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Semiparametric Estimation of a
Two-component Mixture Model
where One Component is known

LAURENT BORDES
LMAC, Universiié de Technologic de Compidgne

CELINE DELMAS
SAGA, INRA

PIERRE VANDEKERKHOVE
LAMA, Université de Marne-la-Vallée

ABSTRACT. We consider a two-component mixture model where one component distribution is
known while the mixing propertion and the other component distribution are unknown. These kinds
of medels were first introduced in biology to study the differences in expression between gencs.
The varieus estimation methods proposed till now have all assumed that the unknown distribu-
tion belongs to a parametric family. In this paper, we show how this assumption can be relaxed.
First, we note that gencrally the above model is not identifiable, but we show that under moment
and symmetry conditions some ‘almost everywhere® identifiability results can be obtained. Where
such identifiability conditions are fulfilled we propose an estimation method for the unknown para-
meters which is shown to be strongly consistent under mild conditions. We discuss applications of
our method to microarray data analysis and te the training data problenm. We compare our method
to the parametric approach using simulated data and, finally, we apply our method to real data from
microarray experiments.

Key words: identifiability, microarray data, mixture, multiple test hypothesis, semiparametric,
training data

1. Introduction
In this work, we consider the two-component mixture model defined by

§lx)={=pifelx)+pf(x —w), VxeR, ()

where the probability density function (pdf) /¢ is known and the unknown parameters are
the mixing proportion p € (0, 1), the von-null location parameter p€ R and an even pdf /.
Such mixture models, semiparametric er non-parametric, have been recently studied by Hall
& Zhou (2003), Bordes er al. (2006), Cruz-Medina & Hettmansperger (2004), Hunter et af.
(2004) and can be situated between fully parametric mixture models and non-parametric mix-
ture models (for an overview of classical mixture models we refer the reader to MeLachlan
& Peel, 2000).

The introduction of model (1} is motivated by the problem of detection of differentially
expressed genes under two or more conditions in microarray data (conditions might be, eg.
‘healthy tissue versus diseased tissue’, ‘brain versus kidney’, ete.). For this purpose a test sta-
tistic is built for each gene. Under the null hypothesis, corresponding to a lack of difference
in expression, it has a known distribulion (in general Student’s or Fisher). We then observe
the response of thousands of genes, which corresponds in practice to thousands of obser-
vations from statistical tests. The sample obtained in this way comes from a mixture of two
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distributiens: the known distribution f; (for the genes under the null hypothesis) and another
distribution corresponding to f(- - g), which is the unknown distribution of the test statistics
under the alternative hypothesis. Once the parameters p, x and / have been estimated we can
estimate the probability that a genc belongs to the null component of the mixture distribu-
tion conditionally on the observations. Therefore, using a classification criterion we allocate
each gene 10 a component and then we distinguish the genes differentially expressed from
the genes non-differentially expressed.

Model (1) appears as an alternative to parametric mixture models {working paper by
C. Delmas, 2005), where the law under the alternative hypethesis is unknown. For a sur-
vey of these methods and a discussion of the issues at stake in (hese kinds of applications
we refer Uhe reader to Dudoit er al. {2002) and McLachlan er of. (2004).

Another important issue is the frafning dara problem. We ook at the problem of estimating
all the parameters in (1), i.e. p, g1, f and f (which this time is unknown) when, in addition
to a sample of g-distributed random variables, a sample of fy-distributed random variables
is available (training data from the first component). In the ciassical training data problem
data are available from cach component (e.g. see Titterington 7 «f., 1985), and so Lhe novelty
here is that training data are available for only one of the two compenents of modei (1).

The paper is organized as follows. The following section s devoted to the identifiability
problem. First we show that model (1) is not identifiable in generaf even if it is locally iden-
tifiable. Then we give some sufficient conditions for achieving identiRability. In section 3, we
propose an inference procedure based on the symmetry of the unknown component of the
model, and then in section 4 we show that by solving the moment equations we can also
estimate the unknown Euclidean part of the model. In section 5, we show that il model (1)
is identifiable, estimators of unknown parameters are strongly consistent, Section 6 is devoted
te & precise description of the two applications we introduced above, and section 7 presents
sitnulation results and an application Lo a real data set. Future issues concerning such kind
of semiparametric mixture models are finally discussed in section 8.

2. Identifiability
2.1, Some non-identifiable cases

From a general point of view model (1) is not identifiable, as the two following examples
show.

%u_l_ () + %M.A;‘ Hx—4)= _%u,,,;g (X + %u...i fx=-3), VxeR, (2)

where 4, 5 is the uniform pdf on {a, &} with @ and b two real parameters such that @ <b, and
. - P P .
(-po)+p/ == (1-5) o0+ Lptr-2), vxeR, (3)

where ¢ is any even pdf, p (0, 1) and f{x)=(p(x — 1)+ @(x -+ 1))/2.

Clearly, the two above examples show that without any additional assumptions on the
model we cannot obtain an identifiability result. However, in the next section we shall see
that there are some limitations to non-identifiability,

2.2. Local identifiability via moment equations

The previous examples show that identifiability of model (1) cannot be expected for (p, i, f) €
(0, D= R"x F, where F is the set of even pdf defined on &. However, if we assume that f;
has a third-order moment and that / belongs to

@ Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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F={{eF, / IWEf (x)dx < +c},

then the moment equations lead to local identifiability of the model. Let us consider the
equation

(1 =pio(x)+pf(x— 0= =p ) felxY+p filx ), VxeR, (4)

Tor fixed values of {p, 10, /) (0, 17 x B\ {¢¥} x F3. We denote by ¢ the mean of the pdl fi.

