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Abstract. Salmonella is one of the major sources of toxi-infection in humans in France and United
States. The incidence of human salmonellosis has considerably increased over the past 20 years
and this can be largely attributed to epidemics of S. enteritidis phage type 4 in poultry in numerous
countries. In this article, we formulate and analyse a model in which the transmission of the disease
is determined by contact between hens and Salmonella in the environment.
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1. Introduction
Salmonella is one of the major sources of toxic infection in humans in France and in United states
(Bouvet et al. [3] and Patrick et al. [26]). The incidence of human salmonellosis has increased
greatly over the last 20 years and this can largely be attributed to an epidemics of S. enteritidis
phage types 4 in poultry in many countries (Barrow et al. [1], Guard-Petter [13], CDC [6, 7], and
Patrick et al. [26]). Transmission to hens may originate from contaminated food, water, or from
transmission by wild animals. However, one of the main concerns is the existence of silent carriers,
i.e. animals harboring Salmonella without expressing any visible symptoms. Since they can hardly
be distinguished from healthy animals, these animals can, in turn, transmit the bacterium to their
flock-mates through horizontal transmission or to their offspring by vertical transmission. They are
also responsible for transmission to human beings. The analysis of different experimental infection
has permitted to develop a number of prophylactis: vaccination (Zhang-Barber [32]), competitive
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exclusion (Rantala and Nurmi [25], Rabsch et al. [24]), and genetic methods (in increasing re-
sistance to systemic disease (Bumstead and Barrow [4]) or in carrier-states (Beaumont et al. [2]),
thus reducing the need for antibiotic treatments and the risk of resistance to antibiotics). How-
ever, the efficiency of these methods was evaluated after experimental inoculation, thus comparing
Salmonella contamination rates at a given interval after inoculation and neglecting the dynamics
of bacterial dissemination within the flock.

Here, our objective is to develop and to analyze a mathematical model for Salmonella infec-
tion which takes into account the dynamics of bacterial dissemination. Hence, we present a model
incorporating a spatial structure for the dynamics of Salmonella infection within a egg laying hen
flock. To formulate our model, we consider the population of hens and the bacterial environmen-
tal contamination, and we assume that the transmission of the disease is determined by contact
between hens and bacteria in the environment. The model presented here is not a direct contact
epidemic model. Epidemic models considering direct contact have been reviewed by Hethcote
[16] as well as Diekmann and Heesterbeek [8]. In Fitzgibbon et al. [9, 10] a model with indirect
transmission was also considered, but the authors consider a population of cats which diffuses in a
static contaminated environment, whereas here the population of hens is static and the Salmonella
diffuses in the environment. Models of Salmonella infection in dairy herds which incorporate the
bacterial environmental contamination have been presented by Xiao et al. [30, 31].

In the present article we formulate a spatially structured model for which two extreme cases as
well as the diffusion rate of Salmonella in the environment are numerically compared. Since for
real hens houses the diffusion rate is high, a non-spatially structured model, which is a system of
ordinary differential equations (ODE), can be considered as an alternative to the spatially structured
model. This ODE model was presented previously by Prevost et al. [23] together with a model for
the production of eggs contaminated with Salmonella. The ODE model was compared to real data
in [23]. To improve the understanding of the parameters in the described epizooty, here we analyze
the asymptotic behavior of the ODE system, as the results obtained for the asymptotic behavior
were found to coincide with numerical simulation in [23].

The paper is organized as follows. In section 2, we present the model and some numerical
simulations. In section 3 we investigate the existence and uniqueness of solutions for the spatially
structured model. In section 4, we study the uniform persistence, the local (and the global) stability
of endemic equilibrium of the ODE model.

2. Mathematical model
Let us consider a population of hens and the bacterial environmental contamination within an
industrial house hens. We assume that the population of hens is motionless (because hens re-
main within their cages) and that Salmonella population disperses via a diffusion process in the
environment. The diffusion process is well adapted here for Salmonella dispersing in the envi-
ronment through dust, air flux, etc.... We assume that the population of hens is confined into the
hen house, which is represented here by the spatial domain Ω ⊂ R2, in which Ω represents the
area covered by the hen house. We also consider three steps of contamination for the hens: di-
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gestive contamination, systemic contamination (when systemic organs such as liver or spleen are
contaminated after translocation of bacterium through the digestive barrier), and bacterial clear-
ance leading to recovery. We denote by s(t, x), iD(t, x), iS(t, x), r(t, x) the density of population
at time t and position x ∈ Ω of susceptible hens (i.e. those capable to contract the disease),
hens suffering from digestive contamination (D-infectious), hens suffering from systemic con-
tamination (S-infectious), and recovered hens (i.e. having eliminated all bacteria), respectively.
The total number of hens in each class S(t), ID(t), IS(t) and R(t) may be computed by integra-
tion over the habitat Ω, i.e. S(t) =

∫
Ω

s(t, x)dx, ID(t) =
∫
Ω

iD(t, x)dx, IS(t) =
∫

Ω
iS(t, x)dx,

R(t) =
∫
Ω

r(t, x)dx. Moreover, we assume that the total number of hens remains constant and
equal to N (because hens don’t die from Salmonella). This leads to

S(t) + ID(t) + IS(t) + R(t) = N, ∀t ≥ 0.

Let c(t, x) be the density of bacterial environmental contamination. As above, the total number of
bacteria in the environment C(t) is obtained by integration over Ω i.e. C(t) =

∫
Ω

c(t, x)dx, ∀t ≥ 0.
The transmission rate (i.e. the rate at which susceptible hens become D-infectious) is assumed to
have following form

σ(t, x) =

∫

Ω

γ(x, y, C(t))c(t, y)dy,

where γ(x, y, C(t)) is the infection rate at position x by bacteria at position y and depends on
bacterial load C(t). We also assume that D-infectious and S-infectious hens release bacteria in the
environment via an excretion process. This flux of excreted bacteria is represented in the model by
βDiD(t, x) + βSiS(t, x).

