
HAL Id: hal-02661101
https://hal.inrae.fr/hal-02661101v1

Submitted on 30 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gene array and real time PCR analysis of the adrenal
sensitivity to adrenocorticotropic hormone in pig

Dominique Hazard, Laurence Liaubet, Magali San Cristobal, Pierre Mormède

To cite this version:
Dominique Hazard, Laurence Liaubet, Magali San Cristobal, Pierre Mormède. Gene array and real
time PCR analysis of the adrenal sensitivity to adrenocorticotropic hormone in pig. BMC Genomics,
2008, 9 (101), pp.1-16. �10.1186/1471-2164-9-101�. �hal-02661101�

https://hal.inrae.fr/hal-02661101v1
https://hal.archives-ouvertes.fr


BioMed CentralBMC Genomics

ss
Open AcceResearch article
Gene array and real time PCR analysis of the adrenal sensitivity to 
adrenocorticotropic hormone in pig
Dominique Hazard1, Laurence Liaubet2, Magali SanCristobal2 and 
Pierre Mormède*1

Address: 1Laboratoire PsyNuGen, INRA UMR1286, CNRS UMR5226, Université de Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux, France 
and 2Laboratoire de Génétique Cellulaire, INRA UMR444, F-31326 Castanet-Tolosan, France

Email: Dominique Hazard - dominique.hazard@bordeaux.inra.fr; Laurence Liaubet - laurence.liaubet@toulouse.inra.fr; 
Magali SanCristobal - magali.san-cristobal@toulouse.inra.fr; Pierre Mormède* - pierre.mormede@bordeaux.inra.fr

* Corresponding author    

Abstract
Background: Variability in hypothalamic-pituitary-adrenal (HPA) axis activity has been shown to
be influenced by genetic factors and related to great metabolic differences such as obesity. The aim
of this study was to investigate molecular bases of genetic variability of the adrenal sensitivity to
ACTH, a major source of variability, in Meishan (MS) and Large White (LW) pigs, MS being
reported to exhibit higher basal cortisol levels, response to ACTH and fatness than LW. A pig
cDNA microarray was used to identify changes in gene expression in basal conditions and in
response to ACTH stimulation.

Results: Genotype and/or ACTH affected the expression of 211 genes related to transcription,
cell growth/maintenance, signal transduction, cell structure/adhesion/extra cellular matrix and
protein kinase/phosphatase activity. No change in the expression of known key regulator proteins
of the ACTH signaling pathway or of steroidogenic enzymes was found. However, Mdh2, Sdha,
Suclg2, genes involved in the tricarboxylic acid (TCA) pathway, were over-expressed in MS pigs.
Higher TCA cycle activity in MS than in LW may thus result in higher steroidogenic activity and
thus explain the typically higher cortisol levels in MS compared to LW. Moreover, up-regulation of
Star and Ldlr genes in MS and/or in response to ACTH suggest that differences in the adrenal
function between MS and LW may also involve mechanisms requisite for cholesterol supply to
steroidogenesis.

Conclusion: The present study provides new potential candidate genes to explain genetic
variations in the adrenal sensitivity to ACTH and better understand relationship between HPA axis
activity and obesity.

Background
The hypothalamic-pituitary-adrenal (HPA) axis and more
particularly the adrenal gland constitute a principal node
of the mammalian endocrine system. The main function

of the adrenal cortex is to produce glucocorticoids (corti-
sol in pig) and mineralocorticoids under the influence of
pituitary adrenocorticotropic hormone (ACTH). Adrenal
hormones, essential for survival, play important roles in
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stress responses, metabolism regulation, immunity,
reproduction, water and salt balance and various brain
functions [1].

Large variations in HPA axis activity (i.e. basal and in
response to stress) have been related to genetic factors (in
human [2], in mice [3], in rats [4-6], in pigs [7] and in
birds [8-10]). Variations in HPA axis activity are also
related to important metabolic differences. For example,
human abdominal obesity has been associated with alter-
ations in HPA axis functioning [11,12]. In a recent exper-
iment comparing five genetic stocks of pigs (Large White,
Landrace, Duroc, Meishan and Piétrain), a positive rela-
tionship between cortisol levels in urine (basal and after
transportation stress) and body fat content was found
both within and across breeds [13]. In addition, Meishan
pigs have been reported to exhibit higher basal cortisol
levels, response to ACTH and body fat content than Large
White pigs [7,14]. Meishan and Large White lines of pigs
thus constitute a valuable biological model to investigate
the relationship between HPA axis activity and metabolic
regulation.

Among the different genetic mechanisms involved in HPA
axis activity variability [15], several experimental findings
suggest that sensitivity to ACTH is a major target in
human [16] and in rats [4,17]. In the pig, genetic-based
differences in cortisol secretion were shown in response to
corticotropin-releasing hormone (CRH) although the
ACTH response did not differ among individuals [18].
Moreover, metabolic clearance of cortisol bears no rela-
tionship to the cortisol response to ACTH [19]. Previous
findings [14] indicate that the difference in HPA axis activ-
ity between LW and MS pigs may originate from the adre-
nal gland although these breeds also differ in
corticosteroid-binding globulin (CBG) levels that influ-
ence circulating levels of cortisol [20]. In this study, we
explore the molecular mechanism responsible for the dif-
ference in adrenal sensitivity to ACTH in MS and LW pigs.

The actions of ACTH in the adrenal cortex are mediated
via two temporally distinct pathways. Acute and chronic
regulation of steroidogenesis occur within minutes and
hours, respectively [21,22]. The acute response is initiated
by the mobilization and delivery of the substrate, choles-
terol, for steroid hormone biosynthesis from the outer to
the inner mitochondrial membrane, where it is metabo-
lized to pregnenolone by the cytochrome P450 choles-
terol side chain cleavage enzyme (P450scc) [23]. The
slower, long-lasting response to ACTH directs transcrip-
tion of genes encoding the steroidogenic enzymes
[22,24]. Most studies of ACTH action have focused on the
long term induction (several hours) of transcripts either
by investigating transcripts with specific functions in ster-
oidogenesis [22,24] or by genome-wide analysis [25-27].

However, the acute response to ACTH stimulation has
been reported to require de novo protein synthesis (for
review see ref. [21]). The steroidogenic acute regulatory
protein (StAR), that is responsible for the transfer of cho-
lesterol from the outer to the inner mitochondrial mem-
brane, has been proposed to be the rate-limiting and
regulated step in steroidogenesis [23,28]. Changes in Star
gene expression induced by ACTH have been observed as
early as 30 min and were maximally elevated between 1
and 3 h [29]. On the other hand, cortisol responses to
ACTH injections in Meishan and Large White pigs have
been reported to be at maximum levels at 1 hour [14,30].
Taking together these findings, we hypothesized that tran-
scriptional regulation may in fact take place in the acute
response to ACTH, i.e. within 1 hour, in both lines of pigs.
Differences in transcriptional regulation at the adrenal
gland could already exist between both genotypes in basal
conditions because basal cortisol levels are typically
greater in MS pigs.

Considering the findings described above and the litera-
ture concerning acute regulation of transcripts by ACTH in
adrenals, we undertook a microarray analysis of gene
expression in the adrenal glands of MS and LW pigs under
basal conditions and in response to acute stimulation by
ACTH. The aim of this study was to investigate the molec-
ular bases of the genetic differences in adrenal sensitivity
to ACTH. We found that genotype and/or ACTH affected
the expression of 211 genes which provide new potential
candidate genes to explain genetic variations in the adre-
nal sensitivity to ACTH.

