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Space-Time Adaptation for Patch-Based
Image Sequence Restoration

Jérôme Boulanger, Charles Kervrann, and
Patrick Bouthemy

Abstract—We present a novel space-time patch-based method for image

sequence restoration. We propose an adaptive statistical estimation framework

based on the local analysis of the bias-variance trade-off. At each pixel, the space-

time neighborhood is adapted to improve the performance of the proposed patch-

based estimator. The proposed method is unsupervised and requires no motion

estimation. Nevertheless, it can also be combined with motion estimation to cope

with very large displacements due to camera motion. Experiments show that this

method is able to drastically improve the quality of highly corrupted image

sequences. Quantitative evaluations on standard artificially noise-corrupted image

sequences demonstrate that our method outperforms other recent competitive

methods. We also report convincing results on real noisy image sequences.

Index Terms—Image sequence restoration, denoising, nonparametric estimation,

nonlinear filtering, bias-variance trade-off.

Ç

1 INTRODUCTION

IMAGE sequence restoration takes a crucial place in several

important application domains. Infrared imaging, confocal micro-

scopy, ultra-sound, and X-ray imaging are known to be noisy

modalities. Restoring old films or videos is also of key importance

for cultural heritage preservation. Image sequence restoration is

then widely studied and still remains an active field of research. The

main difficulties arise from nonstationarities observed in the spatio-

temporal signals. Denoising or restoration methods must then

preserve space-time discontinuities while minimizing the error

between the unknown original noise-free image sequence and the

denoised sequence.

A review of image sequence restoration methods can be found in

[1]. These methods, especially designed for image sequences, take

into account temporal correlation between images, and some of

them involve a motion compensation/detection stage [2], [3], [4].

Other image sequence restoration methods can be exported from the

still image denoising domain (see [5] for a recent review): Wavelet

shrinkage [6], [7], Wiener filtering [8], or partial differential

equations (PDE)-based methods [9] have been extended to process

image sequences. However, other methods like “Total Variation”

minimization [10] cannot be easily extended to the space-time

domain. Recently, an extension of the recent nonlocal means filter [5],

also related to the universal denoising—DUDE—algorithm [11], has

been proposed to process image sequences and relies on the

principle that the image sequence contains repeated patterns [12].

Such an approach is already popular in texture synthesis [13],

inpainting [14], video completion [15], and has also been explored

for image restoration [16]. Nevertheless, searching similar local

patterns in the whole image sequence is infeasible in practice, even

for 2D still images. Accordingly, a variant of the nonlocal means filter

has been recently proposed in [17] and uses a preclassification of the

pixels in the sequence in order to speed up the denoising procedure.

The original method we propose is a space-time patch-based

adaptive statistical method for image sequence restoration. A

preliminary version has been described in [18]. It is related to the

statistical framework described for still images [19], [21], [22], [23],

[24], and image sequences [20], [25]. Unlike robust anisotropic

diffusion [26] and nonlinear Gaussian filtering [27], our approach

supplies scale selection by estimating the appropriate space-time

filtering window at each pixel. Moreover, the proposed method

differentiates the space and time dimensions unlike other methods

that consider the image sequence as an isotropic 3D volume [6], [9].

As a matter of fact, naive approaches can introduce motion blur and

artifacts if the time dimension is merged with spatial dimension. In

contrast to [21], [25], our approach is not based on a geometrical

partition of the neighborhood in sectors. It uses a fixed neighbor-

hood geometry but involves an appropriate weighted sum of data

points in an adaptive neighborhood, which is far more flexible and

efficient. The weights are defined by computing a distance between

a local patch centered at the considered pixel xi and patches taken in

an adapted space-time neighborhood. Additionally, a confidence

level, that is the point-wise estimator variance, attached to each

restored pixel is provided.