The different stages and bacteria in the environment are coupled into the following system




∂s(t, x)/∂t = −σ(t, x)s(t, x) + νr(t, x),
∂iD(t, x)/∂t = σ(t, x)s(t, x)− giD(t, x),
∂iS(t, x)/∂t = giD(t, x)− ηiS(t, x),
∂r(t, x)/∂t = ηiS(t, x)− νr(t, x),
∂c(t, x)/∂t = α2∆xc(t, x) + βDiD(t, x) + βSiS(t, x)− λc(t, x).

(2.1)

We also assume that bacteria remain confined into Ω. Hence, we impose a standard no-flux bound-
ary condition

∂c(t, x)/∂η = 0, on ∂Ω.

The initial condition is assumed to be non-negative on Ω

(s(0, .), iD(0, .), iS(0, .), r(0, .), c(0, .)) = (s0(.), iD0(.), iS0(.), r0(.), c0(.)) ,

and we also assume that

g ≥ 0, ν ≥ 0, η ≥ 0, βD ≥ 0, βS ≥ 0, λ ≥ 0,

where g is the rate at which digestive contaminated hens become systemic contaminated, α2 is
the diffusion rate of bacteria, η the recovery rate, βD (resp. βi) the excretion rate of D (resp.
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S)-infectious hens, −λ the growth rate of bacteria in the environment and, ν the recontamination
rate.

In the sequel, we only consider two extremes cases: 1) σ(t, x) = κC(t) (global case); 2)
σ(t, x) = κc(t, x) (local case). The case 1) corresponds to a situation where the distance between
the hens and the contaminant does not influence the infection rate. The case 2) corresponds to a
situation where a hen can only be infected by Salmonella which are located at the same position
as the hen. Below we numerically compare both situations by using a Crank-Nicholson scheme to
compute the solutions. For the numerical simulations, we only modify the diffusion rate α. All the
remaining parameters are fixed, and equal to N̄ = 20000, κ = 0.1, g = 0.2, η = 0.1, βD = 0, βS =
0.1, λ = 0.1, and ν = 0. Moreover at time t = 0, all the hens are assumed to be susceptible.
For the figures below the time t = 800 corresponds to a time without residual D-infectious, S-
infectious, and bacteria in the environment. In consequence, on the figures below, the distribution
of susceptible at time t = 800 is a stationary distribution.
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Figure 1: This figure corresponds to the global case. The green curve corresponds to the initial
distribution of bacteria, the blue curve corresponds the initial distribution of susceptible hens, and
red curve corresponds to distribution of S-infectious at time t=800.

For the global case 1), the solutions are independent of α. Therefore, in figure 1, we do not
specify the diffusion rate α. Although the support of the initial density of bacteria in the envi-
ronment is concentrated in the interval [0.4, 0.6] , we observe numerically that hens are uniformly
contaminated. However, if we consider the local case 2), the diffusion rate influences the contam-
ination process. In Figure 2, we have the same initial distribution of hens and bacterial population
as in Figure 1, but in this case, we observe that the contamination of hens is located around the
initial support of bacterial distribution.
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Figure 2: This figure corresponds to the local case with α = 0.0005. The green curve corresponds
to the initial distribution of bacteria, the blue curve corresponds the initial distribution of suscepti-
ble hens, and red curve corresponds to distribution of S-infectious at time t=800.

To conclude this section, we present two more figures, in which we increase the diffusion rate,
and we observe that the corresponding asymptotic distribution of susceptible hens converges to
the asymptotic distribution of the global case. In real hen houses, it is known that the diffusion
of Salmonella is large. The results of Nakamura et al. [22] may illustrate the large diffusion rate.
Indeed, those experiments start by inoculation of 50% of the population and observe a contamina-
tion of 87% of hens only six days later. We also refer to Hollinger [18] for further results about
dispersion and persistence of Salmonella in hen houses.
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Figure 3: Local case with α = 0.01
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Figure 4: Local case with α = 0.1
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3. Existence and uniqueness of solutions
In this section, we investigate the existence and uniqueness of solutions of the model for both the
global and local cases.

3.1. Global case
We first consider the global case, which corresponds to the following system





∂s(t, x)/∂t = −κC(t)s(t, x) + νr(t, x),
∂iD(t, x)/∂t = κC(t)s(t, x)− giD(t, x),
∂iS(t, x)/∂t = giD(t, x)− ηiS(t, x),
∂r(t, x)/∂t = ηiS(t, x)− νr(t, x),
∂c(t, x)/∂t = α2∆xc(t, x) + βDiD(t, x) + βSiS(t, x)− λc(t, x).

(3.1)

From now on, we denote by

X = L1 (Ω)5 , and X+ = L1 (Ω)5
+ ,

where X is endowed with the usual product norm.
We assume that Ω ⊂ R2 is an open subset of class C2+γ for some γ ∈ (0, 1) . Consider

B̂ : C2(Ω) −→ C(Ω) the linear operator defined by

B̂φ = α2∆φ,∀φ ∈ D(B̂) =
{
φ ∈ C2(Ω) : η(x).5 φ(x) = 0, ∀x ∈ ∂Ω

}
,

where η(x) denotes the outer normal unit vector at the boundary point x ∈ ∂Ω.
By combining the approach used by Pazy [27, Section 7.4 p.218-219], and Theorem 2.3 p.33

in the book of Wu [33] (which is due to Mora [21, Theorem 2.4]), we deduce that B̂ is closable in
L1(Ω), and α2∆ its closure is the infinitesimal generator of an analytic semigroup {Tα2∆(t)}t≥0 on
L1 (Ω), and (0, +∞) ⊂ ρ (α2∆) the resolvent set of α2∆. Moreover, from the maximum principle
for the Laplacian operator with Neumann boundary conditions in L2(Ω), we also deduce that

(
δI − α2∆

)−1
L1

+ (Ω) ⊂ L1
+ (Ω) , ∀δ > 0.