Results
Cortisol levels
Comparison of plasma cortisol concentrations (figure 1)
in control and ACTH-injected pigs showed significant
breed (p < 0.0001) and treatment (p < 0.0001) effects and
significant interaction (p ≤ 0.001). In control animals,
basal cortisol levels were higher in Meishan pigs than in
Large White pigs. Injection of ACTH increased cortisol lev-
els in both genotypes but to a larger extent in Large White
than in Meishan pigs.

Gene transcript regulation by genotype and ACTH 
treatment
Using the normalization process described in the meth-
ods section, 3496 of the 8959 transcripts present on the
pig cDNA array (approximately 40%) were found to be
expressed in adrenal glands in our experimental condi-
tions. Using the criterion of < 5% FDR, 241 transcripts
were identified to be significantly up-regulated or down-
regulated by genotype and/or ACTH challenge (see addi-
tional file 1). Among these, 211 transcripts corresponded
to unique annotated transcripts (five present twice) and
25 remained unknown. These 241 transcripts were catego-
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rized according to the genotype and/or treatment effect
and ordered by absolute fold change. Table 1 lists tran-
scripts most significantly affected by genotype and/or
treatment at p < 0.0001. Among these, 51 transcripts were
significantly affected by genotype (39 transcripts up-regu-
lated and 12 down regulated in Meishan), 21 transcripts
were significantly affected by ACTH treatment (12 tran-
scripts up-regulated and six down regulated in response to
ACTH treatment) and 36 transcripts were significantly
affected by both genotype and ACTH treatment. The
major functional categories for these genes included tran-
scription regulation, cell growth/maintenance, signal
transduction, structural/cell adhesion/ECM and protein
kinase activity.

Quantitative analysis
Eleven genes highly significantly affected by genotype
and/or treatment factors were selected for further exami-
nation by quantitative real-time PCR (Table 2). Changes
in transcripts levels were confirmed for nine genes. Corre-
lation coefficients between expression levels as measured
with membrane hybridization and real-time PCR were
significant (r2 between 0.51 and 0.90, p < 0.05) for 9 out
of 11 genes tested (see additional file 2). The magnitudes
of the changes were roughly similar between the array and
the real-time PCR except for the largest fold-changes
(higher than 2 fold) that seemed dampened on the micro-
arrays. An exception was Rnf2 gene, which showed no dif-
ference between genotypes of pigs or in response to ACTH
when assayed by quantitative RT-PCR, but which exhib-

ited a significant genotype difference when tested against
the pig cDNA array. This disparity may have resulted from
a false-discovery error or from cross-hybridization of tran-
scripts to region of similarity in the arrayed Rnf2 cDNA.
The second exception was Fxc1, which showed no signifi-
cant difference when assayed by quantitative RT-PCR, but
which exhibited a significant genotype difference when
tested against the pig cDNA array. However, the fold
changes between breeds found on the array were of low
magnitude (< 1.5-fold).

Eleven additional genes involved in ACTH signaling,
metabolism and mobilization of cholesterol, steroidogen-
esis and clock genes that were either not found to be sig-
nificantly affected by genotype or ACTH treatment
(Scarb1, Sqle, Cyp11a1, Hsd3b1, Cyp21, Cyp11b, Cry1) or
not present on the array (Mc2r, Bzrp, Per2, Bmal1) were
selected for further examination by quantitative real-time
PCR because they were interesting for our study (Table 2).
The absence of significant changes in the microarray study
was confirmed for six out of seven genes.

The Mc2r gene that encodes the ACTH receptor was not
present on the array. Quantitative real-time PCR showed
that the Mc2r gene was not significantly affected by geno-
type or by ACTH treatment. Inasmuch as the present data
showed that two transcripts involved in cholesterol trans-
port (i.e. Ldlr and Star) were significantly affected by gen-
otype and ACTH treatment, changes in the expression of
Scarb1 and Bzrp genes, also involved in cholesterol trans-
port, were measured by quantitative RT-PCR. Quantitative
RT-PCR analysis showed that genotype and ACTH treat-
ment did not affect the expression of Scarb1. However, the
expression of Bzrp gene was found to be greater in Large
White pigs whereas Bzrp was not found expressed on the
array probably due to the low expression level of this gene
and to the data normalization process used in the micro-
array analysis. Sqle is a key gene involved in an early step
of cholesterol biosynthesis de novo. Its expression was not
significantly affected by genotype or ACTH on the array.
This was confirmed by real-time PCR. Cyp11a1, Hsd3b1,
Cyp21 and Cyp11b that encode enzymes involved in ster-
oidogenesis were unaffected by genotype or ACTH on the
microarrays. Quantitative RT-PCR confirmed that neither
genotype nor ACTH affected the levels of those genes
except for Cyp21. While no significant difference was
found when tested against the pig cDNA array, expression
of Cyp21 was found to be greater in LW pigs when assayed
by quantitative RT-PCR, but the fold changes were of low
magnitude. Finally, 3 clock genes Per2, Cry1 and Bmal1
reported to be involved in circadian corticosteroids bio-
synthesis or adrenal responsiveness to ACTH were further
investigated by quantitative real-time PCR. No significant
change in Cry1 expression on the microarray was con-
firmed by real-time PCR. The two 2 other clock genes, Per2

Cortisol concentrations (ng/ml plasma)Figure 1
Cortisol concentrations (ng/ml plasma). Cortisol con-
centrations (ng/ml plasma) measured in Large White (LW) 
and Meishan (MS) piglets either untreated (control) or 1 
hour after injection (ACTH) of a high dose (250 µg per ani-
mal) of 1–24 ACTH (Immediate synacthen). (n = 6 per 
experimental group, means ± SE).
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Table 1: Genes differentially expressed depending on genotype and/or ACTH treatment

Gene symbol Gene name Gene Function p-value (ANOVA) Fold Change

genotype: MS/LW treatment: ACTH/control

genotype treatment interaction control ACTH LW MS

Genes up-regulated in Meishan pigs

Rnf2 ring finger protein 2 Transcription 
regulation

2.81E-13 7.89E-01 1.96E-02 3.5 2.5 1.2 -1.2

Mdk midkine (neurite growth-
promoting factor 2)

Cell growth/
maintenance

4.97E-06 NS NS 2.0 1.5 1.2 -1.1

Snf1lk SNF1-like kinase Protein Kinase 
activity

8.19E-05 NS NS 1.8 1.8 1.2 1.3

Ccnd1 cyclin D1 Cell growth/
maintenance

9.83E-06 NS NS 1.7 1.5 1.1 1.0

Cd99 CD99 molecule Structural/Cell 
adhesion/ECM

1.01E-05 NS NS 1.7 1.6 1.0 1.0

Col21a1 collagen, type XXI, alpha 
1

Structural/Cell 
adhesion/ECM

9.39E-05 NS NS 1.7 1.5 -1.0 -1.2

Gprc5b G protein-coupled 
receptor, family C, group 
5, member B

Signal 
transduction 
(glutamatergic)

9.53E-07 NS NS 1.6 1.5 1.1 -1.0

Ldhd lactate dehydrogenase D ATP biosynthesis 3.77E-06 NS NS 1.6 1.6 1.1 1.1
Ppp1r1a protein phosphatase 1, 

regulatory (inhibitor) 
subunit 1A

Phosphatase 
inhibitor

8.18E-06 NS NS 1.6 1.4 -1.0 -1.2

Mrps6 mitochondrial ribosomal 
protein S6

Translation 1.25E-06 NS NS 1.6 1.4 1.1 -1.1

Traf5 TNF receptor-associated 
factor 5

Signal 
transduction

5.80E-05 NS NS 1.5 1.5 1.0 1.0

Cse1l CSE1 chromosome 
segregation 1-like (yeast)