Proposition 1
Equation (4) has ai most two solutions (py, 10,0 €0, 1) x BN{dP} < F5 i [y is a symmerric
pdf and ar most three solutions otherwise,

Proof” As [y is known we can, up Lo a translation, assume that f has a nuil first moment.
Therefore, we assume from now on that g and g, belong to R*. The first three moment equa-
tionhs are:

PH= Py

(1= P +p(ud + 0= (1 = p)o -+ (s + 01) (5

p3uld+ 1 =p G 0+ 1)),
where 8, 0 and 0 are, respectively, the second-order moments of fo, / and 7). Then, because
it is casy to check (sec appendix A for details) that y, is the zero of a two-order polynomial,
we obtain that cither (py, iy, ) =(p, 1, &) or

_ 2
pn=p 30+#3k_300

_ 30 - ,l[2 - 30(}
i = p+ T (8)
b=+ (04 2 = 03305 + 42 = 30)
: 4y '

Note that if fy is not symmetric with third-order moment equal to y,, the first two equalions
in (5) are unchanged, whereas the third equation becomes

(1= pYyg +p3u0+ 1) = (1= pyypo + 21 3 0 +48).
Then, with this new system of equations we obtain that either p=g, or
=240} 4+ (30 = 30+ 15, +7,= 0.
It follows that there are al most three solutions for {py, 1, 0;). As, from (1), we have

L 9= (1 - plfolx + 1)

(%) xeR, (7
P
It can be seen that the pdf f is uniquely determined by g, fy, p and . The proposition is
proved.

The above proposition proves that in examples (2) and (3) there is no other way to write
the mixlure, because in both examples f5 is an even pdf. Note also that this proposition
leads to a local identifiability result. Indeed, as (py, i, 1) ={(p, 1,f) is a solution of (4) there
exists a neighbourhood of (p, ;) where (p, 1./} is the unique solution of (4). Note also that
if (p, 0, 5= (1/3,3,16/3) then by (6) we obtain (py, py, 61)=(1/4,4,3), which corresponds o
the non-identifiability example given in (2).

© Board of the Foundation of the Scandinavian Journal of Swatistics 20006.
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2.3, Identifiability and characieristic finictions

Lo this section, we nvestigate identifiability for model (1) when f; is a symmetric pdf having
a third-order moment, or eguivaiently, when fy € 73 is an even function (if 4 is the known
symmetry point of fs, then consider g(- + #'™)). Let us look at (4) for (p, 11, /) and (ps, jt,,/3) in
(0, 1) x R* x F5. Denoting by f the Fourier transform {or characteristic function) of a pdf f,
we obtain the following equations by identifying the real and imaginary parts of the Fourier
transform of (4):

= e S0 pysin(pyr)
O—dC{(fl({) psin(pn} ) VieR .

and

S0 preos(u)

710y peos(u)
The foliowing proposition gives an identifiability result when f; >0, which is true, e.g. for

Gaussian ot Student centred distributions.

(s ~—~p)f0(.'):det ( )’ Vie R &)

Proposition 2

The mixture model {1), with fye Fy and [ >0, is identifiable if

k2 2
W

where O and 0y are the second-order moments of [ and fy respectively,

P N DR = Fy and 0F0,+ ke N,

Proof. Multiplying (9} by sin (t4) and using (8) we get the following equation
(o1 = pysin(uyfol)=p1 fi(t)ysin (e — 1)), ViR,

Because fg >0, the above equation implies that sin(u/)=10 whenever sin (f(u ~ p,))=0. By
considering the particular argument value ¢* =m/{ — p,} we obtain that:

. . R ) ¢
sm(.f’,u):sm([ t ]n>:0:> ¢ [
B iy By

But according to proposition 1 there exists at most one other solution 4, # 1 to problem (4),
which in turn implies that there exists at most one positive integer &g such that ju| = kol ~ i1, 1.
From this last equality it follows that
o ]Co + [

kg

Hy

The above equality, together with the second equality in (6), entails:

ko +2
3ke

Finally, i f belongs to the set of densities that do not satisfy (10), we have j, = u, and then,
from the first moment equation we obtain p, =p, and from (8) we obtain f; =/ or equiva-
lently fi==f almost everywhere on R (with respect to the Lebesgue measure).

Using the first-order moment and (8) we show that /=, almost everywhere (with respect
to the Lebesgue measure) whenever p==p; or u=y,. It follows that model (1) is identifiable
whenever (g, 0)={y,, 0}, i.e. if

(e d={(u, e R = (0, + o) }\ U {(M@);NGR*}.

Pt 3k

0:%+ﬁ( (10

© Board of the Foundation of the Scandinavian Journal of Statistics 2006,
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Fig. I. Model (1) is identifiable il (g, ¢ docs not belong to one of the curves,

Identifiability is therefore obtained on R’ % (0, +0c) except on a set (of uncertainty) with
Lebesgue measure equal to 0. We can sce in Fig. 1 below the domain of identifiability for
(1. 0) (0, + o). Notice that the second non-identifiable case given in (3) (with o and f sym-
metric) satisfies &= (i, which is a particalar condition of uncertainty as 0=l + 1 ((2 - 2):’6),
corresponding to k=2 in (30).

To conclude this section we now remark that there are at least two other cases where iden-
tifiability of model (1) holds.

Proposition 3

(i} The mixture model {1} is identifiable if fo=0, f s an even function and both have Sirst-
order moments and satisfy

fGe=f)
VBeR I TR T

(i) The mixture model (1) is identifiable if £ >0 has a firsi-order moment, and theve exists a
real number a9 such that for all |x|>a we have fo(x)=0 and f(x)=f{=x).

I AG el VP

LAY E &

k Or

Proof. (i) If condition (11) is satisfied we have 1 —p=1Iim,..; o« g(x)o{x) {or 1 —p=lim, . ..
g(x)fo(x) for convenience} and then by (4) we have p=p,. From (he first moment equa-
tion, denoting by m and my the first-order moments of g and m respectively, we have p=
(71— (1 - pymg)ip, and thus g=y and by (7) f is unique.