Therefore, α2∆ is the infinitesimal generator of a positive analytic semigroup.
We consider A : D(A) ⊂ X → X the linear operator defined by

A




s
iD
iS
r
c




=




νr
−giD

giD − ηiS
ηiS − νr

α2∆c + βDiD + βSiS − λc




,

with
D(A) = L1(Ω)4 ×D(α2∆).
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Then, by using classical bounded perturbation technics (see for example Pazy [27] Chapter 3),
we deduce that A generates {TA(t)}t≥0 a strongly continuous semigroup of positive and bounded
linear operator on X. We define F : X → X by

F




s
iD
iS
r
c




=




−κsC(t)
κsC(t)

0
0
0




,

is a Lipschitz continuous function on the bounded sets of X.
The system (3.1) can be rewritten as the abstract semi-linear Cauchy problem

dU(t)x

dt
= AU(t)x + F (U(t)x), t ≥ 0, U(0)x = x. (3.2)

We now recall that a family of maps {U(t)}t≥0 , on a metric space (M,d) is called a continuous
semiflow if the three following assertions are satisfied:

i) U(0) = Id;

ii) U(t + s) = U(t) ◦ U(s), ∀t, s ≥ 0;

iii) The map (t, x) −→ U(t)x is continuous map from R+ ×M into M .

Then we have the following result about existence and uniqueness for system (3.2).

Theorem 1. There exists a continuous semiflow {U(t)}t≥0 on X+ such that for each x ∈ X+,
U(.)x ∈ C ([0, +∞) , X+) is the unique solution of

U(t)x = TA(t)x +

∫ t

0

TA(t− s)F (U(s)x)ds, ∀t ≥ 0. (3.3)

Moreover, if we consider

K(t) =

∫

Ω

k(t, x)dx, ∀k = s, iD, iS, r, c,

then S(t), ID(t), IS(t), R(t), C(t), satisfy the following system of ordinary differential equations:




dS(t)/dt = −κC(t)S(t) + νR(t),
dID(t)/dt = κC(t)S(t)− gID(t),
dIS(t)/dt = gID(t)− ηIS(t),
dR(t)/dt = ηIS(t)− νR(t),
dC(t)/dt = βDID(t) + βSIS(t)− λC(t).

(3.4)
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Proof. The existence of a unique positive maximal solution for each positive initial value follows
from the fact that A generates a positive semigroup on X, F is Lipschitz on bounded sets of X,
and the following property for each M > 0, there exists δ > 0, such that

(F + δI) (x) ≥ 0, ∀x ∈ B(0,M) ∩X+.

So for each x ∈ X+, we know that (3.2) has a unique maximal solution U(t)x ∈ C ([0, T (x)) , X+)
with the following property

T (x) < +∞⇒ lim
t→T (x)−

‖U(t)x‖ = +∞. (3.5)

We refer to Cazenave and Haraux [5] for further precisions. By integration on Ω of each component
of (3.1) we obtain the system (3.4), and we obtain

d

dt
[S(t) + ID(t) + IS(t) + R(t)] = 0,

so
0 ≤ K(t) ≤ N, ∀t ∈ [0, T (x)) ,∀K = S, ID, IS, R.

Moreover,

dC(t)/dt ≤ (βD + βS) N̄ − λC(t) ⇒ C(t) ≤ Ĉ(t);∀t ∈ [0, T (x)) ,

where Ĉ(t)is the unique solution of

dĈ(t)/dt = (βD + βS) N̄ − λĈ(t), ∀t ≥ 0, with Ĉ(0) = C(0).

Finally, if T (x) < +∞, we have

sup {‖U(t)x‖ , t ∈ [0, T (x))} < +∞,

a contradiction with (3.5). So T (x) = +∞.

3.2. Local case
The local case corresponds to the following system





∂s(t, x)/∂t = −κc(t, x)s(t, x) + νr(t; x),
∂iD(t, x)/∂t = κc(t, x)s(t, x)− giD(t, x),
∂iS(t, x)/∂t = giD(t, x)− ηiS(t, x),
∂r(t, x)/∂t = ηiS(t, x)− νr(t; x),
∂c(t, x)/∂t = α2∆c(t, x) + βDiD(t, x) + βSiS(t, x)− λc(t, x).

(3.6)

We define

Dδ =
{
(s, iD, iS, r) ∈ L1(Ω)4 : s, iD, iS, r ≥ 0 and s + iD + iS + r ≤ δ1Ω

}
,
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and
D̂δ =

{
ϕ ∈ L1(Ω,R) : 0 ≤ ϕ ≤ δ1Ω

}
.

The system (3.6) is now considered as the following abstract Cauchy problem on Dδ1 × D̂δ2

du

dt
= Au(t) + H (u(t)) , t ≥ 0, u(0) = x ∈ Dδ1 × D̂δ2 , (3.7)

where

H

(
v
c

)
=


 G

(
v
c

)

L(v)


 ,

with G : Dδ1 × D̂δ2 → L1(Ω,R)4 and L : L1(Ω,R)4 → L1(Ω,R) are defined by

G

(
v
c

)
=




−κsc
κsc
0
0


 , L (v) = βDiD + βSiS

whenever v = (s, iD, iS, r) ∈ Dδ1 , and c ∈ D̂δ2 .
We also note that by using the matrix operator formalism,we have

A =

(
B 0
0 α2∆

)
,

where

B =




0 0 0 νId
0 −gId 0 0
0 gId −ηId 0
0 0 η −νId


 .