Protein 
transport

2.98E-06 NS NS 1.5 1.4 1.1 1.0

Hist2h2aa histone cluster 2, H2aa4 Nucleosome 
Assembly

2.10E-05 NS NS 1.5 1.5 -1.1 -1.1

Cd99 CD99 molecule Structural/Cell 
adhesion/ECM

2.27E-05 NS NS 1.5 1.6 -1.1 1.0

Mif macrophage migration 
inhibitory factor 
(glycosylation-inhibiting 
factor)

Cell growth/
maintenance

1.25E-05 NS NS 1.5 1.3 1.1 -1.0

Ptpmt1 protein tyrosine 
phosphatase, 
mitochondrial 1

Protein 
Phosphatase 
activity

1.73E-08 NS NS 1.5 1.5 1.0 1.1

Mdh2 malate dehydrogenase 2, 
NAD (mitochondrial)

Tricarboxylic 
acid cycle

2.59E-06 NS NS 1.5 1.5 1.0 1.1

Malat1 metastasis associated 
lung adenocarcinoma 
transcript 1 (non coding 
RNA)

unknown 4.07E-05 NS NS 1.5 1.3 -1.0 -1.2

Suclg2 succinate-CoA ligase, 
GDP-forming, beta 
subunit

Tricarboxylic 
acid cycle

1.82E-05 NS NS 1.4 1.3 1.0 -1.1

Eif3s7 eukaryotic translation 
initiation factor 3, 
subunit 7 zeta, 66/67kDa

Translation 
regulation

4.61E-05 5.87E-01 2.64E-02 1.4 1.1 1.1 -1.2

Magi3 membrane associated 
guanylate kinase, WW 
and PDZ domain 
containing 3

Protein Kinase 
activity

2.40E-05 NS NS 1.4 1.8 -1.2 1.0

Ppap2b phosphatidic acid 
phosphatase type 2B

Protein 
Phosphatase 
activity

3.45E-05 6.74E-02 4.48E-02 1.4 2.2 -1.0 1.5

Cys1 cystin 1 unknown 1.08E-08 NS NS 1.4 1.5 -1.1 -1.0
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Txnl2 thioredoxin-like 2 Electron 
transport

5.63E-05 NS NS 1.4 1.3 1.0 1.0

C8orf53 chromosome 8 open 
reading frame 53

unknown 1.34E-05 NS NS 1.4 1.4 1.1 1.1

C14orf2 chromosome 14 open 
reading frame 2

unknown 1.65E-05 NS NS 1.4 1.3 1.0 -1.0

Dusp26 dual specificity 
phosphatase 26 
(putative)

unknown 3.78E-06 NS NS 1.4 1.4 1.0 1.0

Sod2 superoxide dismutase 2, 
mitochondrial

Super oxide 
metabolism

1.61E-06 NS NS 1.4 1.5 -1.1 -1.0

Ssr3 signal sequence receptor, 
gamma (translocon-
associated protein 
gamma)

Cotranslational 
membrane 
targeting

7.82E-05 NS NS 1.4 1.3 1.1 1.0

Xpnpep1 X-prolyl aminopeptidase 
(aminopeptidase P) 1, 
soluble

Proteolysis 3.05E-05 NS NS 1.3 1.3 -1.0 -1.0

Hint1 histidine triad nucleotide 
binding protein 1

Signal 
transduction

6.24E-05 NS NS 1.3 1.2 1.1 1.0

Hsbp1 heat shock factor binding 
protein 1

Transcription 
regulation

6.13E-05 NS NS 1.3 1.2 1.0 -1.0

Mrps10 mitochondrial ribosomal 
protein S10

Structural 
constituent of 
ribosome

6.05E-05 NS NS 1.3 1.3 -1.0 1.0

Lpp LIM domain containing 
preferred translocation 
partner in lipoma

unknown 4.71E-05 NS NS 1.2 1.3 1.1 1.1

Pgk1 phosphoglycerate kinase 
1

Protein Kinase 
activity

1.83E-05 NS NS 1.2 1.4 -1.1 1.1

Ppap2d phosphatidic acid 
phosphatase type 2d

Protein 
Phosphatase 
activity

6.15E-06 NS NS 1.2 1.3 -1.0 1.1

Atp5b ATP synthase, H+ 
transporting, 
mitochondrial F1 
complex, beta 
polypeptide

ATP biosynthesis 1.07E-05 NS NS 1.2 1.1 1.0 -1.0

Ccny cyclin Y unknown 1.59E-05 NS NS 1.2 1.3 1.0 1.1
Cox6b1 cytochrome c oxidase 

subunit Vib polypeptide 1 
(ubiquitous)

Oxydoreductase 
activity

9.02E-05 NS NS 1.2 1.3 -1.0 1.1

Genes down-regulated in Meishan pigs

C1qa complement component 
1, q subcomponent, A 
chain

Cell-cell signaling 3.08E-06 NS NS -2.1 -1.5 -1.1 1.2

Cited1 Cbp/p300-interacting 
transactivator, with Glu/
Asp-rich carboxy-
terminal domain, 1

Transcription 
regulation

1.88E-10 NS NS -1.8 -2.0 1.1 -1.0

Tmem14c transmembrane protein 
14C

Structural/Cell 
adhesion/ECM 
(mito)

4.24E-06 4.81E-01 4.54E-02 -1.8 -1.3 -1.2 1.1

Hmgb3 high-mobility group box 
3

Transcription 
regulation

2.00E-08 NS NS -1.6 -1.4 -1.2 -1.0

Tmem14c transmembrane protein 
14C

Structural/Cell 
adhesion/ECM 
(mito)

5.40E-09 3.37E-01 1.61E-02 -1.6 -1.3 -1.1 1.1

Bphl biphenyl hydrolase-like 
(serine hydrolase; breast 
epithelial mucin-
associated antigen)

Amino acid 
metabolism

2.71E-06 NS NS -1.5 -1.4 -1.1 -1.0

Ttll12 tubulin tyrosine ligase-
like family, member 12

unknown 8.52E-08 NS NS -1.5 -1.6 1.1 -1.0

Table 1: Genes differentially expressed depending on genotype and/or ACTH treatment (Continued)
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Gpx3 glutathione peroxidase 3 
(plasma)

Peroxidase 
activity

8.06E-08 NS NS -1.5 -1.5 -1.0 -1.1

Fkbp4 FK506 binding protein 4, 
59kDa

Protein binding 4.64E-05 NS NS -1.4 -1.3 1.0 1.1

Gns glucosamine (N-acetyl)-
6-sulfatase (Sanfilippo 
disease IIID)

Glycosaminoglyc
an catabolism

5.48E-05 NS NS -1.3 -1.5 1.1 -1.1

Nr1h2 nuclear receptor 
subfamily 1, group H, 
member 2

Transcription 
regulation

1.30E-05 NS NS -1.2 -1.3 1.0 -1.1

H2afj H2A histone family, 
member J

Nucleosome 
Assembly

3.50E-05 NS NS -1.2 -1.3 -1.0 -1.1

Genes up-regulated by ACTH

Bag3 BCL2-associated 
athanogene 3

Cell growth/
maintenance

3.76E-01 9.34E-11 5.19E-03 1.2 -1.3 3.0 2.0

Ier3 immediate early 
response 3

Cell growth/
maintenance

4.49E-01 2.83E-09 3.81E-02 1.3 -1.1 2.6 1.9

Adamts1 ADAM metallopeptidase 
with thrombospondin 
type 1 motif, 1

Cell growth/
maintenance

NS 2.37E-06 NS 1.4 -1.1 2.6 1.7

Gadd45a growth arrest and DNA-
damage-inducible, alpha

Regulation of 
protein kinase 
activity

NS 1.46E-07 NS 1.1 -1.1 2.1 1.7

Id3 inhibitor of DNA binding 
3, dominant negative 
helix-loop-helix protein

Transcription 
regulation

NS 4.69E-07 NS -1.1 -1.2 2.0 1.9

Tfpi2 tissue factor pathway 
inhibitor 2

Structural/Cell 
adhesion/ECM

NS 4.72E-07 NS 1.1 1.0 1.8 1.7

Odc1 ornithine decarboxylase 
1

Cell growth/
maintenance

NS 2.85E-06 NS 1.2 1.0 1.6 1.4

Tomm20 translocase of outer 
mitochondrial membrane 
20 homolog (yeast)

