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Abstract

Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication.
Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of
genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically
repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and
BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin
and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone
hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1
and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter
DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the
undifferentiated state in plant cells.
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Introduction

The ability of mature plant cells to regenerate a whole organism

is probably the most remarkable growth attribute of plant cells that

distinguishes them from mammalian cells [1]. The basis of such a

capacity in plants lies in the availability of undifferentiated cells

that can subsequently differentiate into all the cell types present in

a mature organism [2–4]. The exact molecular processes involved

in the maintenance and/or induction of cell undifferentiation in

plants are still poorly understood.

In recent years, the epigenetic mechanisms that control

chromatin structure and function, including DNA methylation

and histone modification, have emerged as key factors in the

regulation of cell growth and differentiation and, thereby, the

nuclear reprogramming necessary for dedifferentiation [4]. The

presence of a well-defined DNA methylation pattern in plants is

necessary for the normal growth and development of the organism

[5–9]. DNA methylation in plants has two functions: to protect the

genome by inactivating transposable elements, and to control the

expression of single-copy genes, such as the FWA transcription

factor, the BALL pathogen-resistance gene (BAL), and the

phosphoribosylanthranilate isomerase (PAI) family of tryptophan

biosynthesis genes (reviewed in [6]). Recent pioneering reports

[7,9–11] defining the DNA methylome of A. thaliana have

reinforced the significance of the two aforementioned tasks of

DNA methylation as an epigenetic marker in this model and its

relevance as a central coordinator of epigenetic memory.

In mammals, promoter DNA methylation-dependent gene

regulation has been found to have important roles in development

and differentiation. This is exemplified by the observations that

human embryonic stem cells have specific epigenetic signatures

[12–14], many tissue-specific genes present promoter DNA

methylation-dependent regulation (reviewed in [15,16]), and

finally, aberrant hypermethylation-mediated repression of genes

involved in cell differentiation results in malignant transformation

(reviewed in [17,18]). In plants, however, there is little information

about DNA methylation-dependent mechanisms involved in the

control of cell differentiation. Previous work in plants found that
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the loss of the differentiated state in protoplasts is accompanied by

global changes in DNA methylation [19,20] and histone

modification [21] that alter heterochromatin distribution and

organization [1,3,22], chromatin decondensation [20,23], and

disrupt the nucleolus [19]. Intriguingly, a recent study found that

protoplast dedifferentiation is accompanied by a dramatic

centromeric heterochromatin decondensation that is not accom-

panied by changes in DNA methylation or H3K9 dimethylation

[24]. With respect to promoter DNA methylation in plants,

however, undifferentiation has only been associated with the

hypomethylation-dependent upregulation of a few members of the

NAC (NAM/ATAF1/CUC2) domain family [19], and there has

been no report of genes whose repression by promoter

hypermethylation contributes to the maintenance or establishment

of the undifferentiated state. To address these gaps in our

knowledge by looking for genes regulated by promoter methyla-

tion in undifferentiated cells, we adopted two experimental

strategies: a genetic approach, using Arabidopsis cells deficient in

different members of the family of plant DNA methyltransferases,

and a pharmacological approach, treating undifferentiated

Arabidopsis cell suspensions (ACS) with the demethylating drug 5-

aza-29-deoxycytidine (ADC), followed by expression microarray

analysis in a similar way to that previously done in whole plants

[8]. Using these approaches, we identified three and five

hypermethylated genes in callus and cell suspensions, respectively.

Promoter hypermethylation primarily occurred at CpG sites and

specifically depended on MET1 and DRM2 methyltransferases.

Our results suggest that promoter DNA methylation may be

another important epigenetic mechanism for the establishment

and/or maintenance of the undifferentiated state in plant cells.

Materials and Methods

Generation of calluses from DNA methyltransferase KOs
and culture conditions

Seeds of Arabidopsis thaliana (L.) ecotype Wassilewskija wild type

and mutants (met1, cmt3, drm2, drm2 cmt3) were surface-sterilized

and placed on agar tubes with 10 ml of germination medium

containing MS basal medium (mineral salts, vitamins, and

micronutrients), 3% sucrose, 0.8% agar, pH 5.8. After stratifica-

tion at 4uC for 2 days in darkness, seeds were transferred to a

growth room and maintained under fluorescent lights (16 h light/

8 h dark illumination regime) at 24uC for 10 days. Explants from

roots and leaves (approximately 1 cm long) were excised in sterile

conditions and sections were put in 60 mm Petri dishes with callus-

induction medium (MS basal medium supplemented with

1 mg L21 2,4- dichlorophenoxyacetic acid (2,4-D), 3% sucrose,

0.8% agar, pH 5.8) at 24uC with a 16:8 h photoperiod. Nucleic

acid was extracted after 20 days of culture once calluses had been

established.