By choosing some suitable δ1 > 0 and δ2 > 0, we can prove the existence and the uniqueness of
the solution of (3.7) on Dδ1 × D̂δ2 .

Theorem 2. Let be δ1 > 0 and δ2 > 0 such that δ2 > (βD + βS) δ1/λ. Then there exists a
continuous semiflow {U(t)}t≥0 on Dδ1 × D̂δ2 such that ∀x ∈ Dδ1 × D̂δ2 , U(.)x is the unique mild
solution of (3.7) in C([0, +∞) , Dδ1 × D̂δ2).

Proof. First, it is clear that since H is Lipschitz continuous on Dδ1× D̂δ2 , the Cauchy problem has
at most one solution on Dδ1 × D̂δ2 . In the following we demonstrate that such a solution exits.

Let (v0, c0) ∈ Dδ1 × D̂δ2 be fixed. We consider the following fixed problem
{

v = Ψ1(C),
C = Ψ2(v),

10
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where Ψ1(c)(t) is the unique solution of

v(t) = eBtv0 +

∫ t

0

eB(t−s)F (v(s), c(s)) ds,

and

Ψ2(v)(t) := Tα2∆−λI(t)c0 +

∫ t

0

Tα2∆−λI(t− s)L(v(s))ds,

where Tα2∆−λI(t) = eλtTα2∆(t),∀t ≥ 0, is the C0-semigroup generated by α2∆− λI.
We have Tα2∆(t)1Ω = 1Ω,∀t ≥ 0. Assuming that v ∈ Dδ1 , then we have

Ψ2(v)(t) = Tα2∆−λI(t)c0 +

∫ t

0

Tα2∆−λI(t− s) [βDiD(s) + βSiS(s)] ds,

so
0 ≤ H2(v)(t) ≤ max(δ2, (βD + βS)δ1/λ)1Ω.

Consequently, for each δ2 ≥ (βD + βS)δ1/λ, we have

Ψ2(C ([0, τ ] , Dδ1)) ⊂ C
(
[0, τ ] , D̂δ2

)
,∀τ ≥ 0.

Next, we remark that e(B−δI)t ≥ 0,∀t ≥ 0, ∀δ ≥ 0, and if we set v(t) = Ψ1(c)(t) for some
c ∈ C

(
[0, τ ] , D̂δ2

)
, we have for each δ ≥ 0,

v(t) = e(B−δI)tv0 +

∫ t

0

e(B−δI)(t−s) [G (v(s), c(s)) + δv(s)] ds,

since c ∈ C
(
[0, τ ] , D̂δ2

)
, it follows that

v(t) ≥ 0, ∀t ≥ 0. (3.8)

Moreover
dv(t)

dt
= Bv(t) + G(v(t), c(t)), ∀t ≥ 0,

and if we set v(t) = (s(t), iD(t), iS(t), r(t)) , then we deduce that

d (s(t) + iD(t) + iS(t) + r(t))

dt
= 0,∀t ≥ 0. (3.9)

Now by combining (3.8) and (3.9), we deduce that

Ψ1(C
(
[0, τ ] , D̂δ2

)
) ⊂ C ([0, τ ] , Dδ1) ,∀τ ≥ 0.

Finally by using Gronwall’s lemma, we deduce that there exist K1 > 0 and K2 > 0 such that for
each i = 1, 2, Ψi is τKi-Lipschitz continuous. So for τ > 0 small enough, Ψ1 ◦Ψ2 is a contraction
strict independently of the initial value (v0, c0) . The result follows.
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4. Asymptotic behavior in the global case
In this section we investigate the asymptotic behavior of the model in the global case. Therefore,
we consider the system of ordinary differential equations





dS(t)/dt = −κC(t)S(t) + νR(t),
dID(t)/dt = κC(t)S(t)− gID(t),
dIS(t)/dt = gID(t)− ηIS(t),
dR(t)/dt = ηIS(t)− νR(t),
dC(t)/dt = βDID(t) + βSIS(t)− λC(t),

(4.1)

with initial values

S(0) = S0, ID(0) = ID0, IS(0) = IS0, R(0) = R0, and C(0) = C0,

with S0 ≥ 0, ID0 ≥ 0, IS0 ≥ 0, R0 ≥ 0, and C0 ≥ 0.

In the sequel, we will make the following assumption.

Assumption 4.1: We assume that κ > 0, g > 0, η > 0, λ > 0, βD + βS > 0, and

N := S0 + ID0 + IS0 + R0 > 0.

From here on, we focus on the asymptotic behavior of system (4.1). We consider separately the
cases ν = 0 and ν > 0 which correspond to a perfect (respectively a partial) immunization of hens
after one infection.

4.1. Case ν = 0

The case ν = 0 can be considered as an extended SI model without input flux for susceptible hens.
Hence, the idea is to extend the method used by Hethcote [14, 15, 16] to describe the asymptotic
behavior of the model.

From now on, we set

a :=
ηgλ

κ(ηβD + gβS)
.

Theorem 3. Let Assumption 4.1 be satisfied. Assume in addition that ν = 0. Then

(ID(t), IS(t), C(t)) → (0, 0, 0) as t → +∞,

and we have the following alternative:

(i) If ID0 + IS0 + C0 = 0 or S0 = 0, then

(S(t), R(t)) → (
S0, N − S0

)
as t → +∞.