(31} For all x € R such that {x|>a we have by {(4): pf{(x — i) =pif(x — ;). Then, for iarge
values of |x{ we obtain

I py — )y =p () = pifi (=)= pf (e, — jt— x),

which is possible only if g=y,. The end of the proof is the same as for case (7).

We note that cases (i) and (i) of proposition 3 do not require the symmetry of /5, which
can be useful in microarray data analysis with more than two conditions (see section 6.1).

@ Board of the Foundation of the Scandinavian Journal of Statistics 2006,
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3. Estimating the Euclidean parameter by symmetrization

Suppose that we observe r independent and identically distributed {i.i.d.) random variabies
Ay, Xy with cumulative distribution function (edfy G defined by modet (1), i

Glx)=(1 —p)Fy(x)+pFix 1), Vxelk,

where G, Fy and F are cdfs corresponding to pdfs g, fi and S respectively. From now on,
we assume that fy is the density of a centred distribution. If it is no(, we have simply to
change the X;s into X; — niy, where mozrfg.,_ Xfo(x)dx. Assuming thal there exists a unique
triple (p, i, F) defining G in (he previcus cguation, then we get

F{,\')mpl (Gx+w) — (1 —p)Flx+10)), VYxeR (12

As F is the cdf of a symmetric distribution with respeci to 0, we have F(x)=1— F(—x}, for
all xc R. We denole by pp and gy, respectively, the unknown values of p and . Defining for
all x & R the functions

m--
Hilx,um, G, Fy)= ’% Gy + )+ " a Folx -+ )

¥

and

m
Folp—x),

Hilxpm, G, F)=1— i%(;(ﬂ*"..\')—]—v ,u;

H
where m = poyy 15 the first-order moment of &, we have, using (12) and the symmetry of F,
Hy(spgom, G, Fo)= Hy (5 pe, i, G, Fo). Consequently, if o is a distance measure between {wo
functions, we have d(H\ (- iy, i, G, Fo), Ha( p,m, G, Ry =0,

Now, since G and m are unknown, it is natural to replace & and m by their estimators,
ie G, and /iy, respectively, defined by

. l " . ] "
Gulx) =~ Z} 10X <x) VxeR  and = Z. X,
i= e
where 1(-) is lhe indicator function. Therefore, we get an empirical version d, of & defined
by

({”(,u):d(ffg(';,u,ﬁl,,,G,,,Fo),]‘b(';‘!l,ﬁ?,,, GBHFO))z ey, (13}

where v is a compact subset of R on which model (1) is identifiable. 1t is natural to estimate
the unknown parametess j, and py by

. , .,

iy =argmin di(p) and pu=-=. (14)

H

For d we can choose the LY{®)-norm, defined for 1 <g<+oc and uey by

iig
dQy={H — i, = (/ F(x p,m, G Fo) — Ha(x; o, m, G,Fg){qd.x) .

Remark 1. Replacing p/m by 1/p in Hy and H; we obtain a new contrast function d(p, ii; G)
depending or: & and on the unknown parameters p and j. Replacing G by 6, we are led to
an empirical contrast Cl',.(!),u):d(p,y;é,,) whose minimizer (P, [1,) is an estimator of (p, u}.
This approach should be used when g does not have a first-order moment. Note also that
when f* is not exactly an even function, simulation results show robustness in estimating (p, y0)
by using d,(p, 1) instead of d,(y).

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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Using relation (12) we can estimate F by

- ft, ~ Aty = 1, .
Fyfx)== ;%LG"(“' + 1)+ —;}—“— Folx-+jy), VyeR. (15)
"

i
Note that generally F, will not be a legitimate cdfl, as it is not non-decreasing in general.
However, the Glivenko-Cantelli strong consistency result obtained in section 5 shows that
this is nol a serious drawback provided that the sample size is large encugh.
Again by formula (7) a natural estimator of the pdf f is defined by

. 1, . . .
.fn(x) = ;3_ (gn('\_ + ﬂ,,) - ( [ Pu)ﬁ}(-\' -+ HH))’ Vxe ER’

where

1 & x—X
5 Xl e ! V-,:
Gx} ﬁb";q( 7 ) xe &,

with b, =0, nb, — +occ and g is a symmetric kernel pdl with finite second-order moment,
For example, we may choose g{x)=(l — {x}I(—1 <x<1). Because f, is generally not a pdf
it can be modified into the estimator f,, which is itself & pdf

PO I
fﬂa:;fn](fuzo)s {16)
where
0= [ 116,09 20

However, there are other ways to modily kernel estimators to make them non-negative (sce
Glad ef al., 2003).

4. Meoments method for estimating the Euclidean parameters

Let G, be the empirical cdf obtained from # i.i.d. random variables with common cdf G. Let
us denole by py, Oy and y, the first three moments of f5. Define §(-)=g(- + i), where g is
defined by (1). We then have

=01 pf o) +pf(x—f), VxeR,

where fo(') = fo(o 4 1ty) and 1=y — ;. Now we write ﬁfi=j;,; Xg(x)dx for i=1,2,3, and we
get
] pit=r,
(1= p)y+ p( 0+ )y =iy, an
(1= pYop + P30t + i) =i,

where 0 is the second-order moment of / and 0, and %, are moments of order 2 and 3 of f,.
If 71y =0 and %, 0, then we have

HE
Fo iy
p=l0

7o
whereas if /77 =0 and ¥, =0 there are infinitely many solutions. Otherwise, if #7, %0 we show
that fi is a zero of the following polynomial

*

MOy —n) o Fn—F,—300y_ ¥
~3 0 1} .2 3~ Y tbo Vo
T+ — i — + = =0,
! 2 e iy K 2

© Board of the Foundation of the Scandinavian Journat of Statistics 2006,
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Now, replacing unknown moments /#y by their empirical counterpart ﬁri”) defined for
k=1,2,3 by

, ; R ; n
iy = / G (x4 1) = o Z{X,- T
JB jes}

we solve the following random polynomial equation

s, 3 ae — 2 . Bo — 3,7,‘1”)&0 o
-'(,_\ + 2 S~ 3 4 L "
! 2;?7('") H + Zfﬁ?’) I + 3 ( }

. . . 2(i) . . .
This leads to al most three solutions writlen p:,: which in turn lead to three possible
. . 20 . . .
estimators for . Let us write {7 =i+, (i=1,2,3) these three possible estimators of N
We finally estimate ¢ by the value from among {7, %, 29} that minimizes the empirical

discrepancy measure 4, defined by (13).

