number per plant (LN), leaf area at flowering
(LAF; cm?), leaf area duration (LAD; cm?® days), plant height (PH; cm), total dry matter per plant (BIO;
g), head weight per plant (HW; g) and grain yield per plant (GYP; g).

variation and transgressive segregation was observed for all
the studied traits under different water treatments, which could
be the result of the accumulation of positive alleles coming
from different parental lines. Transgressive segregation has
already been observed for drought adaptive traits (Poormo-
hammad Kiani et al. 2007b).

Under greenhouse conditions, water deficit was induced in
45-day-old plants near the stage flower bud formation R1
(Schneiter and Miller 1981), with the 14th true leaf fully
expanded. Although the RILs differed for plant size, the
difference among RILs for the days from sowing to R1 (water
stress initiating date) was not significant. The pots were
weighed and water lost replaced carefully in both well-watered
and water-stressed conditions to control drought stress care-
fully regarding each plant size. As plant sizes were taken into
account during water stress and there was no significant
difference among RILs for growth stage, we suggest that, plant
size and/or growth stage could not have introduced experi-
mental error during water-stress period.

Highly significant correlations between performances under
two water treatments for the traits studied in both greenhouse
and field conditions showed that the phenotypic value under
well-watered condition explained a large proportion of the
variation for performance under drought (Table 2). This result
suggests that selection under well-watered and/or irrigated
conditions could partly be effective to improve grain yield and
other agronomical traits under water-stressed and/or non-
irrigated conditions. The same results have been reported in
rice RILs (Zou et al. 2005).

The correlation analysis indicated that DSF and LN were
not associated with GYP in both greenhouse and field
conditions, and PH was correlated with GYP under only field
conditions (Table 2). Rachid Al-Chaarani et al. (2004) also
reported that, DSF is not correlated with grain yield in
sunflower. HW per plant and BIO per plant were the highest
contributing factor to GYP, and LAD was more important
than LAF in both greenhouse and field conditions. This
indicates that maintaining green leaf area longer after anthesis
is important for a high yield production under both water
treatments. It has been reported that maintaining green leaf
area and consequently a longer duration of photosynthetic
activity has contributed to increased yield in most of major
crops (Evans 1993, Richards 2000). Genetic differences in
photosynthetic duration have also been associated with a

longer grain filling duration and higher yield in maize (Russel
1991).

QTLs for GYP and other traits

The QTLs identified in the present study showed that several
putative genomic regions are involved in the expression of the
studied traits under four growth conditions (Table 3). The
percentage of phenotypic variance explained by the QTLs (R?)
ranged from 4% to 40%. Based on overlapping support
intervals, the co-location of QTL for all eight traits in four
growth conditions was determined. As two important exam-
ples, intervals E38M50_1-HA1848 and E41M62_29-
E38M60_8 on linkage group 7 were significantly associated
with various traits under different growth conditions (Fig. 2).
In these two intervals, the QTLs controlling LN (under
irrigated condition), LAF (under two growth conditions),
LAD (under two growth conditions), PH (under two growth
conditions), DSF (under three growth conditions), HW and
BIO (under two growth conditions) were overlapped (Fig. 2).
Similarly, several other overlapping QTLs were also observed
for the studied traits. These overlapping QTLs indicate the
existence of a partly common genetic base for agro-morpho-
logical traits. Several QTLs for grain yield under four water
treatments were overlapped with the QTL of HW on linkage
groups 2 (GYPN.2.1), 3 (GYPIL3.l and GYPN.3.l), 4
(GYPD.4.1, GYPI4.]1 and GYPI4.2), 5 (GYPW.5.1) and 10
(GYPW.10.1, GYPN.10.1) as well as with the QTLs control-
ling several other traits on linkage groups 3, 4, 5, 9, 10, 13, 14
and 16. However, two individual QTLs specific for yield were
also identified on linkage groups 4 (GYPN.4.I) and 7
(GYPIL.7.1) under non-irrigated and irrigated field conditions,
respectively.