Cell suspensions of Arabidopsis (Col 0) were obtained as

previously described [25]. Cells were grown in Murashige &

Skoog (MS) salts medium supplemented with 3% sucrose (w/v),

0.5 mg L21 naphthalene acetic acid, and 0.1 mg L21 kinetin at

pH 5.8 in a 16 h light/8 h dark regime at 22uC. For demethyl-

ation treatments 5-aza-2-deoxycytidine (5 mM) was added.

Affymetrix GeneChips
Total RNA was prepared using TRIZOLH (Invitrogen,

Carlsbad, CA) and further purified using RNeasy columns

(Qiagen, GmbH) according to the manufacturer’s instructions.

The integrity of RNA was monitored by denaturing agarose gel

electrophoresis in 16 MOPS. Biotinylated target RNA was

prepared from 5 mg of total RNA using the Affymetrix protocol.

Briefly, double-stranded cDNA was prepared from the RNA

template using a modified oligo-dT primer containing a 59 T7

RNA polymerase promoter sequence and the Superscript Choice

System for cDNA Synthesis (Invitrogen). cDNA was then used as

the template in an in vitro transcription reaction. The resulting

biotinylated-cRNA ‘‘target’’ was purified on an affinity resin of the

GeneChip Sample Cleanup Module Kit (Affymetrix, Santa Clara,

CA), randomly fragmented and hybridized on the GeneChip

Arabidopsis ATH1 Genome Array (Affymetrix). The hybridization

reactions were processed and scanned according to the standard

Affymetrix protocols. All arrays were globally scaled to a target-

intensity value of 600 and then the scaling factor, background,

noise, and percentage presence were calculated according to the

Affymetrix Data Mining Tool protocols (Affymetrix). All resulting

datasets were filtered using the absolute call metric (present or

absent) implemented within Microsoft Access (Microsoft Corpo-

ration, Redmond, WA). Two biological replicates were done for

each sample. The expression profiles for the demethylation

treatment and DNA methyltransferase mutants were compared

in scatterplots.

Quantification of global 5-methylcytosine content
5-methylcytosine (5 mC) content was determined by high-

performance capillary electrophoresis (HPCE) as previously

described [26]. Briefly, genomic DNA samples were boiled,

treated with nuclease P1 (Sigma) for 16 h at 37uC, and with

alkaline phosphatase (Sigma) for an additional 2 h at 37uC. After

hydrolysis, total cytosine and 5 mC content were measured by

capillary electrophoresis using a P/ACE MDQ system (Beckman-

Coulter). Relative 5 mC content was expressed as a percentage of

the total (methylated and non-methylated) cytosine content.

Methylation at CpG sites was quantified as previously described

[27]. In brief, DNA was first digested with XbaI (20 units mg21) for

2 h at 37uC. For methylation with SssI, 5 ml of cut DNA were

added to a mixture containing 1 ml Tris-HCl, 1 M (pH 8.0), 2 ml

NE-Buffer 2 106 (New England Biolabs), 10 ml S-adenosyl-L-

[methyl-3H]methionine (14.4 Ci mmol21, 70 mM; Amersham),

and 2 ml SssI methylase (2 units ml21; New England Biolabs). For

methylation with dam methylase, the same amount of DNA was

added to the following mixture: 1 ml Tris-HCl, 1 M (pH 7.5), 2 ml

NE-Buffer for dam methylase 106 (New England Biolabs), 0.5 ml

water, 10 ml S-adenosyl-L-[methyl-3H]methionine, and 1.5 ml dam

methylase (8 units ml21; New England Biolabs). Both reaction

mixtures were incubated for 4 h at 37uC and the incorporation of

radioactivity was measured using a 1414 liquid scintillation

counter (PerkinElmer, Inc.). The relative percentage of methylated

CpG was estimated as [1 – (ratio SssI/dam/3.2)]6100.

Analysis of sequence-specific DNA methylation
The methylation status of specific genomic DNA sequences was

established by bisulfite genomic sequencing as previously described

[28]. Each of these was automatically sequenced in the twelve

colonies to measure the methylation status of every single CpG

dinucleotide for subsequent statistical analysis. Primers for bilsufite

sequencing were designed using Methyl Primer Express SoftwareH
(Applied Biosystems). Primer sequences and PCR conditions for

methylation analysis are summarized in Table S1.