Remark 2. Solving (18] can be done, e.g. by using the function pefyroer of the statistical
program R. Note that (18) can have two conjugate complex roots, because of errors in coefli-
cients of the polynomial. In this case we have to take the real part of the roots. Typically,
when 7, =0 and the model is identifiable, the polynomial (18) reduces 1o a polynomial of
degree 2, the discriminant of which can be null (if the moment equations give the identifi-
ability). In this case the estimator of the discriminant can be positive or negative, and then we
can oblain complex roots of {18). However this is not a serious drawback because the more
precise the estimation of moments, the smalter (and more negligible) the estimated value of
the discriminant.

Remark 3. 1t is worth noting that the moments method can provide an interesting initial
guess value for minimizing the discrepancy measure d,.

5. Consistency

We denote by (m, itg) the true value of the unknown Euclidean part (p, 1) of model (1) and
by 0y and 0 the moments of order 2 of fj and f respectively. Let us introduce the set

D=R" x (0, +co)\ Upery Dt

where
k+2

(D,(={{,N.,0)ER*X(O,+C)O),0:00+—§/—c- }

We consider the following assumptions.
Al (fo.f) e 72, f0>0 and (g, 0y e ®,.C O, where @, is a compact subsct of ®.

AZ. (fo.f) satisfies the identifiability condition of proposition 3 {i), and in addition f; satisfies
the following tail condition:

L foCwda) : Jolx)
Yac R, _\-E'Bm T =0, or J]TOOm =

A3, (fo.f)} satisfies the identifiability condition of proposition 3 (ji).

(19

The set F5 may include, for cxample, centred Gaussian distsibulions, centred Laplace dis-
tributions or Student’s -distributions (if the number of degrees of frecdom is large enough).
However, even if the centred Cauchy distributions have positive characteristic functions they

@ Board of the Foundation of the Scandinavian Journal of Statisties 2006,
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do not satisfy the third-order moment condition that is required. Conseguently, many clas-
sical parametric distributions satisfy assumption Al. Moreover under Al, it is possible (o
have one heavy-tailed component distribution while the other is light-tailed. Conditions A2
and A3 are more specific, bul they aliow a non-symmetric known component to be included.
For example (19) is satisfied if f has exponential tails with different rates. This assumption
can be also fulfilled if fy has polynomial tails with non-equal degrees. Assumption A3 is of
interest because it includes some cases where fp has compact support, for example, when it
is the pdf of a uniform distribution on a finite interval.

Let us consider v=£(d,) under A, and v=&(bg) under A2 or A3, with &(x,y)=x and
&y denotes any compact subsct of R’ x (0, +oc). Therefore, we assume that estimators fi,,
P £, andf',, are defined by (14)}-(16) in section 3. We denote by |- || the supremum norm.

Theorem 1
Assume that one of assumprions Al-A3 is satisfied. As n tends to infinity we have:

(i} (P i) converge almaost swrely 1o (po, pg).
(i} | Fy,—Fl. converges aimost surely 1o 0,
iy \f o= converges almost surely to 0 if b, —0, nb, — +oc and if both fy and [ belong
(o the Besov space

70

Bl {f'e B{R):sup %ri L Gty f ()] dx<rx:},

where B(R) denotes the class of Borel measurable functions defined on R,
(iv) Assume that ¢ is a symmetric pdf with finite second-order moment satisfving the
Geffroy properties (see Bosq & Lecoutre, 1987, p. 65):

{a} the set of discontinuities of ¢ has null Lebesgue measure.
() xesup{lg(hiu - xi<1} is integrable on R

i addition we assume that b, —0, nb,/logn— +oo, and that both fy and [ are uniformiy
coittinuous on B, Then ||f, — fll converges almost surely 1o 0.

Remark 4. The results of theorem ) also hold if p, and ji, are the estimators of remark 1.

Proof (i) Let ¢>0 be a real number. From lemma 4 there exists § >0 such that

Hm sup{if, — tol = &} C lim sup{d{ji,) > §}.
o

n=0 n>

By lemma 3, the last set has probability zero. The almost sure convergence of i, follows,
which implies the almost sure convergence of p, as p, =, /[,
(i) Let us consider, for all xe R, the inequality:

() FO) £ T3(x) + Tal),
where

>

FIN . !
Tix)= ’ ;ﬂ'i Galx+p,)— iT(: Glx+ )
N

iy, -~ f, . " —
——Flx+ )~
i, " "

!
Ty(x) = KO Fo(x+ 1)

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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For the treatment of 7 let us remark that

Tl(\) < ’n{\ +l“n) - G(\ +,!l”) j f“ G("“+£’£n) o i!'i_q(j(\_e-.“(})i .
.'?? n, m l

H

According to the Glivenko-Cantelli theorem the first term of the right-hand side converges
almost surely and uniformly in x to 0 as # tends to infinity. Remarking that the second 1crm
of the right-hand side of the above inequality is very similar to 73, we consider the following
imequality

Lo,
EI?N

ﬂo

- I
G(X + ﬂ;r) - ';;-?' G(-’\ -+ /":(}) < Py

M
iy, om

FIG(\Jru,,) Glx )l

The left-hand side of lhe above mcquahly lends clearly to 0 as n tends to infinity since, as
was shown m (1, &, - ,uo and A1, = m, and since G is uniformly continuous. We thus obtain
that |7}/ “50 and | T2lfoe =5 0 (this result is straightforward in virtue of the analogy between
7> and the last term we discussed), which concludes the proof for (ii).