Protein 
transport (mb 
ext mito)

NS 9.51E-05 NS 1.2 1.1 1.5 1.4

Timp1 TIMP metallopeptidase 
inhibitor 1

Cell growth/
maintenance

NS 2.88E-07 NS 1.0 -1.1 1.4 1.3

Ddx3x DEAD (Asp-Glu-Ala-
Asp) box polypeptide 3, 
X-linked

RNA helicase 
activity

NS 1.19E-05 NS 1.1 1.0 1.4 1.3

C10orf46 chromosome 10 open 
reading frame 46

unknown NS 6.70E-06 NS 1.0 1.2 1.4 1.6

Gnl2 guanine nucleotide 
binding protein-like 2 
(nucleolar)

unknown NS 3.73E-05 NS 1.1 -1.0 1.3 1.2

Genes down regulated by ACTH

Stat5a signal transducer and 
activator of transcription 
5A

Transcription 
regulation

NS 8.12E-05 NS -1.0 1.0 -1.4 -1.3

Wasf2 WAS protein family, 
member 2

Signal 
transduction (G-
protein)

NS 7.81E-05 NS -1.0 1.0 -1.3 -1.3

Unc84b unc-84 homolog B (C. 
elegans)

Cell growth/
maintenance

NS 4.26E-05 NS 1.2 -1.0 -1.3 -1.6

Cntf ciliary neurotrophic 
factor

Signal 
transduction

NS 4.93E-05 NS -1.0 1.1 -1.3 -1.2

Nfe2l2 nuclear factor 
(erythroid-derived 2)-like 
2

Transcription 
regulation

NS 5.59E-06 NS 1.1 1.0 -1.3 -1.3

Table 1: Genes differentially expressed depending on genotype and/or ACTH treatment (Continued)
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Pcbd1 pterin-4 alpha-
carbinolamine 
dehydratase/dimerization 
cofactor of hepatocyte 
nuclear factor 1 alpha 
(TCF1)

Transcription 
regulation

NS 5.70E-05 NS 1.1 1.0 -1.2 -1.3

Bmpr2 bone morphogenetic 
protein receptor, type II 
(serine/threonine kinase)

Protein Kinase 
activity

NS 3.15E-05 NS -1.1 1.0 -1.2 -1.1

Ctnnb1 catenin (cadherin-
associated protein), beta 
1, 88kDa

Transcription 
regulation

NS 1.01E-05 NS -1.0 -1.1 -1.2 -1.2

Gdf8 growth differentiation 
factor 8

Signal 
transduction 
(TGFb)

NS 5.41E-05 NS 1.1 -1.1 -1.2 -1.3

Genes upregulated in Meishan and by ACTH

Crem cAMP responsive 
element modulator

Transcription 
regulation

4.34E-02 2.70E-10 NS 1.7 1.1 4.4 3.0

Cd83 CD83 molecule Signal 
transduction

6.77E-06 3.80E-10 NS 1.9 1.5 3.2 2.6

Eif1b eukaryotic translation 
initiation factor 1B

Translation 
regulation

9.08E-06 7.89E-10 NS 1.5 1.9 2.5 3.3

Tob1 transducer of ERBB2, 1 Transcription 
regulation

4.11E-02 6.96E-08 NS 1.1 1.0 2.5 2.3

Ldlr low density lipoprotein 
receptor (familial 
hypercholesterolemia)

Cholesterol 
mobilization

5.19E-03 4.15E-07 NS 1.6 1.3 2.3 1.8

Chchd2 coiled-coil-helix-coiled-
coil-helix domain 
containing 2

unknown 4.72E-04 3.36E-06 NS 1.4 1.3 1.6 1.5

Ckb creatine kinase, brain Structural/Cell 
adhesion/ECM

1.03E-06 3.00E-02 NS 2.1 1.9 1.3 1.2

Mki67ip MKI67 (FHA domain) 
interacting nucleolar 
phosphoprotein

rRNA 
metabolism

1.25E-04 9.14E-05 NS 1.3 1.3 1.3 1.3

Maob monoamine oxidase B Electron 
transport

4.43E-05 4.23E-03 NS 1.4 1.3 1.2 1.2

Dnaja DnaJ (Hsp40) homolog, 
subfamily A, member 2

Cell growth/
maintenance

1.59E-05 2.55E-03 NS 1.5 1.2 1.2 1.0

H19 H19, imprinted 
maternally expressed 
untranslated mRNA

unknown 9.02E-07 5.79E-03 NS 1.5 1.6 1.1 1.3

Dleu1 deleted in lymphocytic 
leukemia, 1

Cell growth/
maintenance

4.90E-07 2.14E-03 NS 1.5 2.0 1.1 1.4

Genes up-regulated in Meishan and down-regulated by ACTH

Selenbp1 selenium binding protein 
1

Transporter 
activity

2.98E-05 1.41E-02 NS 1.3 1.5 -1.3 -1.1

C16orf33 chromosome 16 open 
reading frame 33

unknown 5.03E-05 3.98E-02 NS 1.2 1.3 -1.2 -1.0

Ech1 enoyl Coenzyme A 
hydratase 1, peroxisomal

Fatty acid 
metabolism

5.27E-07 6.31E-03 NS 1.4 1.4 -1.2 -1.2

Anpep alanyl (membrane) 
aminopeptidase 
(aminopeptidase N, 
aminopeptidase M, 
microsomal 
aminopeptidase, CD13, 
p150)

Development/
Morphogenesis

5.65E-12 8.27E-03 NS 2.1 1.9 -1.1 -1.2

Iscu iron-sulfur cluster 
scaffold homolog (E. coli)

unknown 6.09E-05 1.03E-03 NS 1.3 1.2 -1.1 -1.2

Table 1: Genes differentially expressed depending on genotype and/or ACTH treatment (Continued)
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Enpp2 ectonucleotide 
pyrophosphatase/
phosphodiesterase 2 
(autotaxin)

Signal 
transduction (G-
protein)

8.22E-05 6.17E-03 NS 1.4 1.3 -1.1 -1.2

Klhl22 kelch-like 22 
(Drosophila)

unknown 2.75E-04 9.94E-05 NS 1.3 1.1 -1.1 -1.2

Sdha succinate dehydrogenase 
complex, subunit A, 
flavoprotein (Fp)

Tricarboxylic 
acid cycle

3.38E-05 3.08E-02 NS 1.2 1.2 -1.0 -1.1

Genes down regulated in Meishan and by ACTH

Ctdsp2 CTD (carboxy-terminal 
domain, RNA 
polymerase II, 
polypeptide A) small 
phosphatase 2

unknown 1.84E-02 4.68E-08 NS -1.1 -1.3 -1.6 -1.8

Pecam1 platelet/endothelial cell 
adhesion molecule 
(CD31 antigen)

Signal 
transduction

2.74E-05 8.45E-04 NS -1.6 -1.6 -1.4 -1.5

Dab2 disabled homolog 2, 
mitogen-responsive 
phosphoprotein 
(Drosophila)