Semi-quantitative and quantitative RT-PCR expression
analyses

We reverse-transcribed total RNA (2 mg) treated with Dnase I

(Ambion) using oligo (dT) 20 primer with ThermoScript TM RT-

PCR (Invitrogen). We carried out semi-quantitative PCR reactions

Promoter Methylation in Plants
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in a final volume of 16 ml containing 106 PCR buffer (Ecogen),

50 mM of MgCl2, 2 mM of dNTP, 1 mM of each primer and 3 U

of EcoStart DNA polymerase (Ecogen). We used 100 ng of cDNA

for PCR amplification, and amplified all of the sequences with

multiple cycle numbers (25–27 cycles) to determine the appropri-

ate conditions for distinguishing semi-quantitative differences in

expression levels. For quantitative RT-PCR analysis, PCR

amplifications were performed as followed: 0,20 mg of cDNA, 5

pM of each primer and SYBRGreen PCR Master Mix (Applied

Biosystems). Three measurements were analyzed using the Prism

7700 Sequence Detection (Applied Biosystems). Relative quanti-

fications were performed for all genes and ACTIN was used as

loading control. Primer sequences and PCR conditions for semi-

quantitative and quantitative RT-PCR analysis are summarized in

Table S1.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) assays were performed

as previously described [28] using commercial antiacetylated

histones H3 and H4 and antimethylK4 H3 antibodies (Upstate

Biotechnologies). Chromatin was sheared to an average length of

0.2–0.5 kb for this analysis. PCR amplification was performed in

25 ml with primers specific to each of the analyzed promoters. The

sensitivity of PCR amplification of each promoter was evaluated

by serial dilution of total DNA collected after sonication (input

fraction). Primer sequences and PCR conditions are summarized

in Table S1. All samples were analyzed in triplicate.

Results

Genetic identification of putative DNA methylation-
dependent transcriptionally repressed genes in
Arabidopsis callus

To look for genes repressed by promoter hypermethylation in

callus Arabidopsis cells, we used Arabidopsis plants deficient in the

different plant DNA methyltransferases: met1 mutant (MET1 2/

2), cmt3 mutant (CMT3 2/2), drm2 mutant (DRM2 (2/2), and

cmt3/drm2 double mutant (DKO). We produced callus cells from

all the mutants using 1 mg L21 2,4- dichlorophenoxyacetic acid

(2,4-D) and measured changes in gene expression relative to

differentiated root cells using microarray chips containing around

22,500 transcripts (Arabidopsis ATH1 Genome array 1 GENE-

CHIPH AFFYMETRIXH) (Figure 1A). A sequence of criteria was

used to select genes dependent on each DNA methyltransferase.

First, genes downregulated in the WT callus relative to WT plants

were identified in order to select putative promoter hypermethyla-

tion-dependent undifferentiation-associated genes. We used the U

rank-statistic test, which ignores the magnitude of the expression

values but distinguishes samples with higher and lower levels of

expression. The statistic was determined for each comparison and

genes with values of U = 0 were selected. A fold-change value,

given by the ratio of the means of the two comparison groups was

calculated, and genes with at least twice the average expression in

WT plants as in WT callus were selected. Second, from the

selected genes, we picked those genes that were upregulated

(according to the two-step criteria described above) in callus of

each DNA methyltransferase mutant relative to the WT callus in

order to associate gene regulation with a specific plant DNA

methyltransferase. Third, of the candidate genes obtained under

the previous criteria, we discarded those common to at least two

mutants. Using these criteria we identified 96 genes for cmt3, 235

for drm2, 134 for the double mutant DKO, and, strikingly, 505 for

the met1 mutant (Figure 1B). This may be evidence of a role for

MET1 methyltransferase in promoter hypermethylation in

Arabidopsis callus cells. The observation is also consistent with the

fact that callus induction was less efficient using cells from the met1

mutant. Callus from MET1 deficient cells presented low

proliferation rates and maintained differentiation-associated fea-

tures like green pigmentation (Figure 1A).

To determine whether promoter hypermethylation is involved

in the selective repression of all DNA methyltransferase-specific

loci, we investigated the genomic DNA methylation status of the

promoter region of twenty candidates for the met1 mutant, one

candidate for the cmt3 mutant, and nine candidates for the drm2

mutant (Table S2). The number of genes selected for each mutant

was proportional to the number of candidates identified with each

mutant. The selection of the 30 genes from the total of 836

candidates identified with the three DNA methyltransferase

mutants was made on the basis of their putative role in cell

differentiation and cell division (Table S3). We designed specific

primers for DNA modified with sodium bisulfite around the

transcription start site of each gene (Table S1). Of the 30 genes

analyzed, three, GSTU10 (At1g74590), MAPK12 (At2g46070) and

BXL1 (At5g49360), presented a higher methylated cytosine

content in the CpG sites of the WT callus. We studied the origin

of the CpG hypermethylation and compared the degree of DNA

methylation in calluses from WT and methyltransferase mutants.