12
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(ii) If S0 > 0 and ID0 + IS0 + C0 > 0, then

(S(t), R(t)) → (
S∞, N − S∞

)
as t → +∞,

where S∞ is the unique root in (0, a] of the equation

σ − S∞ + a ln(S∞) = 0, (4.2)

where

σ = S0 + ID0 + a

[
βS

η

κ

λ
IS0 +

κ

λ
C0 − ln(S0)

]
.

Proof. The proof of (i) is trivial. We now prove (ii). Consider the following system




dS(t)/dt = −κS(t)C(t), S(0) = S0 > 0,
dID(t)/dt = κS(t)C(t)− gID(t), ID(0) = ID0 ≥ 0,
dIS(t)/dt = gID(t)− ηIS(t), IS(0) = IS0 ≥ 0,
dC(t)/dt = βDID(t) + βSIS(t)− λC(t), C(0) = C0 ≥ 0.

(4.3)

From the first equation of (4.3), we deduce that t → S(t) is non-increasing. Hence,

lim
t−→+∞

S(t) = S∞ ≥ 0.

We can split the last equation of (4.3), into a system
{

dCD(t)/dt = βDID(t)− λCD(t), CD(0) = CD0 ≥ 0,
dCS(t)/dt = βSIS(t)− λCS(t), CS(0) = CS0 ≥ 0,

with
CD0 + CS0 = C0,

and we obtain
C(t) = CD(t) + CS(t),∀t ≥ 0.

We set
AIS

=
κβS

λη
a, and AD = AS =

aκ

λ
.

We will use the following change of variable




ĈD(t) = ADCD(t), ĈD(0) = ADCD(0) = ADCD0,

ĈS(t) = ASCS(t), ĈS(0) = ASCS(0) = ASCS0,

ÎS(t) = AIS
I(t), ÎS(0) = AIS

I(0) = AIS
IS0.

Then from (4.3), we derive the following system of ordinary differential equations




dS(t)/dt = −κS(t)[CD(t) + CS(t)], S(0) = S0 > 0,
dID(t)/dt = κS(t)[CD(t) + CS(t)]− gID(t), ID(0) = ID0 ≥ 0,

dÎS(t)/dt = AIS
gID(t)− ηÎS(t), ÎS(0) = AIS

IS0 ≥ 0,

dĈD(t)/dt = ADβDID(t)− λĈD(t), ĈD(0) = ADCD0 ≥ 0,

dĈS(t)/dt = ASβS

AIS

ÎS(t)− λĈS(t), ĈS(0) = ASCS0 ≥ 0.

(4.4)

13
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Let be V (t) defined by

V (t) = S(t)− a ln(S(t)) + ID(t) + ÎS(t) + ĈD(t) + ĈS(t),

then we obtain
dV (t)/dt = 0.

Consequently
V (t) = σ, ∀t ≥ 0, (4.7)

where
σ = S0 − a ln(S0) + ID0 + AIS

IS0 + ADCD0 + ASCS0,

so

σ = V (0) = S0 + ID0 + a

[
κβS

λη
IS0 +

κ

λ
(CD0 + CS0)− ln(S0)

]
,

and since (CD0 + CS0) = C0, we obtain

σ = S0 + ID0 + a
κ

λ

[
βS

η
IS0 + C0 − λ

κ
ln(S0)

]
.

By using (4.7), we deduce that
−a ln(S(t)) ≤ σ,∀t ≥ 0,

so
S(t) ≥ e−

σ
a > 0, ∀t ≥ 0.

We deduce that
lim

t→+∞
S(t) = S∞ > 0,

and
ÎS(t) + ID(t) + ĈD(t) + ĈS(t) −→ σ − S∞ + a ln(S∞), t −→ +∞.

In order to show ÎS(t) + ID(t) + ĈD(t) + ĈS(t) −→ 0, we consider the system (4.4) on ω-limit
set. Then we have





dS∗(t)/dt = −κS∗(t)[C∗
D(t) + C∗

S(t)], S∗(0) = S∞ > 0,
dI∗D(t)/dt = κS∗(t)[C∗

D(t) + C∗
S(t)]− gI∗D(t), I∗D(0) = I∗D0 ≥ 0,

dÎ∗S(t)/dt = AIS
gI∗D(t)− ηÎ∗S(t), Î∗S(0) = I∗S0 ≥ 0,

dĈ∗
D(t)/dt = ADβDI∗D(t)− λĈ∗

D(t), Ĉ∗
D(0) = Ĉ∗

D0 ≥ 0,

dĈ∗
D(t)/dt = ASβS

AIS

Î∗S(t)− λĈ∗
S(t), Ĉ∗

S(0) = Ĉ∗
S0 ≥ 0.

Invariance of ω-limit set implies S∗(t) = S∞,∀t ≥ 0, and dS∗(t)/dt = 0, so

−κS∞[C∗
D(t) + C∗

S(t)] = 0.

14
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But since κ > 0, and S∞ > 0 then Ĉ∗
D(t) = Ĉ∗

S(t) = 0. So Î∗S(t) and I∗D(t) satisfy the system
{

dI∗D(t)/dt = −gI∗D(t),

dÎ∗S(t)/dt = AIS
gI∗D(t)− ηÎ∗S(t),

and by invariance of the omega-limit set, we deduce that

Î∗S(t) = I∗D(t) = 0, ∀t ≥ 0.

So we obtain
ÎS(t) + ID(t) + ĈD(t) + ĈS(t) −→ 0, t −→ +∞,

and we deduce that S∞ is a root of

σ − S∞ + a ln(S∞) = 0.