(iii) Let us notice that
Ft .

I Y ) _
. G,0— i) J( )

Vsl < !

For simplicity we restrict ourselves to the first term on the right-hand side {a similar but
simpler proof holds for the second term):

T T . M=y
el fo (= 1) — =
“ Ifl\’l” jﬂ{ .':n) Py ,ﬁ)( f ) |

iy -
.=, -—~o( ﬂt)
i,

1P ) . 2
A_,gtr(' - “n} - A_JQ( - iuw) i + ] r\" g
[; I 7,

Ho .
T PTG
A, i, Ty T b

!.

ooy Mg
+ H P (]( H) m g( ﬂo)“

Pyt
< B a4 B L

#1229t = = o i)l

m e

From (i) and the Devroye (1983) L'-consisiency resull, which establishes that [|§, — gll; > 0,
we obtain the almost sure convergence to 0 of the two first terms on the right-hand side of
the previous inequality. For the third term we use the fact that g belongs to the Besov space
B} ., which implies that

“g( +-&n) - Q( + “0)“! < ln&n - lu(]l

® ((i po)wp 3"-/‘U0(x+h) ,Q)(x}fdx—i-pgsupr};]fg’|f(x+h}—f(x)]dx), 2m

h#0

and proves that ||If, ~ /h “30 from (i). In addition, it is stralghlforward to show that
1/ =S <1, =/, and then we have the almost sure conver gence of lif,, ~ [ 1o 0. More-
over, under the same assumptions and with s, = F(x)dx, we have

g ”j:n meh - 0, &.8

= 11=] [ 0 =rimpax
Therefore f;, =g ﬁnl(fﬂ >0} are density functions that satisly | f” —f 50,

{iv) chardmg this last point, it is sufficient to remark that as ¢ is a Geffroy kernel, then
(3, — 9lles = 0, under the conditions specified in (iv) (see Bosq & Lecoutre, 1987, p. 65). In
fact, using the analogy of the triangular inequalities of the previous proof in supremum norm,
the required result holds by replacing the argument in (20) by a uniform continuity argument.
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6. Applications
6.1, Microarray data analvsis

Microarrays are a technique for revealing the simultaneous expression levels of a large num-
ber of genes in a biological sample. More precisely, a large number (up (o several thousands)
of gene probes, consisting of cDNA, are localized on a membrane. The gene targets, in the
form of a solution of MRNA, are then extracted from a biological tissue and hybridized on
this support, The expression level of each gene in the biological tissue is given by the con-
centration of mRNA hybridized on each probe. The experiments are repeated to assess the
experimental variability and conducted under different conditions (different processes, stages,
tissues, etc.}). The conditions are compared in order to detect differences in expression.

We denote by R the number of repetitions, 7 the number of genes and J the number of
conditions. The data are the random variables (A;) corresponding to the rth repetition of
the cxpression level of gene / in condition /. We divide 4; by the sum of all the expression
levels on the membrane to obtain the concentrations:

Ay
Py = 55—
fo=] Ry

We consider the following transformation of the Pys:

Pj'r
,X;J.‘,,Zill (1 —'}),-j,)-

We write

1 R 1 g R
XU:?{-ZX'J“ X”"ZEZZXU}
r=1

J=r r=|

and we assume that the data are of good quality and have been correctly normalized to
ensure that experimental biases have been removed. We assume that for » in {1,...R}, Xy is
normally distributed with mean my and variance 0‘;, Therefore, for i in {1,...,n}, the nuli
hypothesis Hy

“There is no expression difference between the J conditions for gene 7, is equivalent to

g J
| 1
my=my,op=0p,%=1,...,J where m,-,:j E iy, and a,-.:j E oy
=1 =

In order to compare two conditions (J =2) we can use, for the ith gene, the test statistic Ay

defined by:
X — X
S; —_ il i2 . (2;)
\/ T =X R O 4 )2
R{R-T)

For each i in {1,...,n} under the null hypothesis Hy ;= {m;, =mp, oy =gy} {that there is no
expression difference between the two conditions for gene [) the statistic S; is Student’s dis-
tributed with 2R — 2 degrees of freedom. Generally speaking, when we compare J conditions,
we can use for the ith gene the test slatistic S;:

G RIR=D) LK = XY
LD LY e X
Under the null hypothesis o ;= {my=m;, 0y =0;,%=1,...,J} that there is no expression

difference between the J conditions for gene ¢, the test stalistic S; is Fisher distributed with
(J = 1,JR —J) degrees of freedom.,
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Under the alternative hypothesis Hy ;= {37 ¢ {1,..,J} 1mys=m; or o544, } that there is at
least one cxpression difference between the J conditions, the distribution of S is unknown.
Therefore, the S;s distribution can be modelled by:

g(x)=(1 = p)felx) +pf (x), (22)

where p is the propertion of non-null statistics, /5 is the nali pdf of §; (Student’s or Fisher)
and f is the unknown non-null pdf.

The estimation of the unknown parameter p and the pdf / enables us to estimate the prob-
ability o' that gene i is differentially expressed given {S;=x}:

2f (si)

(1= pYolsi)+pf(s)

Under the hypothesis that f s a symmetric pdf on R, model (22) reduces to model (1)
and we can estimate p and u by symmetrization or by the moments method as indicated in

sections 3 and 4 respectively. Then we define natural consistent estimators of f and of? given
{8 =5} by:

2= P(gene i is diflerentially expressed |8, = 5,) =

A E— .
JolnON(L(0) 2 0) dy
0 o Puflsi — it}
U (=P fals) + Bufalsi— i)
where

ﬁmzé@m+mwﬂmmmu+my

Let us remark that the strong consistency of the 475 to the s, is insured by theorem 1. As a
consequence, a heuristic means of identifying differentially expressed genes consists in select-
ing genes 7 for which the &s are among the [np,] greatest values of {47;j=1,...,n}. Identi-
fication of differentially expressed genes may also be carried out using standard
classification procedures (e.g. see Benjamini & Hochberg, 1995).