We observed a strong decrease of CpG methylation levels in met1

mutants but not in cmt3 and dko callus (Figure 1C). drm2 mutants

also presented a decrease of CpG methylation within the promoter

region of MAPK12 (Figure 1C). As expected, differentiated tissues

such as roots, shoots or leaves from WT plants were completely

unmethylated (Figure 1C). The remaining 27 selected genes were

completely unmethylated in all the tissues analyzed (Figure S1).

Interestingly, promoter hypermethylation of GSTU10, MAPK12

and BXL1 was associated with gene repression (Figure 1D). These

results suggest that hypermethylation of GSTU10, MAPK12 and

BXL1 in WT callus results from a MET1/DRM2-dependent

mechanism. MAPK12, which was initially identified as a DRM2-

dependent gene, was less methylated in drm2 mutants than in WT

callus, but the drm2 mutant retained several methylated CpGs.

Moreover, the met1 mutant completely failed to hypermethylate

the MAPK12 promoter after callus induction, which suggests that

even though DRM2 might be important for establishing

dedifferentiation-associated promoter hypermethylation, MET1

could be more important still.

Pharmacological identification of putative DNA
methylation-dependent transcriptionally repressed
genes in Arabidopsis cell suspensions

As a second approach to identify genes repressed by promoter

DNA methylation in undifferentiated Arabidopsis cells we generated

Arabidopsis cell suspensions by in vitro culture of seedling-excised roots

in the presence of auxins and cytokinins [25]. We then used the

demethylating agent ADC (5 mM) for 4 days to reactivate putative

genes epigenetically silenced in the Arabidopsis cell suspensions

(Figure 2A). The efficiency of the DNA demethylating treatment was

measured by HPCE [26]. This revealed a 51.3% relative decrease in

global DNA methylation (Figure 2B, left). We also used the methyl-

acceptor assay [27] and found that 21.2% of the cytosines within the

dinucleotide CpG became unmethylated after treatment with the

DNA demethylating drug (Figure 2B, right).

After ADC treatment, we measured changes in gene expression

using the same microarray chips as described in the previous

section. To detect genes with significantly higher expression in

ADC-treated cells than in wild-type cells, and to take both

magnitude and rank into account, we used the two-step criteria

described above. Analysis of the expression microarray data

Promoter Methylation in Plants
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revealed that changes in expression after treatment with the

demethylating drug involved the overexpression of genes in most

cases (71.9%, 1,794 genes with U = 0 and at least twice the average

level of expression) (Figure 2C). Of the 1,794 candidate sequences

upregulated after treatment with the DNA demethylating agent,

1,719 corresponded to single-copy genes and 75 to transposons

(Figure 2A). A substantial number of transposable elements (11/

75) belonged to the CACTA-like transposase family [29].

Promoter hypermethylation and transcriptional silencing
of single-copy genes in Arabidopsis cell suspensions