It remains to show that S∞ < a. Assume that S∞ > a. Then we have




dID(t)/dt ≥ κS∞C(t)− gID(t),
dIS(t)/dt = gID(t)− ηIS(t),
dC(t)/dt = βDID(t) + βSIS(t)− λC(t),

so by using classical arguments coming from monotone dynamical system theory, we deduce that

ID(t) ≥ I∗D(t), IS(t) ≥ I∗S(t), and C(t) ≥ C∗(t),∀t ≥ 0,

where (I∗D(t), I∗S(t), C∗(t)) is the solution of




dI∗D(t)/dt = κS∞C∗(t)− gI∗D(t),
dI∗S(t)/dt = gI∗D(t)− ηI∗S(t),
dC∗(t)/dt = βDI∗D(t) + βSI∗S(t)− λC∗(t),

with initial value
I∗D(0) = ID0, I

∗
S(0) = IS0, and C∗(0) = C0.

Now since by assumption βD + βS > 0, and since ID0 + IS0 + C0 > 0, we deduce

I∗D(t) > 0, I∗S(t) > 0, C∗(t) > 0,∀t > 0.

Now by using the same change of variable as above we obtain

d

dt

(
I∗D(t) + Î∗S(t) + Ĉ∗

D(t) + Ĉ∗
S(t)

)
= κ [S∞ − a] [C∗

D(t) + C∗
S(t)] .

Now, if S∞ > a, then we have

d

dt

(
ID(t) + ÎS(t) + ĈD(t) + ĈS(t)

)
> 0,∀t > 0.

15
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So we obtain a contradiction with the fact that
(
ID(t) + ÎS(t) + ĈD(t) + ĈS(t)

)
converges to 0

as t goes to +∞, and it follows that S∞ ≤ a. Finally from the fact that N = S(t)+ID(t)+IS(t)+
R(t), ∀t ≥ 0, we obtain

lim
t−→+∞

R(t) = R∞ = N − S∞.

As an immediate consequence of Theorem 3, we have the following result for the system (3.1).

Corollary 4. Let Assumption 4.1 be satisfied, assume that ν = 0, and that

s0 + iD0 + iD0 + r0 = n.

Then (iD(t), iS(t), c(t)) → (0, 0, 0) as t → +∞, in L1 (Ω)3 , and we have the following alternative
for system (3.1):

(i) If iD0 + iS0 + c0 = 0 or s0 = 0, then

(s(t), r(t)) → (s0, n− s0) , as t → +∞ in L1 (Ω)2 .

(ii) If iD0 + iS0 + c0 > 0 and s0 > 0, then

(s(t), r(t)) →
(

S∞
s0(.)∫

Ω
s0(y)dy

, n− S∞
s0(.)∫

Ω
s0(y)dy

)
, as t → +∞ in L1 (Ω)2 ,

where S∞ is the solution of (4.2).

Proof. i) is trivial. To prove ii) it is sufficient to remark that

s(t, x) = exp

(
−

∫ t

0

κC(s)ds

)
s0(x),

thus
s(t, x)∫

Ω
s(t, y)dy

=
s0(x)∫

Ω
s0(y)dy

,

so

lim
t→+∞

s(t, x) = lim
t→+∞

∫

Ω

s(t, x)dx
s0(x)∫

Ω
s0(y)dy

= S∞
s0(x)∫

Ω
s0(y)dy

.

The last part of the corollary follows from the fact that

d

dt
(s(t, x) + iD(t, x) + iS(t, x) + r(t, x)) = 0.
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4.2. Case ν > 0

In this subsection we consider system (4.1) when ν > 0. We study the stability of equilibriums
(i.e. disease free and endemic equilibriums), and the uniform persistence of the disease. We also
provide a sufficient condition for the global asymptotic stability of the endemic equilibrium.

From now on, we denote by

R0 = N̄
κ

λ

(
βD

g
+

βS

η

)
,

the basic reproductive number.

Equilibriums: The disease free equilibrium of system (4.1) is

Xf =
(
N, 0, 0, 0, 0

)
.

If R0 ≤ 1, system (4.1) has no other equilibrium. If R0 > 1, the system (4.1) has a unique endemic
equilibrium given by

Xe =

(
N̄

R0

,
N̄κ

gR0

C̄,
N̄κ

ηR0

C̄,
N̄κ

νR0

C̄, C̄

)
,

where

C̄ =
(R0 − 1)

κ
(

1
g

+ 1
η

+ 1
ν

) .

Uniform Persistence and Extinction: To study the uniform persistence of D-infectious hens, we
will use the following auxiliary lemma.

Lemma 5. Let Assumption 4.1 be satisfied, and consider the matrix

B =



−g 0 θ
g −η 0
βD βS −λ


 , with θ > 0.

We set

ρ :=
θ

λ

(
βD

g
+

βS

η

)
.

Then there exist (a, b, c) ∈ (0, +∞)+ and s(B) ∈ R, such that

(a, b, c) B = s(B) (a, b, c) .

Moreover we have the following alternative:

1) ρ > 1 ⇔ s(B) > 0; 2) ρ = 1 ⇔ s(B) = 0; 3) ρ < 1 ⇔ s(B) < 0.

17
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Proof. We remark that δI + B is an irreducible matrix for all δ > 0 large enough ( see example
Horn and Johnson [17] or Minc [20] for a precise definition of irreducibility). It follows that there
exist some vector (a, b, c) ∈ (0, +∞)3 and s(B) ∈ R such that

(a, b, c) B = s(B) (a, b, c) ,

where s(B) is the largest real eigenvalue of B. The characteristic polynomial of B is

P (γ) = − (γ + g) (γ + η) (γ + λ) + θ (βSg + βD (γ + η)) .

We remark that
P (0) = θ (βSg + βDη)− gηλ.