The remainder of the paper is organized as follows: Section 2

describes our general framework for image sequence restoration. In

Section 2.2, the adaptive choice of the local space-time neighborhood

is introduced. Section 2.3 deals with the similarity measure involved

in the selection of patches in the space-time neighborhood. Section 3

gives details of the algorithm implementation. In Section 4, we

report an important set of experimental results on artificially noise-

corrupted video sequences as well as on a real noisy infrared image

sequence. Intensive comparison with other recent methods has been

carried out, demonstrating that our method outperforms most of

them. We also present how our denoising method can be combined

with a motion estimation method if required. We demonstrate from

experiments that motion estimation and transforms into the

frequential domain are not necessary for denoising image sequences

with good results. In the case of camera motion represented by a

quadratic model and reliably estimated using a robust statistical

technique, the denoising results are slightly improved but addi-

tional computations are required. Finally, Section 5 contains

concluding remarks.

2 PATCH-BASED SPACE-TIME APPROACH

2.1 Model Description

We consider the following statistical image model:

Yi ¼ uðxiÞ þ �i; ð1Þ

where xi 2 � denotes the pixel location in the space-time volume

� � IR3. The function ui ¼ uðxiÞ is the ideal image to be recovered

from observations Yi. The errors �i are assumed to be independent

zero-mean Gaussian variables with unknown variance �2.

We need minimal assumptions on the structure of the image for

recovering u. In what follows, we assume that there exists repeated

small image patches of the patch centered at xi in the space-time

neighborhood of pixel xi. However, the size and shape of this

neighborhood will vary in the image sequence because of
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nonstationarities and the presence of spatial and temporal

discontinuities. If we can determine the adequate neighborhood

for each pixel, then the regression function u can be estimated by

optimizing a local maximum likelihood (ML) criterion. The

proposed method addresses these two issues as described below.

As in [23], [24], we design a sequence of increasing nested space-

time neighborhoods fWi;ngn2½0:N�, centered at each point xi, i.e.,

Wi;n � Wi;nþ1, with N denoting the index of the largest neighbor-

hood. Additional details about the neighborhood design are given

in Section 2.2. As for initialization, we choose the smallest

neighborhood (the eight nearest neighbors in the 2D space domain)

as the pilot (starting) neighborhood Wi;0 at xi. Then, we compute an

initial estimate bui;0 of uðxiÞ and its associated variance varðbui;0Þ as

bui;0 ¼ X
xj2Wi;0

!ijYj and varðbui;0Þ ¼ b�2
X

xj2Wi;0

!2
ij; ð2Þ

where b�2 is an empirical estimate of the noise variance �2 as

described in Section 3. At the initialization step, the weights !ij are

defined as a function of the distance between two spatial p� p image

patches or space-time p� p� q image patches (of fixed size)

centered at xi and xj, respectively. In what follows, the p� p (or

p� p� q) patch size is assumed to be fixed for all the iterations of the

restoration procedure. In addition, there is no real difference for the

proposed method between the spatial only and space-time patch

since the spatial only patch can be considered as a space-time patch

with the temporal dimension q equal to one.

At the first iteration, we consider a larger space-time neighbor-

hood Wi;1 such that Wi;0 �Wi;1 and calculate new estimates bui;1
and varðbui;1Þ over Wi;1. We continue this way, and at iteration n, we

define the estimator as

bui;n ¼ X
xj2Wi;n

!ijYj and varðbui;nÞ ¼ b�2
X

xj2Wi;n

!2
ij; ð3Þ

where the estimator bui;n corresponds to a weighted average of the

intensities Yj located in the space-time neighborhood Wi;n. We

propose to define weights !ij as a function of the distance between

two image patches of fixed size bui;n�1 and buj;n�1 estimated at

iteration n� 1 and centered in xi and xj, respectively, as shown in

Fig. 1. In Fig. 1, 3� 3 patches are used for illustration purposes but

7� 7 patches are typically used in our experiments to produce

satisfying restoration results (see Section 4). In the two next

sections, we specify the sequence of neighborhoods fWi;ngn2½0:N �
and we propose a suitable distance to compare image patches.