We analyzed the possible DNA methylation-associated silencing

of the fourteen selected single-copy genes by bisulfite genomic

sequencing of multiple clones using primers located around the

transcriptional start site of each candidate gene (Table S4). We

selected these genes using a dual criterion: genes statistically

upregulated after the treatment with ADC but, at the same time,

with a role in growth and differentiation (Table S3). In the

Arabidopsis cell suspensions we observed dense DNA hypermethy-

lation around the transcription start site of five genes: TTG1

(At5g24520), GSTF5 (At1g02940), SUVH8 (At2g24740), fimbrin

(At2g04750) and CCD7 (At2g44990) (Figure 3A). The nine

remaining sequences analyzed were completely unmethylated

(Figure S2). DNA methylation of TTG1, GSTF5, SUVH8, fimbrin

and CCD7 in the cell suspensions was found mostly in the CpG

dinucleotide, and not in the CpNpG and CpNpN motifs. The

same regions of these five genes were completely unmethylated in

differentiated tissues of Arabidopsis, such as leaf, root, and shoot

(Figure 3A). It is worth considering the difference in the DNA

methylation status of the aforementioned five single-copy genes

and the transposons in our Arabidopsis system. While we found that

TTG1, GSTF5, SUVH8, fimbrin and CCD7 presented specific CpG

hypermethylation in the cell suspensions, but were fully unmethy-

lated in all the differentiated tissues studied, the CACTA-like

transposons (At1g43840, At2g13160, At2g12980) exhibited dense

methylation of both CpG and CpNpG motifs independently of

their tissue differentiation status (Table S5 and Figure 4). These

results highlight the distinctive and specific CpG hypermethylation

events occurring in the promoter region of single-copy genes and

Figure 1. Promoter hypermethylation of Arabidopsis callus specifically depends on MET1 and DRM2 methyltransferase activity. (A)
Callus induction from DNA methyltransferases mutants. Upper panels, morphological aspect of entire plants grown from WT and DNA
methyltransferase mutant seeds. Lower panels, growth rates of WT and mutant callus generated after treatment with 2,4-D of root explants. (B)
Number of candidate genes susceptible to DNA methylation-dependent regulation obtained from each DNA methyltransferase mutant using the
two-step criteria described in the Results section. (C) Bisulfite sequencing of twelve individual clones of the GSTU10, MAPK12 and BXL1 promoters in
WT and DNA methyltransferase mutants. (D) Relationship between levels of GSTU10, MAPK12 and BXL1 expression and promoter DNA
hypermethylation. Transcript levels of both genes were analyzed by quantitative RT-PCR and results are expressed as a relative enrichment of the
hypomethylated samples (roots and methyltransferase mutants) versus the hypermethylated samples (WT callus).
doi:10.1371/journal.pone.0003306.g001
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imply that dedifferentiation-associated promoter hypermethylation

in Arabidopsis depends on MET1 and DRM2 methyltransferases.

The promoter hypermethylation of TTG1, GSTF5, SUVH8,

fimbrin and CCD7 was always associated with transcriptional

silencing, and expression could be restored with the use of the

DNA demethylating agent ADC (Figure 3B). Chromatin immu-

noprecipitation analysis with antibodies raised against histone

modifications associated with transcriptional activation [30]

demonstrated a loss of acetylated histones H3 and H4 and

trimethylated lysine 4 histone H3 within all of the hypermethy-

lated promoters (TTG1, GSTF5, and SUVH8) in cell suspensions

compared with differentiated tissues (Figure 3C).

In this model of Arabidopsis cell suspensions, the undifferentiated

and highly proliferative state is known to depend on the presence of

phytohormones (NAA and Kinetin) in the culture medium [31]. For

this reason, we wondered whether their removal might lead, in

addition to the differentiation and cell growth arrest described herein

(Figure S3A), to the loss of promoter hypermethylation. Bisulfite

genomic sequencing showed that depletion of just one of the

phytohormones was sufficient to induce a loss of CpG methylation in

all three promoters studied (Figure S3B). To asses whether changes

in phytohormone- induced DNA methylation were associated with

changes in MET1 expression we analyzed the levels of MET1

transcripts by quantitative RT-PCR in Arabidopsis cell suspensions

exposed or not to NAA and/or Kinetin. Our results showed that

removal of any of the phytohormones, did not result in any

significant change in MET1 expression (Figure S3C) which suggest

that other mechanisms such as control of its enzymatic activity or

recruitment to specific promoters could be involved.

To establish whether the specific genes that become hyper-

methylated in dedifferentiated cells depend on the type of

phytohormone used to maintain the undifferentiated state, we

compared the DNA methylation status of two hypermethylated

genes in callus cells obtained with 2,4-D (GSTU10 and MAPK12)