Since P (γ) → −∞ as γ → +∞, and s(B) is the largest real eigenvalue of B, it is clear that

P (0) > 0 ⇒ s(B) > 0,

or equivalently
θ

λ

(
βD

g
+

βS

η

)
> 1 ⇒ s(B) > 0.

We have

P ′(γ) = − [(γ + η) (γ + λ) + (γ + g) (γ + λ) + (γ + g) (γ + η)] + θβD,

P ′′(γ) = −2 [(γ + λ) + (γ + g) + (γ + η)] .

We note that P ′′(0) = −2 (g + η + λ) < 0, so P ′′(γ) < 0, ∀γ > 0, and P ′(γ) is decreasing on
[0, +∞) . If P (0) ≤ 0 (⇔ θ (βSg + βDη) ≤ gηλ.) we have

P ′(0) = − [ηλ + gλ + gη] + θβD,

since θβDη ≤ gηλ, we deduce that θβD − gλ ≤ 0, so P ′(0) < 0. The result follows.

From now on, we set

M =
{
(S, ID, IS, R, C) ∈ R5

+ : S + ID + IS + R = N
}

,

and
M0 :=

{
(S, ID, IS, R, C) ∈ R5

+ : S + ID + IS + R = N, and ID > 0
}

.

We denote by {Π(t)}t≥0 the continuous semiflow generated by system (4.1) on M. Then it is clear
that M0 is positively invariant by {Π(t)}t≥0. We set

∂M0 = M \M0.

The following theorem concerns the strong uniform persistence of D-infected hens for system
(4.1), or equivalently the strong uniform persistence of {Π(t)}t≥0 with respect to (∂M0, M0).

18
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Theorem 6. (Uniform persistence)
Let Assumption 4.1 be satisfied. Assume in addition that ν > 0, and R0 > 1. Then there

is strong uniform persistence of D-infected hens for system (4.1). That is to say that there exists
εD > 0, such that for each non-negative initial value of system (4.1) in M0, we have

lim inf
t→+∞

ID(t) ≥ εD.

Moreover for each K = S, IS, R, or C, we also have

lim inf
t→+∞

K(t) ≥ εK ,

where εK > 0 is an appropriated constant, which is also independent of the initial value in M0.

Proof. To prove this theorem, we use the fact that weak implies strong uniform persistence.
We refer to [11, 28, 29, 19] for precise definitions and results. Assume that {Π(t)}t≥0 is not
weakly uniformly persistence with respect to (M0, ∂M0) . Then for each ε > 0, we can find
x0 = (S0, ID0, IS0, R0, C0) ∈ M0 such that

lim sup
t→+∞

ID(t) < ε.

So ε1 > 0 be fixed such that
[
N̄ − ε1

] κ

λ

(
βD

g
+

βS

η

)
> 1.

Let ε0 > 0 be fixed such that

ε0

(
1 +

g

η
+

g

ν

)
≤ ε1

2
.

By construction we can find an initial value such that

ID(t) ≤ ε0,∀t ≥ 0.

This implies
lim sup
t→+∞

IS(t) ≤ gε0

η
, and lim sup

t→+∞
R(t) ≤ gε0

ν
.

So there exists t1 > 0, such that

ID(t) + IS(t) + R(t) ≤ ε1,∀t ≥ t1.

Without loss of generality, we can assume that t1 = 0 (by replacing the initial value x0 by Π(t1)x0).
Now, since

S(t) + ID(t) + IS(t) + R(t) = N, ∀t ≥ 0,
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we can reduce the system (4.1) to the following system of ordinary differential equations




dID(t)/dt = κC(t)
[
N − (ID(t) + IS(t) + R(t))

]− gID(t),
dIS(t)/dt = gID(t)− ηIS(t),
dR(t)/dt = ηIS(t)− νR(t),
dC(t)/dt = βDID(t) + βSIS(t)− λC(t).

(4.8)

By construction we have




dID(t)/dt ≥ κC(t)
[
N − ε1

]− gID(t),
dIS(t)/dt = gID(t)− ηIS(t),
dC(t)/dt = βDID(t) + βSIS(t)− λC(t).

So, by using monotonicity arguments, we have

ID(t) ≥ I∗D(t), IS(t) ≥ I∗S(t), C(t) ≥ C∗(t), ∀t ≥ 0,

where (I∗D(t), I∗S(t), C∗(t)) is the solution of




dI∗D(t)/dt = κ
[
N − ε1

]
C∗(t)− gI∗D(t),

dI∗S(t)/dt = gI∗D(t)− ηI∗S(t),
dC∗(t)/dt = βDI∗D(t) + βSI∗S(t)− λC∗(t),

(4.9)

with
I∗D(0) = ID0, I

∗
S(0) = IS0, and C∗(0) = C0.

The system (4.9) can be rewritten as

d

dt




I∗D(t)
I∗S(t)
C∗(t)


 = B




I∗D(t)
I∗S(t)
C∗(t)


 ,

where B is the matrix defined in Lemma 5 with θ = κ
[
N − ε1

]
. So, by using Lemma 5, we

deduce that
d

dt
(a, b, c)




I∗D(t)
I∗S(t)
C∗(t)


 = S(B) (a, b, c)




I∗D(t)
I∗S(t)
C∗(t)


 ,

and since
[
N̄ − ε1

]
κ
λ

(
βD

g
+ βS

η

)
> 1, Lemma 5 also implies that S(B) > 0. So

(a, b, c)




I∗D(t)
I∗S(t)
C∗(t)


 → +∞, as t → +∞,

and we obtain a contradiction with the fact that ID(t), IS(t), and C(t) are bounded.

20



K. Prevost et al. Asymptotic behavior in a salmonella infection model

Theorem 7. (Extinction of the disease)
Let Assumption 4.1 be satisfied. Assume in addition that ν > 0, and R0 ≤ 1. Then the disease

free equilibrium is global asymptotically stable for system (4.1).