2.2 Space-Time Neighborhood Adaptation

2.2.1 Space-Time Neighborhood Geometry

One important contribution of this work is the online construction of

the space-time neighborhood sequence fWi;ngn2½0:N�. First, we

consider a simple hyper-cube space-time volume as the neighbor-

hood shape. Also, we separate the space dimension from the time

dimension. Consequently, space-time neighborhoods are parame-

trized by their extent in the space domain and their extent in the time

domain. The use of two distinct extents (one is for the space

dimensions and the other one is for the time dimension) allows us to

respect space-time discontinuities and the image sequence is not

considered as an isotropic 3D volume. In Fig. 2a, the increasing

neighborhood sequence is illustrated: At each iteration, the spatial

extent and the temporal extent are alternatively increased until a

stopping rule is satisfied. Then, the growth of the neighborhood is

stopped for this direction (e.g., time) and continues in the other

direction (e.g., space) until the stopping rule is again satisfied. The

next paragraph will explicitly explain the considered stopping rule.

2.2.2 Space-Time Neighborhood Selection

A point-wise rule is used to guide the space-time neighborhood

selection process. This rule aims at selecting the optimal

neighborhood at xi and is based on the measure of the closeness

of the estimator bui;n obtained at iteration n to the unknown

function ui given by the local L2 risk. This local measure of

performance, used to take into account the nonstationarities in the

image sequence, can be decomposed in two terms, that is, the

squared bias and the variance of the estimator as

IE ðbui;n � uiÞ2
h i

¼ bias bui;n� �� �2þvarðbui;nÞ; ð4Þ

where IE½:� denotes the mathematical expectation. In the sequel, we

can reasonably assume that the squared bias is an increasing

function of the neighborhood size and the variance is a decreasing

function of the neighborhood size [19], [21], [22], [23], [24], [28]. Fig. 3

illustrates the fundamental bias-variance trade-off principle. Theo-

retically, it is not guaranteed that the pointwise bias and variance,

respectively, increases and decreases with the window size mainly

because the weights are computed from the restored image obtained
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Fig. 1. Patch-based space-time framework. To each point of the image sequence is associated an estimated space-time neighborhood Wi;n. To each point xj of this
neighborhood is associated a 3� 3 patch (7� 7 image patches are used in practice). Every weight !ij is defined as a function of the distance between the patch centered
in point xi and the patch centered in point xj 2Wi;n.



at the previous iterations of the procedure. However, we have

proven that two theoretical upper bounds for each term correspond

to strictly monotonous increasing and decreasing functions in [23],

[24]. In that case, it is implicitly assumed that the image is

continuous Lipschitz: uðxjÞ � uðxiÞ
�� �� � C1 xj � xi

�� ��, C1 <1. This

means that, in some critical situations, this assumption could be

violated. Finally, optimal neighborhood W �
i;n will then be one

achieving an optimal compromise between the two upper bounds

for the bias and variance terms. Furthermore, it is admitted that this

compromise is reached when the squared bias and the variance are

nearly the same [28]: IE½ðu�i;n � uiÞ
2� � varðu�i Þ.

A practical rule corresponding to the optimal compromise and

based on a pairwise comparison of successive estimates can be

derived to select the optimal neighborhood [22]. It amounts to

defining the largest neighborhood satisfying the point-wise

statistical rule [19], [22], [23], [24], [28]:

bui;n � bui;n0�� �� < � stdðbui;n0 Þ; 8n0 < n ð5Þ

as the optimal neighborhood where stdðbui;nÞ is the standard

deviation of bui;n. The related demonstration can be found in [23],

[24] and this rule can be interpreted as follows: While the successive

estimates bui;n are sufficiently close to each other, we continue the

estimation process. More specifically, the estimation process is

continued, while new estimates belong to the intersection of

previously estimated confidence intervals ½bui;n � � stdðbui;nÞ; bui;n þ
� stdðbui;nÞ� (see Fig. 2). Besides, let us point out that we do not need to

store all the previous estimates fbui;n0 gn0<n, but only the current

intersection of confidence intervals, the last estimate, and its

variance for each pixel. Finally, the factor � can be easily chosen in

the range ½2; 4� as justified with statistical arguments in [19], [21],

[23], [24].