and the Arabidopsis cell suspensions maintained with kinetin and

NAA. We found that GSTU10 and MAPK12 were also densely

methylated in the Arabidopsis cell suspensions (Figure S4). In

contrast, the promoter region of three genes identified in the well-

established Arabidopsis cell suspensions (TTG1, GSTF5, and

SUVH8) remained unmethylated in the early 2,4-D-induced callus

(Figure S5). The lack of promoter hypermethylation of TTG1,

GSTF5, and SUVH8 genes in cells soon after the induction of callus

prompted us to question whether the hypermethylation-mediated

repression of these three genes is indispensable to the maintenance

of the undifferentiated state. To address this, we monitored the

promoter hypermethylation of the TTG1 gene in Arabidopsis cell

suspensions of different passage number. Intriguingly, we found a

drop in CpG island methylation levels of the TTG1 gene after 400

passages (Figure S6), in a similar manner to that described for

other methylated DNA sequences in mammals [32]. This finding,

in conjunction with the unmethylated status of TTG1 in callus,

suggest that other mechanisms apart from DNA methylation

Figure 2. Reactivation of hypermethylated genes in Arabidopsis cell suspensions (ACS) using demethylating drugs. (A) Flowchart for
identification of hypermethylated growth-associated genes. We used Arabidopsis cell suspensions after 5 mM ADC treatments followed by cRNA
hybridization to a 22,500-oligonucleotide microarray. We obtained over 1,794 unique sequences overexpressed after treatments. Of these, 1,719
corresponded to known genes and 75 to repeat elements. We selected fourteen genes to test for promoter hypermethylation by direct bisulfite
sequencing; five of them were found to be methylated in Arabidopsis cell suspensions but not in differentiated tissues such as roots and shoots. (B)
Quantification of DNA methylation as: overall 5-methyl-cytosine (5 mC) using high-performance capillary electrophoresis (Left panel), and percentage
of methylated CpGs using the methyl acceptor assay (Right panel). (C) Reactivation of genes in Arabidopsis cell suspensions after treatment with the
demethylating drug ADC. Upper panel, scatterplots showing expression profiles of control cells and cells treated with ADC obtained by Affymetrix
GeneChip technology; Lower panel, relative percentage of overexpressed and repressed genes after treatment with ADC.
doi:10.1371/journal.pone.0003306.g002
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might be involved in the regulation of TTG1 in undifferentiated

Arabidopsis cells.

Discussion

Promoter DNA methylation-dependent gene regulation in

mammalian cells has important roles during development and

differentiation. For example, human embryonic stem cells have

specific epigenetic signatures [12–14], many tissue-specific genes

present promoter DNA methylation-dependent regulation [15,16],

and, finally, aberrant hypermethylation-mediated repression of

genes involved in cell differentiation results in malignant

transformation [17,18]. In addition to hypermethylated genes,

undifferentiated mammalian cells also feature genes that are

hypomethylated with respect to their differentiated counterparts

[33]. In plants, cells acquiring pluripotency have been described as

exhibiting hypomethylation-dependent upregulation of several

members of the NAC (NAM/ATAF1/CUC2) domain family

[19]. In the present study we have demonstrated that Arabidopsis

calluses and cell suspensions can use promoter DNA methylation

to repress specific single-copy genes that are unmethylated and

expressed in differentiated cells from various origins. However, it is

important to state that this epigenetic mechanism is not a general

response to cell culture as just a minor fraction of the genes

become hypermethylated in callus and cell suspensions.

We found that promoters of the MAPK12, GSTU10 and BXL1

genes are densely hypermethylated in callus and cell suspensions,

whilst the TTG1, GSTF5 and SUVH8 genes become occasionally

hypermethylated only in cell suspensions. Interestingly, the role of

TTG1 in cell fate and differentiation is very well documented [34–

Figure 3. Genomic DNA methylation status of reactivated genes in leaf and Arabidopsis cell suspensions (ACS). (A) Bisulfite genomic
sequencing of twelve clones of the TTG1 (three different regions), GSTF5, SUVH8, Fimbrin and CCD7 promoters. In the schematic representations of
the methylation status of each CpG dinucleotides black and white dots indicate methylated and unmethylated CpGs, respectively. ACS IMP:
Arabidopsis cell suspensions at intermediate passage. (B) Expression profiles of reactivated genes in leaves and Arabidopsis cell suspensions
determined by quantitative RT-PCR assays. TTG1, GSTF5, SUVH8, Fimbrin and CCD7 are more strongly expressed in leaf tissues. Expression in cell
suspensions can be restored by treatments with the demethylating drug ADC. ACTIN was used as a control. (*) the expression level of TTG1 in leafs is
80-fold higher than in ACS. (**) the expression level of GSTF5 and CCD7 in leafs is 40-fold higher than in ACS. (C) Promoter CpG island
hypermethylation is associated with changes of histone modifications. Chromatin immunoprecipitation analysis of the histone-modification status of
the promoters of the TTG1, GSTF5, and SUVH8 genes. NAB is the control without antibody. The promoter region of ACTIN is used as a control. AcH3,
acetylated histone H3; AcH4, acetylated histone H4; 3mK4, trimethyl-lysine 3 histone H3.
doi:10.1371/journal.pone.0003306.g003
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38]. Thus, as TTG1 plays an important role in plant development,

its methylation-dependent repression in undifferentiated Arabidopsis

could directly contributes to the manteinance of the undifferen-

tiated status. However, it is important to bear in mind that

although recovery of TTG1 activity in cell suspension results in a

modest induction of cell differentiation (data not shown), our

discovery of in vitro cultured cells lacking TTG1 promoter

hypermethylation indicates that the regulation of TTG1 in the

establishment and/or maintenance of the undifferentiated state is

a complex process that can sometimes include promoter DNA

methylation.