Cell growth/
maintenance

2.92E-02 5.63E-05 NS -1.1 -1.3 -1.4 -1.7

Cyb5b cytochrome b5 type B 
(outer mitochondrial 
membrane)

Transporter 
activity

4.15E-03 2.59E-06 NS -1.1 -1.3 -1.4 -1.6

Ostf1 osteoclast stimulating 
factor 1

Signal 
transduction

1.66E-07 1.08E-02 NS -1.7 -1.5 -1.3 -1.1

Gdf8 growth differentiation 
factor 8

Signal 
transduction 
(TGFb)

4.95E-03 6.71E-05 NS -1.1 -1.3 -1.3 -1.4

Nfat5 nuclear factor of 
activated T-cells 5, 
tonicity-responsive

Transcription 
regulation

2.75E-03 1.27E-05 NS -1.2 -1.2 -1.3 -1.3

Acox1 acyl-Coenzyme A 
oxidase 1, palmitoyl

Fatty acid 
metabolism

7.62E-10 4.31E-04 NS -1.7 -1.5 -1.2 -1.1

Ephx1 epoxide hydrolase 1, 
microsomal (xenobiotic)

Proteolysis 1.60E-06 2.62E-02 NS -1.8 -1.6 -1.2 -1.1

Ccdc85b coiled-coil domain 
containing 85B

unknown 1.66E-05 4.54E-02 NS -1.6 -1.4 -1.2 -1.1

A2m alpha-2-macroglobulin Protein 
transport

2.45E-10 3.68E-03 NS -1.8 -1.7 -1.2 -1.1

Nono non-POU domain 
containing, octamer-
binding

mRNA 
processing

1.01E-06 3.80E-03 NS -1.4 -1.3 -1.2 -1.1

Ifltd1 intermediate filament tail 
domain containing 1

unknown 6.75E-06 1.81E-04 NS -1.2 -1.4 -1.2 -1.3

Myst4 MYST histone 
acetyltransferase 
(monocytic leukemia) 4

Transcription 
regulation

9.48E-06 1.18E-02 NS -1.3 -1.3 -1.1 -1.2

Genes down regulated in Meishan and up-regulated by ACTH

Gadd45b growth arrest and DNA-
damage-inducible, beta

Regulation of 
protein kinase 
activity

6.38E-04 1.41E-11 NS -1.3 -1.3 2.4 2.4

C14orf4 chromosome 14 open 
reading frame 4

unknown 8.66E-03 7.41E-05 NS -1.0 -1.2 1.4 1.2

Genes differentially expressed between Meishan (MS) and Large White (LW) pigs and/or in response to acute stimulation by ACTH were identified 
using a pig cDNA microarray made up of 8959 cDNA clones. The most significant affected genes (p < 0.0001) were listed in the table, categorized 
on the basis of up or down-regulated by genotype and/or ACTH and sorting by decreasing fold changes. (unknown transcripts were excluded) 
Complete list is given in the additional file 1.

Table 1: Genes differentially expressed depending on genotype and/or ACTH treatment (Continued)
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and Bmal1, not present on the microarray were found sig-
nificantly affected by ACTH treatment and genotype,
respectively. Per2 was down-regulated in response to
ACTH treatment and expression of Bmal1 was greater in
LW pigs.

Discussion
We used a comprehensive gene expression profiling by
microarray analysis to identify groups of genes differen-
tially expressed by genotype and/or by acute ACTH treat-
ment. This is the first gene array analysis investigating in

Table 2: Measurement of genotype and/or ACTH effects on transcript accumulation by relative quantitative real-time PCR and 
comparison with microarray data

Gene 
symbol

Microarray Real time PCR

p-value (ANOVA) Fold Change p-value (ANOVA) Fold Change

genotype: MS/LW treatment: ACTH/
control

genotype: MS/LW treatment: 
ACTH/control

genoty
pe

treatme
nt

interact
ion

control ACTH LW MS genotyp
e

treatme
nt

interact
ion

control ACTH LW MS

Rnf2 2.81E-
13

7.89E-
01

1.96E-
02

3.5 2.5 1.2 -1.2 0.82 0.64 0.81 1.1 -1.0 1.1 1.0

Anpep 5.65E-
12

8.27E-
03

NS 2.1 1.9 -1.1 -1.2 < 
0.0001

0.040 0.056 3.9 3.0 -1.0 -1.4

Gadd45
b

6.38E-
04

1.41E-
11

NS -1.3 -1.3 2.4 2.4 0.028 < 
0.0001

0.33 -1.5 -1.5 2.6 2.6

Eif1b 9.08E-
06

7.89E-
10

NS 1.5 1.9 2.5 3.3 0.009 < 
0.0001

0.040 1.4 1.9 2.9 4.1

Crem 4.34E-
02

2.70E-
10

NS 1.7 1.1 4.4 3.0 0.18 < 
0.0001

0.43 1.6 1.3 6.4 5.4

A2m 2.45E-
10

3.68E-
03

NS -1.8 -1.7 -1.2 -1.1 < 
0.0001

0.11 0.54 -2.1 -2.1 -1.3 -1.2

Ldlr* 5.19E-
03

4.15E-
07

NS 1.6 1.3 2.3 1.8 ND ND ND ND ND ND ND

Ckb 1.03E-
06

3.00E-
02

NS 2.1 1.9 1.3 1.2 0.004 0.43 0.88 2.3 2.1 1.3 1.2

Dab2 2.92E-
02

5.63E-
05

NS -1.1 -1.3 -1.4 -1.7 0.34 0.052 0.63 -1.3 -1.2 -1.8 -1.6

Ldlr* 1.50E-
02

1.14E-
03

1.06E-
02

1.5 1.0 1.6 1.1 0.069 < 
0.0001

0.80 1.4 1.2 2.2 2.0

Fxc1 3.06E-
04

2.35E-
02

NS 1.2 1.3 1.1 1.1 0.28 0.16 0.48 -1.1 -1.4 1.6 1.2

Star 4.85E-
04

NS NS 1.6 1.2 1.4 1.1 0.053 0.26 0.406 1.4 1.1 1.3 1.0

Mc2r ND ND ND ND ND ND ND 0.95 0.24 0.77 -1.1 1.0 1.2 1.4
Scarb1 NS NS NS NS NS NS NS 0.89 0.25 0.75 1.1 -1.0 1.2 1.1
Bzrp ND ND ND ND ND ND ND 0.017 0.64 0.089 -2.3 -1.2 -1.4 1.4
Sqle NS NS NS NS NS NS NS 0.16 0.39 0.32 -1.1 -1.5 1.3 -1.0
Cyp11a
1

NS NS NS NS NS NS NS 0.85 0.36 0.37 1.2 -1.1 1.4 1.0

Hsd3b1 NS NS NS NS NS NS NS 0.51 0.17 0.94 -1.1 -1.1 -1.3 -1.3
Cyp21 NS NS NS NS NS NS NS 0.022 0.90 0.33 -1.2 -1.5 1.1 -1.1
Cyp11b NS NS NS NS NS NS NS 0.13 0.27 0.94 1.3 1.3 1.2 1.2
Per2 ND ND ND ND ND ND ND 0.46 0.040 0.066 -1.2 1.8 -2.3 -1.0
Cry1 NS NS NS NS NS NS NS 0.96 0.48 0.62 1.1 -1.1 1.2 1.0
Bmal1 ND ND ND ND ND ND ND 0.002 0.21 0.70 -2.5 -2.9 -1.4 -1.6

The changes in expression levels for 11 genes shown by microarray analysis to be significantly regulated by genotype and/or ACTH were quantified 
by real-time PCR. For comparison, relative expression values for each gene were determined in each animal (fold change, n = 6 pigs per 
experimental point). Changes in expression levels were also analyzed for 11 additional genes of great interest for our study whereas they were 
either shown by microarray analysis to be not significant (NS, p > 0.05) or not determined (ND) since they were not included on the microarray or 
due to the data normalization process. * LDLR gene was represented by 2 cDNA clones on the microarray and changes in its expression were 
verified by real-time PCR using only the cDNA sequence for which exons/introns structure could be deduced.
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vivo adrenal response to an acute ACTH stimulation and
exploring genetic variability at the adrenal level by using
different breeds of pigs (i.e. an interesting biological
model because pigs produce cortisol as humans). In
microarrays, which included almost 8960 transcripts, the
present results indicate that genotype and/or ACTH treat-
ment affected the levels of 211 genes in adrenals. Moreo-
ver, although previous gene array analyses of ACTH action
have been conducted in vitro and/or focused on the effects
of chronic stimulation [25,27], our experiments demon-
strate in vivo that acute ACTH treatment affects a large
number of transcripts.