Proof. We have

dID(t)/dt = κC(t)
[
N − (ID(t) + IS(t) + R(t))

]− gID(t),

≤ κC(t)N − gID(t).

So
d

dt




ID(t)
IS(t)
C(t)


 ≤ B




ID(t)
IS(t)
C(t)


 ,

where B is the matrix defined in Lemma 5 with θ = κN . By using Lemma 5 the result follows.

Stability of endemic equilibrium

Theorem 8. (Local stability of the endemic equilibrium)
Let Assumption 4.1 be satisfied. Assume in addition that ν > 0, and R0 > 1. Then the endemic

equilibrium of system (4.1) is locally asymptotically stable.

Proof. To prove the local stability of the endemic equilibrium, we compute the linearized equation
of system (4.8) at the endemic equilibrium. We obtain the following linear system

Y ′ = DY,

where Y = (ID(t), IS(t), R(t), C(t)) and

D =




−κC̄ − g −κC̄ −κC̄ κS̄
g −η 0 0
0 η −ν 0

βD βS 0 −λ


 ,

where Xe =
(
S̄, ĪD, ĪS, R̄, C̄

)
is the endemic equilibrium.

The characteristic polynomial of this matrix D is given by

p(θ) = (η + θ) (ν + θ) p1(θ),

where
p1(θ) = θ2 +

(
κC̄ + 2g + λ

)
θ + λ(2g + κC̄)− κS̄βD.

Clearly −η and −ν are two negative roots of p(θ). Moreover

p1 (θ) > 0,∀θ ≥ 0 ⇔ λ(2g + κC̄)− κS̄βD > 0.
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But

C̄ =
(R0 − 1)

κ
(

1
g

+ 1
η

+ 1
ν

) , and S̄ =
N̄

R0

,

so

λ(2g + κC̄)− κS̄βD > 0 ⇔ 2g + κC̄ >
κN̄

λR0

βD,

and by using the formula for R0 = N̄ κ
λ

(
βD

g
+ βS

η

)
, we obtain

λ(2g + κC̄)− κS̄βD > 0 ⇔ 1 +
κC̄

2g
>

1

2

(
βD

g

βD

g
+ βS

η

)
.

It is clear that the last inequality is always true, consequently Xe is locally asymptotically stable.

Theorem 9. (Global stability of the endemic equilibrium)
Let assumptions of Theorem 8 be satisfied. Assume in addition that

(
g

η
+

g

ν

)
< 1.

Then the endemic equilibrium is globally asymptotically stable for system (4.1) restricted to
M0.

Proof. To study global stability of endemic equilibrium, we first consider ω (x0) the omega-limit
set of a point x0 ∈ M0 for {Π(t)}t≥0 the continuous semiflow generated by system (4.1). We
consider a complete orbit of system (4.1) in ω (x0) passing through x1 ∈ ω (x0) at t = 0. From
Theorem 6, we know that

ID− := inf {ID : (S, ID, IS, R, C) ∈ ω (x0)} > 0.

If we consider a complete orbit of (4.1) in ω (x0) we have

ID(t) ≥ ID−,∀t ∈ R,

and that
IS(t) ≥ IS− :=

g

η
ID−, R(t) ≥ R− :=

g

ν
ID−,∀t ∈ R.

We also have

0 ≤ S(t) = N − (IS(t) + R(t) + ID(t)) ≤ N − (IS− + R−)− ID(t),∀t ∈ R. (4.10)

So we deduce that for each t0 ∈ R,

ID(t) ≤ ID∗(t), IS(t) ≤ IS∗(t), C(t) ≤ C∗(t), ∀t ≥ t0,
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where (ID∗(t), IS∗(t), C∗(t)) is the solution of the monotone system




dID∗(t)/dt = κC∗(t)
[
N − (IS− + R−)− ID∗(t)

]+ − gID∗(t),
dIS∗(t)/dt = gID∗(t)− ηIS∗(t),
dC∗(t)/dt = βDID∗(t) + βSIS∗(t)− λC∗(t),

(4.11)

where x+ = max(x, 0), and with the initial value

ID∗(t0) = ID(t0), IS∗(t0) = IS(t0), C∗(t0) = C(t0).

Note that the above system is monotone, because if we denote by G : R3 → R3 the second
member of (4.11), then for each M > 0, there exists λ = λ (M) > 0, such that G + λI is
monotone increasing on R3

+ ∩BR3 (0,M) (where BR3 (0,M) = {x ∈ R3 : ‖x‖ ≤ M}).
The system (4.11) admits a unique positive equilibrium

(
ID∗, IS∗, C∗

)
which is given by

IS∗ =
g

η
ID∗, C∗ =

(
βD + βS

g
η

)

λ
ID∗,

ID∗ = N

(
1− 1

R0

)
−

(
g

η
+

g

ν

)
ID−.

Furthermore, by using upper and lower solutions, it follows that this equilibrium is globally asymp-
totically stable for system (4.11) restricted to (0, +∞)3 . So in particular, this positive equilibrium
attracts the compact subsets of (0, +∞)3. From this, we deduce that

ID(t) ≥ ID−,∀t ∈ R⇒ ID(t) ≤ h(ID−),∀t ∈ R,

where

h(y) = N

(
1− 1

R0

)
−

(
g

η
+

g

ν

)
y.

By symmetry, we also deduce that

ID(t) ≤ ID+,∀t ∈ R⇒ ID(t) ≥ h(ID+),∀t ∈ R.

Finally, since by assumption
(

g
η

+ g
ν

)
< 1, h is a contraction, and the result follows.
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