Intriguingly, we found that promoter hypermethylation in cell

suspensions and callus primarily occurs at CpG but not at CpNpG

or CpNpN sites. The absence of CpNpG and CpNpN methylation

at the promoter region of genes hypermethylated specifically in

cell suspensions and callus suggests that the process depends

primarily on the plant MET1 methyltransferase. This is consistent

with the facts that Arabidopsis met1 mutants are more resistant to

producing callus than are control plants, and that the number of

hypermethylated genes after callus induction that we identified by

genetic identification was lower in MET1- and DRM2-deficient

plants than in controls and cmt3 mutants. Moreover, these results

suggest that, at least in Arabidopsis cell suspensions and callus,

promoter-specific CpG methylation may be important for the

regulation of the expression of some genes.

The way of how undifferentiation-associated hypermethylation

is established and maintained remains unclear. As MET1 is

thought to be important in the silencing of repeated transposable

elements [7], one possibility is that MET1 is specifically recruited

to repeated DNA associated with its target promoters. Indeed, the

five genes for which we found CpG hypermethylation by

pharmacological identification contained TEs within 1 kb of the

start codon, whereas only one gene (At3g44260) of the remaining

eight selected had TE insertions at its 59 end, suggesting the

involvement of TEs in cell suspensions-associated methylation

(Figure 5). Intriguingly, none of the genes identified by the genetic

approach contained TE insertions around the transcription start

point (Figure 5), which suggests that there may be different

mechanisms by which DNA methylation is established in the

various undifferentiated cells. However, as our study is centered in

a limited number of genes, further genome-wide studies are need

to asses this issue. Another possibility is that DRM2 is directed to

specific promoters through iRNA-mediated mechanisms for genes

hypermethylated early upon callus induction [7,39]. However, drm2

mutants retain CpG methylation, which suggests that MET1 must

also be involved. It can also be possible that MET1 expression

depends on DRM2 but it is unlikely as drm2 mutants and WT callus

present similar levels of MET1 expression (Figure S7).

Apart from the single-copy genes, we observed that the

treatment of Arabidopsis cell suspensions with the demethylating

drug ADC also induced the overexpression of 75 transposons.

However, considering that plant transposable elements are known

to be densely methylated [6], the number of transposable elements

reactivated (75/1,794) was much lower than expected. This might

have been because transposable elements can become hypomethy-

lated and reactivated under stress conditions [40], which would

preclude their reactivation with demethylating drugs. Consistent

with such an explanation, although the transposable elements

identified in this study had lower DNA methylation levels in the cell

suspensions than in leaves, they retained sufficient methylation in

response to the treatment with the demethylating drug. Given that

most of the genomic DNA methylation is contained in repeated

heterochromatic DNA [7], in vitro induction of the undifferentiated

state could imply an overall decrease of genomic DNA methylation,

except for the case of promoter hypermethylation. A scenario where

a gene becomes hypermethylated in the context of global DNA

hypomethylation has previously been reported for SUPERMAN

[41], AGAMOUS [42], and Bonsai [43] genes.

Dedifferentiation in plants has previously been associated with

promoter hypomethylation of certain genes [19]. Thus, in

conclusion, we propose that callus and Arabidopsis cell suspensions

possess a unique epigenetic signature with subsets of genes whose

expression is controlled by promoter hypomethylation and

hypermethylation, as has been described in mammals [33].

Further research is needed to determine the exact functional role

of gene regulation by promoter DNA methylation during plant cell

Figure 4. Bisulfite genomic sequencing of twelve individual clones of the repeat DNA CACTA in leaves and Arabidopsis cell
suspension (ACS). Black and white dots indicate methylated and unmethylated CpGs, respectively. Methylation at CAG, CG, CCG, and CTG sites is
represented by blue, black, green, and red boxes, respectively. The lower panels illustrate representative electropherograms.
doi:10.1371/journal.pone.0003306.g004
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Figure 5. Gbrowse view of gene, transposable element and small RNA annotation of 20 kb segments centered on the 2 CpG island
containing genes selected with the genetic (GSTU10 and MAPK12) and pharmacologic (TTG1 and SUVH8) approaches. Gene annotation
is from TAIR (v7). TE annotation was performed using a novel detection pipeline (HQ, NB, and VC, manuscript in preparation). Small RNA data were
directly imported from the ASRP database (http://asrp.cgrb.oregonstate.edu/cgi-bin/gbrowse/thaliana-v5) and corresponded to deep sequencing of
small RNAs extracted from wild type plants (seedlings, leaves, and flowers).
doi:10.1371/journal.pone.0003306.g005
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differentiation, and in the establishment and maintenance of the

undifferentiated state.