6.2, Mixrure model with training datu

We are still considering mode! (1), in which both fy and /| together with parameters p and p,
are unknown but for which training data are available for the first component fy, that is, we
still have an n-sample from g and, in addition, an #’-sample from f; is given. In classical finite
mixture models involving training data, samples from each component are given and then the
inference reduces to estimating the mixture proportions (see Titterington, 1983). Following
the methodology of section 3 and replacing the unknown cdf Fy by the empirical cdf E o
obtained from the training sample, we arc able to propose an estimation function similar to
(13), defined by

dn,n’(ﬂ) :(I(H}{';#a 'ﬁ??h Gna ﬁo, n’), HZ(';#:“hm ém 1’:“0,”,))’ }”-E v, (23)

where v is a compacl subset of R* on which model (1) is identifiable. Therefore, it is natural
to estimate the unknown parameter u, by

ft, 0 = argmind, .{g).
HEY

Therefore, as in section 3, we can derive natural estimators of the proportion p and the
unknown pdf /. On the one hand, we have p==(my — m)/{mg — 1) where nt and my, respec-
tively, are the expectation of g and fy ( can be estimated from the g-sample and sy can be
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estimated from the fg-sample). On the other hand, as F can be explicitly expressed as a func-
tion of G, Fy, p and g, it can be estimated by plugging estimators of these four quantities into
formula (12). Therefore, smoothing this estimator we can estimate the pdf /" as in section 3.
Note also that the moments method of section 4 can be used by simply replacing the
unknown quantities gy, o and y, by their estimators obtained from the f;-sample.
Finally, consistency results analogous to those of theorem i can be established by assum-
ing that min{n, #’) tends 1o infinity.

7. Simulatiens and example
7.1 Sinndations

In this section, we simulate K samples of # i.i.d. random variables whose the common dis-
tribution is given by the following two-component mixture model:

(= pIN{O, )+ pN (1, 1), (24)

where M (z, f) denotes the Gaussian distribution with mean 2 and variance equal to f. For
cach sampie we estimate (p,p), given that the known component is A(0,4)-distributed.
Finally, for different values of # and p, we provide the mean and the standard deviation of
the estimates obtained both by the symmetrization method and by the parametric maximum
likelihood method.

From a semiparametric poing of view the estimator of 1 is given by (14) where we choose
the L7-norm for d; thus, using the first moment equation, we derive an estimator of P (see
section 3). Note thal the computation of d,(;) requires an integration step that is performed
numerically. Because numerical estimation of the derivatives of d,(1) are quite unstable we
do not look for the minimum argument fi, of o, by using a standard optimization routing,
but we simply look for the minimizer of ¢, over a parameter space discretization,

We should mention a weak point when using &,(). Where f3 is an even lfunction it is easy
1o c¢heck that ©=0 is a (non-admissible) zero of both & and d,. Therefore, i the model is
identifiable ¢ has two roots (0 and g) corresponding to two minima. Thus, the approximate
d, should have two minima too. But in practice, if the first moment / is nol well estimated
(typically when both » and p are small) it may happen that the only minimum of &, is the
non-admissible value 0, and in any case we have o, (1) > d,(0y=0. In this case we recom-
mend estimating (p, i) using the two-parameter function d, given in remark 1. As we have
mentioned, when both p and » are small the first moment equation can fead 1o a constraint
that is not well satisfied by the data. This fact is illustrated by Fig. 2: in Fig. 2A d, has only
one minimum whereas in Fig. 2B 4, has two minima.

We can see from Tables | and 2 that for the standard deviation criterion the parametric
estimates outperform the semiparametric estimates. Although for the smallest sample size
performances of semiparametric and parametric estimalors are quite close, it should be noted
that In the semiparametric symmetrization method, samples for which the empirical contrast
function was monotonous (as in Fig. 2A) were rejecied (for #= 250 about 10% and 20% for
p=0.3 and p=0.15 respectively; very few cases for n=1000). This drawback does not occur
in the parametric setup.

7.2. Real dara: bovine gestation mode comparison

We examine data used to detect genes that are stalistically differentially expressed in bovine
trophobiast between artificial insemination (A} and in vitro fertilization (IVF) gestation
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(A) B)
1X¢)
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Fig. 2. Two examples of the behaviour of the empirical contrast funetion d,. (A) An example where I
cansol be estimated from o). (B) An example where g is estimated from dy,(u).

Table 1. Mean (SD) of 200 semiparametric estimates of pin {obtained by the symmetrization method)

K =200 n=250 = 1900
p=030p=3 0.303 (0.057)/2.963 (0.226) 0.301 {0.029)/2.976 (0.131)
p=0.15/p=3 0.165 (0.0551/2.878 (0.418) 0.154 (0.031)/2.944 (0.272)

Table 2. Mean (SD) of 200 parametric estimates of plu (obtained by the maxivum likelihood method )

K =200 n= 250 n==1000
p=0.3pu=73 0.293 (0.045)/2.989 (0.058) 0.300 (0.022)/2.991 (0.040)
p=015p=13 0.156 (0.051)/2.993 (0.101) (.152 (0.026)/2.990 {0.051)

modes. Al mode is the reference gestation mode in animal sciences. This statistical analysis
helps the biclogist in understanding the biological differences between (he two gestation modes
and in improving IVF techanigues to reduce the mortality rate associated with this gestation
mode. Ten microarrays were obtained, each with n= {0, 214 genes, for each condition (Al and
IVF}. Let Ay denote the mean intensity of the signal for the rth repetition of gene 7 in condition
J» where, using the notation of section 6.1, we have (i,/,¥}e {1,..,n} < {1,....J} x {t,..... R}
with J =2 and R=10. Each §; is therefore computed using formuta (21) and, under the null
hypothesis, it follows a Student’s distribution with 18 degrees of freedom (denoted by 7).