2.3 Similarity Measure for Patch Selection

In contrast to geometry-based approaches [21], [25], we use weights

that allow us to select the correct data points in the neighborhood

for averaging. This selection is based on the similarity between a

given spatial p� p or a space-time p� p� q image patch at xi and

p� p (or a p� p� q) image patches at xj belonging to the space-

time neighborhood Wi;n. Such patches are able to capture texels

and local geometry in images. The L2 distance is widely used for a

similarity measure between image patches. However, in order to

take into account the local variance of the estimator, we introduce

the following symmetric distance between image patches bui;n�1

and buj;n�1:

�ij ¼
1

2
ðbui;n�1 � buj;n�1Þ> bV �1

i;n�1ðbui;n�1 � buj;n�1Þ
h

þ ðbui;n�1 � buj;n�1Þ> bV �1
j;n�1ðbui;n�1 � buj;n�1Þ

i
;

ð6Þ

where the two vectors bui;n�1 and buj;n�1 denote the spatial p� p (or

space-time p� p� q) image patches respectively centered at xi and

xj. The two matrices bVi;n�1 and bVj;n�1 are diagonal with the

diagonal elements equal to varðbui;nÞ and varðbuj;nÞ, respectively. We

decide that the two vectors bui;n�1 and buj;n�1 are similar with a

probability of false alarm 1� �, under the hypothesis that they are

Gaussian distributed, using a classical �2 test with p2 (p2q for space-

time) degrees of freedom. In other words, if �ij < ��, with �� chosen

as a quantile of a �2
p2 ;1�� distribution (�2

p2q;1�� for space-time), we can

decide that the two patches are similar. In our experiments, we use a

confidence level of 99 percent and set � to 0.01.

The distance �ij is transformed into a similarity measure using

the exponential kernel. We compute the similarity measure for all

the points of the neighborhood and normalize it to obtain the

following expression for the weights:

!ij ¼
exp� �ij

2��

� �
P

xj2Wi;n

exp� �ij

2��

� � : ð7Þ

If the distance �ij between two patches is large, then the weight !ij
associated to pixel xj is small and the pixel will not participate in

the estimation at point xi. Consequently, this weighting provides

an efficient and flexible way to select the appropriate pixels
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Fig. 3. Illustration of the bias-variance trade-off principle. When the size of the

neighborhood increases, the bias of the estimator increases while taking into

account more and more intensity samples, and the variance decreases. The

parameters � and � are two unknown constants.

Fig. 2. (a) Spatio-temporal neighborhood: Colors correspond to iterations plotted in (b). (b) Confidence intervals: Circles represent estimates ûi;n obtained at each
iteration n. The gray rectangles represent the intersection between the current confidence interval and the previous one. As long as the estimate belongs to this
intersection, the estimation process is updated.



contributing to the estimation of ui in the adaptive space-time

neighborhood while effectively preserving space-time discontinu-

ities. Let us note that the process is entirely data-driven and does

not require any particular geometry adapted to image contents as

proposed in [25].

2.4 Motion Compensation

The motion of the image sequence can be taken into account in

order to apply the proposed method along the direction of the

motion. However, dense motion estimation is known to be a

difficult task in noisy contexts [12]. Then, we propose robustly

estimating a global parametric motion model only, which is able to

capture the dominant image motion due to the camera movement.

This is achieved using the multiresolution robust method described

in [29]. A similar exploitation of a parametric motion compensation

was proposed in [8] and associated with a 3D Wiener filtering

technique.