Supporting Information

Figure S1 Bisulfite genomic sequencing of twelve individual

clones of nine representative genes unmethylated in leaves and

Arabidopsis wild type callus. Black and white dots indicate

methylated and unmethylated CpGs, respectively. Lower panels,

representative electropherograms.

Found at: doi:10.1371/journal.pone.0003306.s001 (0.05 MB PDF)

Figure S2 Bisulfite genomic sequencing of twelve individual

clones of six representative genes unmethylated in leaves and

Arabidopsis cell suspensions (ACS). Black and white dots indicate

methylated and unmethylated CpGs, respectively. Lower panels,

representative electropherograms.

Found at: doi:10.1371/journal.pone.0003306.s002 (0.04 MB PDF)

Figure S3 Promoter hypermethylation in cell suspensions is

dependent on combined phytohormone action and is associated

with histone hypoacetylation and gene repression. Bisulfite

genomic sequencing of the TTG1, GSTF5, and SUVH8

promoters in the presence or absence of the demethylating drug

ADC, and the phytohormones NAA and kinetin in Arabidopsis

cell suspensions. (A) Quantification of growth rates and the relative

percentage of methylated CpGs. (B) Schematic representations of

the methylation status of each CpG dinucleotide. Black and white

dots indicate methylated and unmethylated CpGs, respectively.

(C) Analysis of MET1 expression in Arabidopsis cell suspensions

(ACS) growing in normal culture medium, in presence or in

absence of phytohormones (kinetin or NAA). Transcript levels

were analyzed by quantitative RT-PCR and results are expressed

as a value relative to the expression in control ACS.

Found at: doi:10.1371/journal.pone.0003306.s003 (0.04 MB PDF)

Figure S4 Promoter DNA methylation of MAPK12 and

GSTU10 genes was also analyzed after different numbers of

passages in Arabidopsis cell suspensions (ACS): IMP, intermediate

passages; LP, late passages. Black and white dots indicate

methylated and unmethylated CpGs, respectively.

Found at: doi:10.1371/journal.pone.0003306.s004 (0.02 MB PDF)

Figure S5 Bisulfite genomic sequencing of twelve individual

clones of TTG1 (A), GSTF5 (B), and SUVH8 (C) genes in cell

suspensions derived from WT and DNA methyltransferase

mutants of Arabidopsis thaliana (L.). Black and white dots indicate

methylated and unmethylated CpGs, respectively.

Found at: doi:10.1371/journal.pone.0003306.s005 (0.03 MB PDF)

Figure S6 Bisulfite genomic sequencing of twelve clones of the

TTG1 (three regions) 59-regulatory region in Arabidopsis cell

suspensions at 300, 330, and 400 passages. Schematic represen-

tations of the methylation status of each CpG dinucleotide. Black

and white dots indicate methylated and unmethylated CpGs,

respectively.

Found at: doi:10.1371/journal.pone.0003306.s006 (0.03 MB PDF)

Figure S7 Transcription levels of MET1 in WT callus and drm2

mutant. Transcript levels were analyzed by quantitative RT-PCR

and results are expressed as a value relative to the expression in

WT callus.

Found at: doi:10.1371/journal.pone.0003306.s007 (0.01 MB PDF)

Table S1 Primer sequences and annealing temperatures.

Found at: doi:10.1371/journal.pone.0003306.s008 (0.02 MB PDF)

Table S2 Genetic identification of methylated genes in dedif-

ferentiated Arabidopsis cells.

Found at: doi:10.1371/journal.pone.0003306.s009 (0.02 MB PDF)

Table S3 List of candidate genes selected for validation with

bisulfite sequencing analysis.

Found at: doi:10.1371/journal.pone.0003306.s010 (0.03 MB PDF)

Table S4 List of Arabidopsis thaliana genes upregulated after

treatment with ADC.

Found at: doi:10.1371/journal.pone.0003306.s011 (0.02 MB PDF)

Table S5 Sequence context of some of the DNA methylation

found in Arabidopsis cell suspensions and leaves.

Found at: doi:10.1371/journal.pone.0003306.s012 (0.01 MB PDF)
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