We assume that the S;s are i.i.d. with commeon distribution defined by (1) where f; is the
pdf of a Tis, and p, ¢z and [ arc unknown. We estimate the unknown Euclidean parameters p
and p using the two-parameter contrast function defined in remark 1, rather than the method
involving the first moment equation, which did not prove to be suitable (the contrast function
with enly one parameter appears to be more sensitive to the / symmetry).

We obtain p=0.037 and f=1.05 by discretizing the Euclidean parameter space ([0, 1] %
[min .S, max S;]} and taking for (B, it) the value that makes the empirical contrast €, minimum
on the discretized space. The graph of the empirical contrast function ¢, is given in Fig. 3 (with
pand presirained to [0.01,0.13x [0.5, 1.5]) where d, reaches its minimum value 0.2257 at (5, f1).

Figure 4A.B show, respectively, the reconstruction of the mixture density g [defined by model
(1)] and the estimate of the unknown density /7 (not symmetrized). Even though the estimator
of / is not reafly an even function, it nevertheless reveals the deviations of g with respect to the
Ty pdf, thus ensuring a good reconstruction of g.
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Fig 3. Level curves of (p, i) dy{p, 1) for the real data set (with (p, 10 €10.01,0.1] 0.5, 1.50).
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Fig 4. Reconstruction of the mixture distribution using estimate of (p, i, /) and estimator of the density
J. (A) Histogram of the real data set compared with (1~ @)/l + 5/ (- — i) for p==0.037 and ji=1.05.
(B) Estimate of the unknown density [

Finally, the above identification of model parameters and the heuristic classification method
of section 6.1, allows around 370 genes to be detected as possibly differentially expressed.

8. Discussion and concluding remarks

We introduced a new semiparametric finile mixture model that completes the recent semi-
paramelric finite mixture models introduced by Hall & Zhou (2003), Bordes et al. (2006)
and Hunter et ol (2004). We studied the identifiability of our model but we observed that
even il one component is completely specified, identifiability is not guaranteed in general.
We proposed two types of estimator for the Euclidean part of the model. One is 2 minimum
conlrast estimator, while the other is based on the moments method. These two methods rely
heavily on the fact that the pdf of the unknown component is symmetric. In our opinion a
challenging problem would be to consider model (1) without the symmetry assumption on
the unknown component. We obtained the consistency of our estimators for several classes
of identifiable models. Convergence rates and the efficiency of our estimators remain open
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problems (very little is known about these aspects: see Hall & Zhou, 2003; Bordes er af.,
2006).

We indicated two fields of application for our model: first, microarray data anatvsis [which
was the inilial motivation for the introduction of medel {1)] (see e.g. McLachlan ¢7 «f., 2004;
and Dudait e al., 2002); and, secondly, {inite mixture models with training data (where our
approach provides more flexibility in the sense that il is not necessary to have training data
from each component of the model} (sec cg. Murray & Titterington, 1978; Hall, 1981;
Titterington, 1983; Qin, 1998, 1999,

Anotker important issue will be to provide efficient algorithms te estimate both the Fucli-
dean and the functional parts of these kinds of semiparametric models. L. Bordes,
2. Chauveau and P. Vandekerkhove develop a promising approach based on expectation
maximization type algorithms,
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Appendix
A Inverting the moment eguations

Proof of (6). Let us consider the system of moments equalions

PR (a)
(=)o +p(u 4+ 8)= (1 = py) 0y + (i} + 61) (b)
POpO+ )= pr (3, 0, + p1y). ©

From relations (b) and (a) we obtain:

210y = (py = p)Oo+ p(0+467) — p1 1
=(p1 ~ Yo -+ p(O0+ 1) — ppugey. (d)

From (c) and (d) we write

310010y = 3pul+pu* — pup
== 3pp(lo — 0) — piey + 1, 300+ 145 — Op)3 — Zp;z,uf =), (e)

Equation (¢} gives us a polynomial of degree two (in g, } which admits g, = g as & trivial zero,
hence (g) is equivalent to (g, — ){ap, + =90, with

a=-2pu and  b=put—3p(y ~0) =p( 30y + 300
Hence the second zero of {e) is

12— 30y -+ 30 + 30— 30, 2
= e =S g -+

{ -a——
!' 2u 2t

which concludes the proof.

B. Technical results

Lemma 1
Let H be a cdf such that [, |x}]dH{x) <+4oo. Then, for ail {(«, ) e B we have:

[0 - Hec pldx=pa- gl
®
Proof. Obviously, it is sufficient to prove the result for 22 0 and f=0. Because

0 +o0
Hxydx+ [ (1 -H(x))dx= | ] dH(x) <+ 0,
Jrecr fume

we have

[ L (x+ )  H{x)] dx = / (H(x+2)~ H(x)) dx
i 2%

0 L
= / H{x)dx + H(x)dx+ [ H{x)dx=z,

£

where H{x)=1- H(x).
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Lemma 2
Let H; (1=1,2) be the cdf of two distributions having firsi-order moments. Then for all {z, pe R
we have

[]Hl(x+or} M B dx <mny o fr -

where my= [ ix|dHAxY for i=1,2,

Proaf. We can consider without loss of generality that §=0. Then we have

[ |F (x4 o) = Fp(x)] dx < / [H (x4 o) — Hy{x)| dx -{«f [H)(x) - Ha(x)] dx

={z| + [ VH (X)) = Ha(x) dx,
by lemma 1. Therefore, we have

[WM%MMMN
N 1] 0 Rike
5/ Hi(x) (l,\‘—{-/ Hy{x) dx+f [l — Hi{x)— (1 — Ha(x)} dx
- x 0

H 0 + = + o

g/ Hilx)dx+ / Hy(x) dx+/ (1= H(xyndx+ / (1 —Hy(x))dx
e ] 1 40

=y + ;.

This concludes the proof.

Lemma 3
Asswme that both Fand Fy have fivst-order moment. Then, as i — + o0, we have d(ji,) 0 a.s.