Once the dominant motion has been estimated, the filtering

along the motion direction can be considered in three ways. A naive

one would be to warp all the frames in the referential of the first

frame. Because of the accumulation of errors and interpolations, it

turns out that such a scheme does not improve the performance of

the denoising process. The second way is to compensate the motion

within the space-time neighborhood by warping the frames into the

referential of the current frame, but it also involves interpolations.

Then, we propose to avoid interpolation by adapting the shape of

the space-time neighborhood according to the estimated dominant

motion. This is achieved by translating the patch at point xj ¼
ðxj; yj; tjÞ with displacement given by the estimated parametric

motion model at the center ðxi; yi; tjÞ of the neighborhood Wi;n.

Moreover, when using p� p� q space-time image patches, the

motion also has to be compensated into the patch. Experiments

show that this third way is able to improve the performance of the

proposed method.

3 ALGORITHM IMPLEMENTATION

At the initialization, the noise variance �2 first has to be estimated.

It can be robustly estimated by calculating pseudoresiduals "i as

described in [30]. We consider four spatial neighbors and two

temporal ones, and pseudoresiduals are compactly represented by

"i ¼ 8Yi ��Yið Þ=
ffiffiffiffiffi
42
p

, where �Yi is the discrete Laplacian of Yi at

xi (see (1)) and the constant
ffiffiffiffiffi
42
p

is introduced to ensure that

IE½"2
i � ¼ �2. Given the residuals "i, the noise variance �2 can then be

robustly estimated as

� ¼ 1:4826 medi "i �medj "j
�� ���� ��� �

: ð8Þ

Let us recall that parameter �� is set to the 0.99 quantile of the �2
p2 ;0:99

distribution with a size of patch p chosen within f3; 5; 7; 9g. The last

parameter � is set to 2
ffiffiffi
2
p

to ensure a good accuracy of the estimation

[19], [22], [28]. During the estimation, spatial and temporal extents of

the space-time neighborhoods are alternatively increased (see

Section 2.2).

Furthermore, the algorithm can be easily parallelized. Indeed,

the estimation steps use only local information and, thus, we have

distributed the computation load over eight CPUs dividing the

computation time by eight. Finally, another possibility to speed up

the algorithm is to use a dyadic scheme when increasing the extent

of the neighborhood. The proposed method is very simple to

implement and does not require the fine adjustment of parameters

�� and � which control the estimation process.

4 EXPERIMENTAL RESULTS

In this section, a large set of experiments are reported to validate our

patch-based space-time adaptive estimation method. We first

consider real image sequences with artificially added Gaussian

white noise. Using this usual protocol, we compare our method to

other recent methods for denoising image sequences. For an

objective performance evaluation, we consider the global measure

given by the Peak-Signal-to-Noise-Ratio defined as PSNR ¼
20 log10ð255=

ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

Þ (MSE denotes the mean squared error between

the original noise-free image sequence and the denoised image

sequence). The visual quality of the image sequence is also taken

into account. We then discuss the usefulness of motion compensa-

tion and we comment on the respective performance of 2D spatial

patches and 3D space-time patches. Finally, the proposed method is

applied to a real noisy infrared image sequence.

4.1 Performance Assessment

We first report experiments to evaluate the influence of the noise

level and the spatial patch size on the overall method performance.

The patch size is generally a free-parameter, assumed to be fixed for

the whole restoration procedure. Fig. 4 plots PSNR values obtained

for eight noise levels and five patch sizes. First, we can note that the

patch-based method performance is smoothly affected with the

increase of the noise level. The improvement gained by introducing

patches (to be compared to the no-patch version) is clearly

demonstrated. As it could be expected, it is useless to consider

patches that are too large. When the size of the patch increases, the

PSNR increases too; however, results for fixed sizes 7� 7 and 9� 9

are quite similar while the computation time is proportional to the

number of pixels in the patch.