Identification of QTLs influencing several traits could
increase the efficiency of marker-assisted selection (MAS)
and enhance genetic progress (Upadyayula et al. 2006). The
correlations among different traits as well as their co-localiza-
tion observed are relevant to strive for manipulating multiple
traits simultaneously. As we identified genetic markers linked
to yield-related traits, indirect selection can be targeted at the
presence or absence of markers of interest in breeding lines.
However, the QTLs and related markers need to be validated
in other genetic backgrounds prior to application in MAS.
Some successful MAS have already been reported in rice
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Fig. 2: Genetic linkage map and the positions of QTLs for the studied traits under different conditions. The QTLs were_dgsignated as the
abbreviation of the trait followed by ‘W or ‘D’ for well-watered or water-stressed in the greenhouse, and by ‘I’ and ‘NI for 1rr1gated and non-
irrigated (rainfed) in the field. The traits are: days from sowing to flowering (DSF), leaf number per plant (LN), 1ez_1f area at flowering (LAF), leaf
area duration (LAD), plant height (PH), total dry matter per plant (BIO), head weight per plant (HW) and grain yield per plant (GYP)
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Fig. 2: Continued

breeding programmes. For example, Cho et al. (1994) used
molecular markers for selection of semi-dwarf characteristic in
rice. Wang et al. (2005) successfully introgressed three QTLs
with large effects on spikelet fertility into near isogenic lines
using marker-assisted selection. Introgression of QTLs for OA,
associated with drought tolerance, has been also achieved in
rice by Robin et al. (2003). However, as far as we know, MAS
for drought tolerance has not been reported for sunflower in
the literature.

QTLs identified for a given trait under several growth conditions

Some QTLs are associated with the same trait under different
growth conditions (greenhouse and field) and/or water treat-
ments (well-watered and water-stressed). For example, the
QTLs for BIO, LAD, LAF and LN, located on linkage groups
1 (BIOW.1.I and BIOD.I.I; interval 61.6-66.4 cM), 2
(LADW.2.1 and LADD.2.1; interval 33.5-38.3 cM) and 3
(LAFW.3.2 and LAFN.3.1; LNI.3.1, LNN.3.1 and LND.3.1,
intervals 17.2-19.2 and 44.3-46.3 cM) were detected in more
than one environment (Fig. 2). Besides these QTLs, several
additional QTLs for a given trait in at least two growth
conditions were detected on different linkage groups, which
shows that some QTLs are detectable under multiple condi-
tions. For GYP 11 of 20 QTLs were detected in two or three
growth conditions and nine under only one of the four
growth conditions. The QTLs for GYP in two or three
growth conditions, are located on linkage groups 3 (GYPI.3.1
and GYPN.3.1), 4 (GYPI4.l, GYPI4.2, GYPD.4.1 and
GYPNA4.1), 10 (GYPW.10.I and GYPN.I0.]) and 14
(GYPW.14.1, GYPD.14.1 and GYPN.14.1). The most consis-
tent QTL for yield, which is linked to SSR marker ORS391, is
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located on linkage group 14 (interval 73.3-75.3 ¢cM), which is a
relatively major QTL explaining 40%, 31% and 4% of total
phenotypic variance of yield in three growth conditions (well-
watered and water-stressed treatments under greenhouse and
non-irrigated treatment under field conditions, respectively). It
was also overlapped with the QTLs controlling LN and PH
explaining 11% and 8% of phenotypic variance, respectively,
indicating a relationship between grain yield and plant
architecture (Fig. 2). This finding was not supported by
phenotypic correlation between yield and LN. The positive
alleles for the QTLs controlling yield in this region come from
PAC2 and for QTLs conferring PH and LN, the positive
alleles come from RHA266. This DNA region could be
important in marker-based selection for grain yield, as it was
detected in three different growth conditions (Fig. 2).

In the previous study, QTLs controlling plant water status
traits and OA were mapped in the same mapping population
under well-watered and water-stressed conditions (Poormo-
hammad Kiani et al. 2007b). Comparing the QTLs found in
the present study for grain yield and agro-morphological traits
with those previously reported, overlapping QTL indicates a
physiological link between plant water status, OA and
agronomical traits (Table 4). However, increasing the map
resolution would be necessary to determine if this physiolog-
ical link is because of pleiotropy or tight linkage. Some of the
overlapped QTLs were located practically at the same
positions. As an example on linkage group 5, four overlapped
QTLs detected in the present study for GYP, LN and LAF,
(GYPW.5.1, HWW.5.1, LNN.5.2 and LAFN.5.1) has been
previously detected as the most important DNA region for
plant water status traits, such as relative water content (RWC)
in well-watered and water-stressed conditions as well as for



Table 4: QTLs controlling agronomical traits under four growth conditions identified in the present study, which are overlapped with QTLs for
plant water status and osmotic adjustment identified in our previous study (Poormohammad Kiani et al. 2007b)