For the vast majority of affected transcripts, the changes
were less than 2-fold excepted for some, probably of great
interest, for which changes were as much as 4.5-fold.
While some studies reported that small changes may be
due to the tendency of microarray analysis to underesti-
mate fold changes in transcripts accumulation [31], com-
parison of fold changes between microarray and real-time
PCR analysis showed the accuracy of nylon microarrays
used, even if fold-changes higher than 2-fold seemed to be
somewhat underestimated. Our results suggest that geno-
typic difference and ACTH action may produce relatively
small changes in transcript accumulation but these small
changes could well be of physiological significance [32].

The dose of ACTH used in our study has been shown to
maximally activate cortisol production within one hour
[14,30] and thus, may produce maximum effects on ster-
oidogenesis. Cortisol concentrations measured in our
study were consistent with previous results reporting that
cortisol levels induced by ACTH were higher in Meishans
than in Large Whites, as well as basal cortisol levels [7,14].
However, ACTH did not affect gene expression of ster-
oidogenesis enzymes (i.e. Cyp11a1, Cyp17, 3βhsd, Cyp21,
Cyp11b). This result is consistent with the fact that acute
stimulation by ACTH had little effect on adrenal P450s
and steroidogenic enzymes while in contrast, long-term
ACTH treatment provokes profound changes in the
mRNA levels of many adrenal steroidogenic enzymes
[22,29,33]. Interestingly, no differences in expression of
steroidogenesis genes were found between Meishan and
Large White pigs. These results suggest that the difference
of corticosteroidogenesis between Meishan and Large
White pigs is not triggered by changes in gene expression
of adrenal P450 and 3βHSD enzymes under basal state or
following acute ACTH stimulation. Nevertheless, we can-
not exclude that steroidogenic activity might be higher in
Meishan pigs than in Large White pigs. Indeed, expression
of several genes (Mdh2, Sdha and Suclg2) involved in the
tricarboxylic acid (TCA) pathway was greater in MS pigs.
The main catalytic function of TCA cycle is to provide
reducing equivalents to the respiratory complexes [34],
for example, steroid hydroxylation [35]. Moreover, the

TCA cycle also contributes to the synthesis of heme [34],
necessary for the prosthetic groups of the steroidogenic
cytochrome P450s [36]. In this respect, it is worth noting
that Alas1, the rate-limiting enzyme in heme biosynthesis
[37], shows a greater expression in MS than in LW pigs
(see additional file 1). These mechanisms may together
result in a higher steroidogenic activity by supplying more
reducing equivalents and heme to steroidogenic enzymes.
This hypothesis is supported by previous observations
indicating that heme availability limited adrenal corticos-
teroid biosynthesis [38] and by recent data showing that
acute stimulation of steroid production by ACTH was sig-
nificantly increased when heme oxygenase activity was
inhibited [39].

The effects of ACTH are mediated through the ACTH
receptor (MC2R) belonging to the melanocortin receptor
family (MCRs). The binding of ACTH to its cognate G pro-
tein-coupled receptor promotes the activation of protein
kinase A and MAPK-dependent signaling cascades that
collectively initiate adrenal-specific steroidogenic tran-
scriptional programs [21,22,40]. Findings from numerous
in vitro studies support the notion that ACTH is a positive
regulator of ACTH-R mRNA expression [33,41,42]. More
particularly, Winnay and Hammer [43] demonstrated in
vitro that ACTH stimulation acutely activates the Mc2r
gene promoter (i.e. within 80 min). In our study, we
showed that ACTH did not affect Mc2r gene expression
within 1 hour and that this gene was not differentially
expressed between MS and LW pigs. Similarly, no differ-
ence in gene expression encoding key regulator proteins of
the ACTH signaling pathway (i.e. G protein, Adenylate
Cyclase, Protein Kinase A and MAPK ERK1, ERK2) was
found in our study. On the other hand, the levels of Crem
(cAMP response element modulator), a cAMP-dependent
transcription factor that functions to activate genes
involved in steroidogenesis [44], were increased in pres-
ence of ACTH and higher in MS than LW pigs. Moreover,
trophic hormone stimulation of steroidogenic cells has
been shown to result in the activation of G proteins that
stimulate adenylate cyclase activity and produce increased
intracellular levels of cAMP [21]. Thus, high levels of Crem
in MS compared to LW and in response to ACTH may
result to a larger increase of signal transduction induced
by ACTH.

A constant supply of cholesterol is required within adre-
nal cells for steroidogenesis. The rate-limiting step for ster-
oidogenesis is the movement of unesterified cholesterol
into mitochondria where it can then be metabolized by
CYP11A1 and other enzymes in the steroidogenic path-
way (for review see ref. [45]). The movement of choles-
terol into the mitochondria is mediated by steroidogenic
acute regulatory protein (StAR) [23] and other partners
such as peripheral-type benzodiazepine receptor or trans-
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locator protein [46]. Interestingly, greater expression of
the Star gene in Meishan than in Large White pigs found
in our study suggests that enhanced cholesterol transport
into mitochondria may contribute to the higher corticos-
teroid biosynthesis found in MS pigs compared to LW
pigs. All studies on StAR function agree that this enzyme
mediates acute stimulation of steroidogenesis in response
to ACTH administration and requires de novo protein syn-
thesis (for review see ref. [21]). However, we did not find
changes in transcript levels of Star 1 h following ACTH
treatment while changes in Star gene expression induced
by ACTH have been previously observed as early as 30
min and levels were maximally elevated between 1 and 3
h in the rat [29]. Nevertheless, phosphorylation of more
preexisting StAR protein in MS pigs, a mechanism
involved in the acute response to ACTH stimulation [47],
could contribute to the higher cortisol levels induced in
response to ACTH in MS than in LW pigs.

The unesterified cholesterol needed for steroidogenesis
can be derived from several different sources (for review
see ref. [45]). In our study we did not find differences in
gene expression of enzymes involved in endogenous cel-
lular cholesterol synthesis, such as Sqle or Hmgcr, between
genotypes or in response to ACTH while those genes have
been reported to be regulated by ACTH [25,27]. On the
other hand, cellular cholesterol delivery for steroidogene-
sis includes uptake of lipoprotein-derived cholesterol via
low density lipoprotein (LDL) receptor mediated endo-
cytic pathways and SRB1 (Scavenger Receptor class B,
type1) mediated "selective" pathways (for review see ref.
[45]). Interestingly we found higher Ldlr expression in MS
than in LW pigs and in response to ACTH but no changes
were observed in Scarb1 expression.