The well-known sequence “Flower garden” is shown in Fig. 5 to

illustrate the visual quality of the denoised image sequence in very

noisy conditions. In order to give insights into the spatio-temporal

behavior of the denoising method, we have displayed XT slices of

the image sequence. The reported results demonstrate that our

method can cope with the presence of motion while preserving

temporal discontinuities and reaches a PSNR value of 23.59 dB

using fixed 7� 7 patches and six iterations. By applying our own
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Fig. 4. Performance of our denoising method for several noise levels and for
several patch sizes including a no-patch version (pixel-wise). The PSNR is used to
measure the overall performance of the filtering and the test sequence is “Akyio”
(176� 144� 300). This sequence mainly exhibits low motion. Experiments show
that the introduction of patches improves the PSNR of at least 2 dB. We can also
point out that the results for patches 7� 7 and 9� 9 are similar.



implementation of the nonlocal means algorithm [12] on the “Flower

garden” sequence using fixed 7� 7 patches in fixed 21� 21� 3

neighborhoods and choosing a bandwidth equal to h ¼ 12� , we get

a PSNR value equal to 21.14 dB only.

4.2 Comparison with Other Recent Methods

We have compared our method with four other recent methods: a

combination of a spatial Wiener filter with a motion-compensated

temporal Kalman filter [2], a space-time nonlinear adaptive K-NN

filter [4], a 3D wavelet-based method [6], a 3D point-wise adaptive

estimate using different neighborhood geometries [25], and a local

adaptive sliding window DCT (SDCT) denoising method [20]. For

these experiments, the motion-compensation stage is not applied.

Eight test sequences corrupted with noise of different levels are

used. For a fair evaluation, we have considered the results supplied

by the authors themselves in the referenced papers. Therefore, we

cannot provide the PSNR measures for all the test sequences and

Table 1 contains all the available results. Our method clearly

outperforms most of the other methods since it supplies the best

PSNR results for nearly all the tested sequences, sometimes with

quite a significant improvement (up to 4 dB). Let us also stress that

the implementation of our method is straightforward and our

method involves no parameter tuning for the tested sequences. The

more competitive (SDCT) denoising method [20] involves a hard

thresholding of 3D DCT coefficients and minimization techniques

for block selection in the temporal domain. This approach is then

somewhat based on motion estimation. In our approach, neither

motion estimation is required nor image transformation into the

frequential domain. Finally, it appears conceptually simpler with

similar results for many image sequences.

4.3 Motion Compensation

In this section, we aim at evaluating the impact of a motion

compensation stage on the performance of our method. We have

applied this version to the “Avenger” sequence which contains two

moving cars tracked by the camera mounted in an helicopter.

Figs. 6a and 6b, respectively, show one image extracted from the

original image sequence and one of the noisy image sequence with

an additive Gaussian white noise of standard deviation � ¼ 20.

Fig. 6c shows the result of the version of our method without

motion-compensation, while Fig. 6e shows the improvement

supplied by the motion-compensation stage. The PSNR difference

between the two image sequences is about 1 dB and the visual

quality is also improved. We can then conclude that, when the global

motion the image sequence is well described by a 2D parametric

model, the proposed motion compensation scheme improves the

quality of the denoising process. In that case, a quadratic motion

model has been considered. Let us add that the motion of the two

cars is not handled by the dominant motion model. However, since

our method involves a data-driven adaptation scheme, the
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TABLE 1
PSNR Results for Eight Test Sequences and Five Denoising Methods

(a) Joint Kalman and Wiener denoising with motion compensation using a dense motion field [2]. (b) Adaptive K-NN space-time filter [4]. (c) Wavelet-based method for
image sequence denoising: TIWP3D [6]. (d) Three-dimensional nonparametric regression approach [25]. (e) Local adaptive sliding window DCT (SDCT) denoising
method [20]. (f) The proposed adaptive method with 7� 7 patches and six iterations without motion compensation. Numerical results for the other methods are taken
from the related publications. The symbol “–” means that results were not provided by the authors for the tested sequence.