Proof. First remark that

dC) <A — dICL) + d (g} — d¥ (1) < 2SU_P |47(28) — )i, 25

because (,u”) < di{py) and (f‘f(,uo) 0. To simplify our notations we write H,(x) = H;(x; u, m,
G, Fy) and H (x}=Hilxp, ik, G,,,Fg) fori=1,2. Let &, be defined by
&

y=max { | 5o + | H2 oo 1 oo + lHZlI“}“lnﬁW

+2,

where ¢; is finite and does not depend on p. Because |ja}? — [b|9) < gla — b| for ja| <1 and (| < 1,
we have:

|d7(p2) ~ di()] <

f (IH () — Hy(0lf — [H(x) - By()]) dx
Sty [ 0= Hx) = o) + o ax (26)
Straightforward calculations lead to

gz|m,, m[

fWM)MMwNQHMWM<MM Gl + 140, 27)

where
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I{p)y= ﬁ [Gx + 1) + Gt = X} — Fo(x + 1) ~ Folpe — 3} dx.
Using the fact that
G)=(1~pa) Fo(x)+ pof{x ~ 1ty), VYxeR,
and that both Fy and F have first-order moment, we show that
T(1) < 2pq /; |F(x — 1g) — Fo{x} dx < ¢,
where ¢; arises from lemma 2, Finally, this last result, with inequalitics (26) and (27), gives:
4700 = (@] < RPN Gy~ Gl + KD i, —

where K" and K do not depend on g and converge almost surely 1o finite constants as i
tends to infinity, |fiz, —m| converges almost surely to 0 by (he strong law of targe numbers and,
rom Hunter er af. (2004), G, — Gil: converges almost surely 1o 0. We conciude the proof using
(25).

Lemma 4
Assume that one of assumprions Al-A3 is satisfied. Then for afl £>0, there exisis 8,0, such
thai:

Vs, |lp—ml>e=sd(p)>4,.

Proof. Step I. Let us show that pr d{y) is continwous on v. Using the beginning of the proof
of lemma 3 we show that there exists a finite constant ¢ such that

) — d* G < f

il—G(Jr-i—;t)— iG(,Jc~|—iu')+ (1 - iu—) Folx+u)— (1 &) Folx+p)
Bl m m m

dx

'.._."‘i'v-.
=

L P N By, .
G(,u—x)——EG(‘u ~.\)+(1-~~ )lg{,u x) (1 m)[};(u~,\)

i

<¢ / Lo+ 6o g+ 60+ )
w | H ni

m—p

W
1)

A+ (Folx+ ) — Folx 4+ 0+ E—E R+ 1)

o
H ’ i ﬂr F]
Ll e = Gl ) o -
+ - {G(u—x) (i~ X))+ - G - x)

oo
m

J
s 'MFQ{,u—x) dx
"

+ (Foly ~x}— Folp—x)) +
i C i i s v ~
SCIEH“JHIJrEI#“#’ffIG(X+#)“‘"F0(X+H)JrG(.U’"w\'}-fo(ﬂ—x)id«‘f,

where the finile constant ¢y arises from lemma 1 and from the fact that v is compact. It remains
{0 show that

/ [GOx 4+ ') — Fo(x -+ ) + Gl — x)— Folge — %)} dx
X
is bounded uniformiy with respect 1o g Using (1) for the ¢df G we have
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/ |Gix 4 1y Folx + 1ty 4+ G~ x) — Fylpi ~ x)| dx

< f K1 — poy(Folx + ) = Folx 4 g0+ pal Fl — g + 3) = Fy(x — 1)
(0 = Pl Folit — )= Folpt ) + pol FG — sty ~ x) = Faljt— )] dx
<20 podlst— 41+ 2pg (m&+m’a+1uoz-+- / Il dFo(x) + f Lx;dF(x))

Lo <+,

where we used lemmas 1 and 2 and the compactness of v. The contimaity of d on v follows.
Siep 2. Clearty, if y= i, then d(ge) = 0. Let us prove the converse. 1l d(p) =0, then we have
1‘{; = H,, ie:

g x) = (g~ ) folpe 4 x) = g~ x) = (e — myfo(pe — x), (28)

almost everywhere on .
Under A1. Let us consider the Fourier transform of the above equality. Using the fact that

glx)= (1 polo(x}+pof{x—pty), VYxeR, 29)
we get
(p = po)sin(rg)fo(6) = posin(t(yg — )/ (1), VieR. (30)

Assume that w1, On the one hand, bccauscfo >0, the above equality implies 1hat there
exists ko € N such that {g]==ke|uy - ¢]. On the other hand, taking the derivatives of order 1
and 3 of (30) at =0 we get

popto=pieand  (p—pod(u + 30013 = pol{pt -~ 10 -+ 30iay — 1),
where 0y and ¢ denote the moments of order 2 of f; and f respectively, These last two equalities
with |} = kelitp — pf imply that
2hot2
0 31’(0 !

and then, {g, 0} & Upene @x, which in turn implies that (g, (3¢ D.. It follows that o=y,
Under A42. From {28), {29}, and from the fact that f is an even pdf, we obtain for x € &

8=0y+u

Jolox = p)(m = pot) + poptf (x + it — pto) = foat — )0 pog) + posef (x + pig ~ 0.

Dividing the above equality by fo(x + 1) (or by fo{s — x) depending on the taii property of f;)
and making x tend to infinity, we obtain s = pou, which leads to p= ;.

Under A3. Considering relation (31) for large values of |x|, we obtain f(j ~ pp+x)=
J (it py — x} which, according to assumption A3, is possible only if j= s,

Step 3. By step 1 d is continuous on the compact subset v, ={g < v;]it — upl = £} of v. There-
fore, there exists p* € v, such that d(g) >d{y’) on v.. By step 2 we have §, =d(u*) > 0. It follows
that the expected result also holds with strict inequalities.
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