Changes in Ldlr expression in response to ACTH found in
our study are consistent with Ldlr up-regulation reported
in vitro following 24 h ACTH treatment in Y1 mouse adre-
nal cells [25]. Conversely, while Scarb1 have also been
reported to be up-regulated by 24 h ACTH treatment in Y1
mouse adrenal cells [25], and to a larger extent than Ldlr,
we did not find change in Scarb1 expression. Our results
indicate that receptor-mediated endocytic uptake of LDL-
cholesterol may be a more important source of cholesterol
for adrenal steroidogenesis in pigs as is the case in
humans [48], while it appears to play a negligible role in
mouse [45]. Moreover, this is the first evidence indicating
in vivo that the acute response to ACTH may involve cellu-
lar cholesterol supply for steroidogenesis via Ldlr regula-
tion.

A large number of genes found to be differentially
expressed in our study encode transcription factors. Most
of them have not been yet described as requisite in tran-
scription networks involved in adrenal steroidogenesis.

Nevertheless, they are potential interesting candidates,
particularly those that were affected by both genotype and
ACTH treatment. We were particularly interested in
peripheral clock genes (such as Bmal1, Per2, Cry1),
because recent studies reported that in the adrenal they
regulate a large number of genes involved in general cellu-
lar processes (e.g. protein synthesis) as well as in pathways
related to major organ-specific function (e.g. corticoster-
oid biosynthesis) and probably adjust adrenal sensitivity
to ACTH [49-51]. Interestingly, while Per2 and Cry1 were
not differentially expressed in our study, Bmal1 gene
showed less expression in MS pigs. Thus, we can not
exclude that differences in the expression level of some
clock genes may be involved in differences in basal corti-
sol levels and adrenal reactivity to ACTH between MS and
LW pigs. Further studies are needed to investigate other
clock genes and to clarify how clock-controlled transcrip-
tional rhythms in adrenals could contribute to the differ-
ences observed between both lines of pigs.

Phosphorylation and dephosphorylation mechanisms
might be also involved in the difference of adrenal func-
tion between LW and MS pigs because a large number of
differentially expressed genes encode diverse protein
kinases and protein phosphatases. Among them Snf1lk
(SIK1 protein) constitute a valuable candidate since it was
reported to be an important regulator in the early phase of
ACTH-signaling in the adrenal cortex [52].

Conclusion
In conclusion, we report differential gene expression in
adrenal in two lines of pigs in basal conditions and fol-
lowing acute ACTH treatment. Some of the genes have
been already reported to be implicated in adrenal physiol-
ogy, but the majority has not been documented as directly
involved in steroidogenesis regulation or as acutely
ACTH-responsive. Although their contributions to adre-
nal function merit further investigation, we may speculate
on the involvement of a few of them. The higher cortisol
levels in basal state and in response to ACTH in MS than
in LW pigs was probably not triggered by changes in gene
expression of known key regulator proteins of the ACTH
signaling pathway and steroidogenic enzymes. However,
a higher TCA cycle activity in MS pigs than in LW pigs may
explain the higher steroidogenic activity by supplying
more reducing equivalents and heme to steroidogenic
enzymes. Alternately, differences in the adrenal function
between MS and LW pigs involve likely mechanisms req-
uisite for cholesterol supply to steroidogenesis. The genes
described in this report are thus excellent potential candi-
dates to mediate the genetic differences in adrenal ster-
oidogenesis, particularly those affected by genotype and
ACTH. Because dysregulation of glucocorticoid produc-
tion results in diverse diseases, elucidation of the function
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of these genes in adrenals will lead to better understand-
ing the molecular basis of such pathological conditions.

Methods
Animals and housing
Seven-week-old male Large White (LW) and Meishan
(MS) piglets (n = 24) were used in this study. The animals
were reared and experiments were conducted at the INRA
experimental research farm of Le Magneraud (Surgères,
France). Piglets were weaned at four weeks of age and then
allocated into groups of 24 animals in 3.65 × 1.70 m pens.
Animals were housed in collective pens on a 10 h light, 14
h dark cycle (natural photoperiod) with food and water ad
libitum. Experimental groups of six pigs of both genotypes
were randomly constituted and placed in collective pens
one week before the experiments. For each genotype, pigs
used in this study were taken from five litters resulting
from matings with two boars. The experiments described
here fully comply with legislation on research involving
animal subjects according to the European Communities
Council Directive of November 24, 1986 (86/609/EEC).
Investigators were certificated by the French governmental
authority for carrying out these experiments.

Treatment and sampling
Piglets were either non-treated or injected in the neck
muscle with mammalian 1–24 ACTH (Immediate
Synachten, Novartis France) at the dose of 250 µg per ani-
mal. The dose of ACTH was chosen to ensure a maximum
cortisol release [30]. Non-treated animals have been cho-
sen as control instead of animals injected with vehicle in
order to have the most accurate basal conditions. In
accordance with approved slaughter methods, piglets
were stunned and immediately exsanguinated after cap-
ture from their home pen (non-treated animals) or one
hour following ACTH injection. Experiments were per-
formed between 08.00 h and 10.00 h. Blood samples were
collected directly from each piglet in heparined tubes at
sacrifice. The blood was kept on ice until centrifugation
(4000 g for 10 min) and plasma frozen at -80°C until
measurement of cortisol. The adrenal glands were also
collected, frozen immediately on dry ice and then stored
at -80°C until RNA isolation.

Cortisol measurement
Plasma total cortisol was measured using a specific radio
immunoassay (as previously described in Désautés et al
[7]). The cortisol data were transformed to base 10 loga-
rithmic scores and analyzed by ANOVA to assess the
effects of genotype, treatment and their interaction.
Results are given as the mean ± standard error.

Total RNA isolation and purification
For each biological sample, entirely left adrenal gland was
homogenized in TRIzol reagent (Invitrogen Life Technol-

ogies) and a part of the homogenized sample was then
used for total RNA isolation, followed by column purifi-
cation (RNeasy MinElute kit, Qiagen). This procedure
ensures to get equal proportions of cortex and medulla
between samples. DNA was digested using an RNase-free
DNase set (Qiagen) during RNA purification. Total RNA
was quantified by spectrophotometer (NanoDrop®) and
its integrity was assessed on an Agilent 2100 Bioanalyser
(RNA 6000 Nano LabChip, Agilent Technologies).

Microarray analysis
Gene expression was analyzed by hybridization of non
commercial nylon cDNA microarrays (accession in Gene
Expression Omnibus data sets: GPL3729) developed by
the Biological Resources Center GADIE (Genomic for ani-
mals of economical importance, INRA France) and con-
sisted of PCR products from 8959 cDNA clones [53].
cDNA from luciferase was present on the array as positive
control (193 spots) and water was also included as nega-
tive control (64 spots). cDNA clones came from pig nor-
malized multi-tissues libraries including adrenal glands
collected from control and stress pigs. Microarrays were
first hybridized with a 33P-labeled oligonucleotide
sequence common to all PCR products to control the
quality of spotting and quantity of target DNA accessible
in each spot. Microarrays were then hybridized with 33P-
labeled complex probes synthesized and labelled from 5
µg of total RNA with Supersript II RNAse H- reverse tran-
scriptase (Invitrogen). mRNA from luciferase were added
to the pigs samples for calibration. Hybridizations were
carried out during 24 hours at 68°C. After washing, arrays
were exposed for six to 12 hours to radioisotopic-sensitive
imaging plates. Detection scanning was done with a FUJI
BAS 5000 phosphoimager (Fujifilm) at 25-µm resolution
and quantification of hybridization signals with the AGS-
can software [54]. One microarray hybridization per ani-
mal was done giving six biological replicates per
experimental point.