Water status traits and osmotic

Linkage Agronomical traits in adjustment (Poormohammad Kiani
group the present study et al. 2007b) Overlapped QTLs
LG1 Leaf area at flowering Turgor potential (), ‘LAFD.1.I'’LADD.1.I"” ‘TP.WS.1.1",
Leaf area duration Osmotic potential (‘W) ‘OP.WS.1.I’
LGS Days from sowing to Osmotic potential (‘W) ‘DSFW.5.2’, ‘OP.WS.5.2’
flowering
LGS Grain yield per plant Osmotic adjustment (OA), YPW.5.I', 'LNN.5.2°, ‘LAFNN.5.1°,
Head weight per plant Osmotic potential at full turgor (Wgpr), HWW.S.1", ‘0A4.5.2, ‘'OPF.WS.5.1,
Leaf number per plant Relative water content (RWC), RWC.WS.5.1°, RWC.WW.5.1°,
Leaf area at flowering Leaf water potential (‘¥y) ‘LWP.WS.5.1°
LG6 Leaf area duration Relative water content (RWC), ‘RWC.WW.6.I')TP.WW.6.1°,
Turgor potential (V) ‘LADIL6.I’
LG7 Several traits (Fig. 2) Turgor potential (V) ‘Several QTLs (Fig. 2)’, “TP.WS.7.1I’
LG7 Leaf number per plant Leaf water potential (W), LWP.WS.7.I', RWC.WS.7.1°,
Relative water content (RWC) ‘LNN.7.1°
LG9 Days from sowing to Leaf water potential (W) ‘DSFW.9.I', ' LWP.WS.9.I’
flowering
LGI12 Grain yield per plant Turgor potential (‘¥)), ‘YPL12.I’, HWI.12.1°,
Head weight per plant Osmotic adjustment (OA) ‘TP.WW.12.1", ‘OA.12.1", ‘OA.12.2
LG13 Plant height Osmotic adjustment ‘PHD.13.I’, ‘OA.13.1
LG16 Grain yield per plant Osmotic potential at full turgor (Wsgr), ‘YPD.16.I’, ‘LADW.16.1°,
Turgor potential (\V,), Leaf water ‘LADD.16.1’OPF.WS.16.1",
Leaf area duration potential (W), Relative water ’OPF.WS.16.2",'OPF.WW.16.1°, “TP.WS.16.1°,
content (RWC) ‘LWP.WS.16.1’, RWC.WS.16.1°
LGl16 Days from sowing to Leaf water potential (W), ‘DSFD.16.I’, ‘'LWP.WS.16.2’, ‘RWC.WS.16.2’,
flowering Relative water content (RWC), ’OP.WS.16.1°, ‘OPF.WS.16.2°
Osmotic potential (),
Osmotic potential at full turgor (Wspr)
LGl16 Leaf number per plant Turgor potential (V) ‘LNI.16.2°, 'LNN.16.1°
LGIl6 Total dry matter Osmotic potential (‘W) ‘BIOW.16.I’, ‘OP.WW.16.1°
per plant (biomass)
LG17 Days from sowing Relative water content (RWC) ‘DSFW.17.I'YRWC.WW.17.2’,
to flowering ‘RWC.WS.17.1°
leaf water potential, osmotic potential at full turgor and OA  under both water treatments (RWC.WW.5.1 and

(Poormohammad Kiani et al. 2007b).

On linkage group 7, the QTLs controlling LN (under
irrigated condition), LAF (under two growth conditions),
LAD (under two growth conditions), PH (under two growth
conditions), DSF (under three growth conditions), HW and
BIO (under two growth conditions) detected in the present
study (Fig. 2, Table 4), were overlapped with the QTL
controlling turgor potential identified in our previous work
(Poormohammad Kiani et al. 2007b). Maintaining turgor
potential under drought conditions is necessary for cell
division and expansion, and consequently for plant growth
and productivity. It has been reported that various biochem-
ical and physiological responses, such as photosynthesis,
photochemistry and stomatal conductance under drought
conditions depend on turgor potential in sunflower (Turner
and Jones 1980, Morgan 1984, Maury et al. 1996, 2000).
Therefore, overlapping QTLs for turgor potential and agro-
nomical traits suggest the common genetic basis for turgor
maintenance and plant growth and development in this
genomic region. Although many other overlapping QTLs are
observed on several linkage groups for various drought-
adaptive and morphological and developmental traits (Ta-
ble 4), we are especially interested in relationship between
drought-adaptive and productivity QTLs. Three QTLs for
GYP identified in the present study are overlapped with several
QTLs for drought-adaptive traits. One of them located on
linkage group 5 (GYPW.5.1), is overlapped with the QTLs for
OA (0A.5.2), leaf water potential (LWP.WS.5.1) and RWC

RWC.WS.5.1) (Table 4). Another QTL for GYP, located on
linkage group 12 (GYPI.12.1), is overlapped with one QTL for
turgor potential (T7P.WW.12.1) and two QTLs for OA
(OA.12.1 and OA.12.2). Seemingly, the third QTL for GYP,
located on linkage group 16 (GYPD.16.1) is overlapped with
the QTLs for turgor potential (TP.WS.16.1), osmotic potential
at full turgor (OPF.WS.16.2 and OPF.WW.16.1), leaf water
potential (LWP.WS.16.1) and RWC (RWC.WS.16.1)
(Table 4).