Fig. 5. Sequence “Flower garden.” (a) One image of the original sequence. (b) The same image of the noisy sequence with an additive Gaussian white noise of standard

deviation � ¼ 30 (PSNR = 18.58 dB). (c) The corresponding image of the denoised sequence, PSNR=23.59 dB. (d), (e), and (f) represent corresponding XT slices in the

space-time domain. The camera motion induces lines in the XT slices.



neighborhoods for the pixels belonging to the two cars are

essentially 2D spatial neighborhoods.

4.4 Space-Time Patches

Fig. 6d shows one image of the “Avenger” sequence denoised using

the proposed method with space-time fixed 3� 3� 3 patches. It can

be compared to the result obtained with spatial fixed 5� 5 patches

and shown in Fig. 6c. In the two cases, the number of intensity values

used to compute the similarity measure (see (7)) is approximately

the same and the PSNR difference is negligible. Nevertheless, the

use of space-time patches increases the temporal stability of the

reconstructed structures along the image sequence, which is an

important point for visual quality.

4.5 Experiment on a Real Image Sequence

Fig. 7 reports an experiment on a real infrared sequence which is

naturally noisy. It is taken from a plane approaching a harbor with

boats and a moving vehicle on the pier. The noise standard deviation

is estimated to 7.3. The contrast of some structures on the ground is

very low and the sequence is shaking due to the plane vibrations. We

once again use a quadratic motion model to estimate the dominant

motion. Let us recall that this model is exact in the case of a rigid

motion and a planar scene. The proposed method (Fig. 7c) can be

favorably compared to our own implementation of the nonlocal

means algorithm (Fig. 7b) [12]. The details of the images like the small

vehicle are better restored while the noise has been well removed.

Finally, temporal discontinuities of the sequence due to the

vibrations are also preserved.

5 CONCLUSION

We have described a novel and unsupervised method able to

drastically reduce additive noise in image sequences. The proposed

method is based upon an adaptive estimation statistical framework.

It can specify, in a simple data-driven way, the most appropriate

space-time neighborhood and associate weights to select the data

points involved in the intensity estimation process at each pixel.

Moreover, it involves a patch-based approach extended to the

space-time domain. All the parameters of the algorithm are well

calibrated and our method does not require any fine parameter

tuning. The fixed patch size is the only free parameter to be chosen

by the user. Quite satisfactory results have been obtained on several

image sequences. Furthermore, it was experimentally demon-

strated that our method outperforms most of recent methods. The

visual quality improvement of the denoised image sequences is

noticeable since noise is well smoothed out while spatial and
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Fig. 7. Infrared sequence. (a) One image of the original sequence. (b) The corresponding image of the denoised sequence with the nonlocal means filter applied with a

patch of fixed size 5� 5 pixels and the bandwidth equal to four times the noise standard deviation. (c) Denoised image with the proposed motion compensated filter, (b1)

Cropped region of (b) and (c1) Cropped region of (c).

Fig. 6. Sequence “Avenger.” (a) 384� 288� 12 original sequence. (b) Noisy sequence with an additive Gaussian white noise of standard deviation � ¼ 20, denoised

sequence with the proposed method using: (c) fixed 5� 5 patches and no motion compensation stage (5 min), (d) fixed 3� 3� 3 patches and no motion compensation

stage (6 min), (e) fixed 5� 5 patches with the motion compensation stage using a quadratic motion model (9 min), and (f) fixed 3� 3� 3 patches with the motion

compensation stage using a quadratic motion model (20 min). The computation time is indicated for a Linux PC with 8� 3 Ghz CPU.



temporal discontinuities are well preserved. Actually, the computa-

tion time (for a 8� 3 Ghz CPU) is 60 sec/frame (384� 228 images)

for both 5� 5 and 3� 3� 3 image patches (with no motion

compensation) but a fast implementation has been recently

proposed to reduce the computation by a factor of 8. Finally, some

improvements are proposed to incorporate a motion-compensation

stage improving the performance of the proposed method.
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