Microarray data normalization and statistical analysis
Before statistical analysis, data were log10 transformed and
centred by median for each array and each gene. A filter
procedure eliminated non informative transcripts on the
basis of being well measured (expression level > mean + 2
standard deviations of background signal) in 100% of the
samples. Statistical analyses were done using the R soft-
ware (version 2.2.1, [55]). A linear model was used to test
the effect of genotype and treatment as well as their inter-
action, and variation in quantity of target DNA accessible
in each spot was included as covariate. False discovery rate
(FDR) was determined using the Benjamini-Hochberg
procedure [56].
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The microarray data from this research has been deposited
in the NCBI Gene Expression Omnibus data repository
under accession number GSE8377[57].

Functional annotation
Transcripts significantly affected by genotype and/or
ACTH treatment were annotated for their function accord-
ing to Gene Ontology database [58] and Expression Anal-
ysis Systematic Explorer (EASE) software from DAVID
bioinformatics database [59].

Analysis of RNA changes by relative quantitative real-time 
PCR
To verify changes in gene expression, real-time PCR was
carried out on 22 selected genes. RNA (4 µg) was reverse
transcribed in a total volume of 20 µl using 200U of
Superscript II (Invitrogen) reverse transcriptase, 100 pmol
oligo-dT22V, 0.5 mM deoxy-NTP, and 40U RNasin
(Promega). The resultant cDNA was diluted 1:100 with
nuclease-free water. Five microliters of diluted cDNA was
used in subsequent PCR reactions. All primers were
designed based on nucleotide sequences in Genbank
using the Primer Express software (PE Applied Biosys-
tems) (table 3). PCR reaction efficiency was calculated for
each primer pair with five dilution points of the calibrator
sample to validate primers. Introns-exons organisation of
the porcine genes was deduced by comparison with
human genes using ICCARE software and primers from

one pair were chosen in distinct exons of the correspond-
ing gene. Each real-time PCR reaction consisted of 1×
Power SYBR Green PCR Master Mix (PE Applied Biosys-
tems), 0.5 µM forward and reverse primers and cDNA to a
total volume of 20 µl. Reactions were carried out on an
ABI PRISM 7500 Sequence detection system (PE Applied
Biosystems) for 40 cycles (95°C for 15 s, 60°C for 1 min).
The fold change in expression of each gene was calculated
using the ∆∆Ct method with the levels of transketolase
RNA as an internal control; as determined by quantitative
RT-PCR, the levels of transketolase did not change
depending on genotype or treatment in our study (data
not shown) and transketolase gene has previously been
used to normalize data from quantitative RT-PCR in adre-
nal cells [25]. Quantitative real-time PCR analysis was
done in each out of the six animals constituting an exper-
imental point and measurements were done in duplicate.
ANOVA was conducted on relative expression to assess
the effects of genotype, treatment and their interaction.

Abbreviations
ACTH, adrenocorticotropic hormone; Alas1, aminolevuli-
nate delta synthase 1; Bmal1 (or Arntl), Brain and muscle
ARNT-like 1 (or aryl hydrocarbon receptor nuclear trans-
locator-like protein 1); Bzrp (or TSPO), peripheral-type
benzodiazepine receptor (or translocator protein); CBG,
corticosteroid-binding globulin; Crem, cAMP responsive
element modulator; CRH, corticotropin-releasing hor-

Table 3: Gene-specific primers used for quantitative RT-PCR

Gene symbol Forward Primer Reverse Primer accession no.

Dab2 CCCGTGATGTGACAGACAACC ACTAATGGCTCTGCCTGTTGC BX918681
A2m ACGTGAGCCGAACAGAGGTC GCGATGGCAAACTCAGCTG BX674240
Anpep CTCATTCGGAAGCAAGACGC CCACCGCCATAGTCCTGAAA BX665286
Fxc1 TCCTTCCAGGAGGCCTGTC GCTGTACCAGGGCAGGCAT BX674767
Rnf2 CACTGTGTTAAATGGCTCTTTTTCTT TGTGCTCCTTTGTGGGTGC BX673517
Gadd45b GCTGATGAATGTGGACCCTGA CCTGACACCCGCACGATATC BX671980
Eif1b GTTTCTCTTGGAGGTTGGCATT TCACGAGGCAGCCAAACTG BX926052
Crem AACACGCAAACGAGAGCTGAG GCACAGCCACACGGTTTTC BX670994
Tkt GGACAGGAAGCTCATTCTCGA AGCAGCCACTGCCTCACCTA BX925610
Star GAAGAGCTTGTGGAGCGCAT AGCCAACTCATGGGTGATGAC U53020
Scarb1 TGTGGTTTGCAGAGAGCGG ATGAACAGCAGGACGCAGC NM_213967
Cyp21 TGCTTCACCACCCTGAGATTC GCCCAGCTCGCGATCTAAC BX916139
Cyp11a1 AGACACTGAGACTCCACCCCA GACGGCCACTTGTACCAATGT BX674077
Ldlr GCCTCACAGGCTCGGACATA ACACCAGTTCACCCCTCTCG BX673438
Sqle TGGTCCAGTTGCGCTGATT GGGCTCCGATTTAAAGCAAAA BX920102
Bzrp GGCACACTCTACTCGGCCAT ACAGCCTCCTCCGAGAAGCT BX925849
Ckb TTCACCCGCTTCTGCAATG AGGTCAGGATGTAGCCCAGGT BX920566
Hsd3b1 TTCCGCCCTCTCTGAGGTACT GGTCACGAAGTGGCGATTG BX919321
Bmal1 TCCTAGCCAACGTCCTGGAA TCTTTGGGCCACCTTCTCC EF216896
Cry1 TGAACCACGCTGAGGCAAG GGATTAGATGGCACTGACGCA BQ600826
Per2 GACGTGCCGGAATGTGTTTAC GCTCCCGGTTTCTGTGACTC CF789448
Mc2r ACCATGTCCCCGCAGTGAT GTGATGGCCCCTTTCATGTT AF450083
Cyp11b CCCGTGGGTATCTTCTTGGA GGTTTCGACCCAGGGAGTAGA D38590

Gene-specific primers were designed based on sequences provided under the accession numbers listed in the National Center for Biotechnology 
Information (NCBI) database.
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mone; Cry1, cryptochrome 1; Cyp11a1, cytochrome P450
family 11 subfamily B polypeptide 1; Cyp11b, cyto-
chrome P450 family 11 subfamily B; Cyp17, cytochrome
P450 family 17; Cyp21, cytochrome P450 family 21; ERK,
extra-cellular signal regulated kinase; Fxc1, fracture callus
1 homolog (rat); Hmgcr, hydroxymethylglutaryl coenzy-
meA reductase; HPA, hypothalamic-pituitary-adrenal;
3βhsd (or Hsd3b1), 3β hydroxysteroid dehydrogenase;
Ldlr, low density lipoprotein receptor; LW, Large White;
MAPK, mitogen activating protein kinase; Mc2r, melano-
cortin 2 receptor; Mdh2, malate dehydrogenase 2 NAD
(mitochondrial); MS, Meishan; P450scc, cytochrome
P450 cholesterol side chain cleavage enzyme; Per2, period
homolog 2; Rnf2, ring finger protein 2; Scarb1, scavenger
receptor beta 1; Sdha, succinate dehydrogenase complex
subunit A flavoprotein (Fp); Snf1lk, SNF1-like kinase;
Sqle, squalene epoxidase; Star, steroidogenic acute regula-
tor; Suclg2, succinate-CoA ligase GDP-forming beta subu-
nit; TCA, tricarboxylic acid.
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