We have shown a partly common genetic basis for plant
water status, OA and productivity. Detailed characterization
of these genomic regions through the development and
evaluation of near-isogenic lines will lead to an improved
understanding of drought tolerance and might set the stage for
the positional cloning of drought tolerance genes. Prior results
of plant water status and OA have been largely based on
phenotypic association with yield under drought stress in
sunflower (Chimenti et al. 2002). Overlapping QTLs for water
status traits, OA and productivity has been observed in cotton
(Saranja et al. 2004) and barley (Teulat et al. 1998).

In the present study, a mapping population was evaluated
for agronomical traits under greenhouse and field conditions
each with two water treatments. Using the same mapping
population under different water regimes helped us on the
identification of consistent genomic regions (QTL) from those
expressed under specific conditions for several agronomical
and yield-related traits. Although QTLs induced only by
drought may be associated with mechanism(s) of sunflower



drought response, we suppose that the QTLs that can reduce
trait difference between well-watered (irrigated) and water-
stressed (non-irrigated) conditions should have an effect on
drought tolerance because of their contribution to trait
stability. Therefore, the QTLs, which are common across
water treatment are of more interest and most useful for MAS.
Regarding to these points, the most stable genomic region
controlling yield is located on linkage groups 14 (SSR marker:
ORS391), where three QTLs for yield under three water
treatments were overlapped.

One of the major goals for plant breeders is to develop
genotypes with high yield potential and the ability to be stable
across environments. There are two main ways in which a
cultivar can achieve stability. The first one is identification of
the non-environment-specific QTLs or QTLs with minor
interaction with environments (as those located on linkage
group 14), which should be particularly useful in MAS for
yield. The second is the development of widely adapted
cultivars by pyramiding different QTLs each controlling
adaptation to a different range of environments (as nine
environment-specific QTLs for yield).

We compared the position of QTLs obtained in the present
study with the results obtained by Rachid Al-Chaarani et al.
(2004) for yield-related traits using the same mapping popu-
lation (PAC2 x RHA266) under well-watered conditions.
According to the authors, the most important DNA regions
controlling thousand grain weight and yield are located on
linkage groups 4, 6 and 9, which correspond to the linkage
groups 7, 5 and 10 in the present study with public common
linkage group nomenclature. One QTL for yield reported by
Rachid Al-Chaarani et al. (2004) on linkage group 6 was
confirmed in the present study on the corresponding linkage
group 5 (GYPIL.5.1). Their two other QTLs are co-located with
the QTLs controlling biomass on linkage groups 7 (BION.7.3
and BIOI1.7.2) and 10 (BIOW.10.1) in the present study. The
latter, however, is close to two QTLs controlling GYP
(GYPN.10.1 and GYPW.10.1).

Another application of QTL analysis is the genetically
determination of the trait association by evaluation of over-
lapping QTLs. In the present study we identified the genomic
regions controlling productivity (BIO per plant, HW per plant
and GPY), which overlapped with the QTLs previously
reported for plant water status and OA (Poormohammad
Kiani et al. 2007b). The results showed a partly common
genetic basis for physiological traits (plant water status and
OA) and grain yield in RILs. The whole results do highlight
interesting genomic regions for marker-based breeding pro-
gramme for drought tolerance in sunflower. Knowledge of the
number and likely position of loci for drought adaptive traits
and yield can provide the information required to select
optimal combinations of alleles by the use of marker-assisted
selection. For example, combining the major QTL for yield on
linkage group 14 (nearest SSR marker ORS391) with another
QTL of yield on linkage group 5 (nearest SSR marker
ORSS523_1), considering that the latter marker was also linked
to the QTLs for several plant water status traits and OA with
high phenotypic variance explained, could be beneficial for
pyramiding higher grain yield and drought tolerance QTLs in
the same genotype. However, like any other quantitative trait,
there is a requirement to confirm the position of the QTL and
carry out fine-scale mapping before MAS becomes a viable
proposition.
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