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ABSTRACT

Three different models for prediction of breeding val-
ues were compared in a stochastic simulation study of a
dairy cattle population of 100,000 cows. The simulation
was done in 2 steps. The first step involved 15 yr of
selection using breeding values obtained in a univariate
model for production and a trivariate model for mastitis
occurrence, udder depth, and somatic cell score, in
which production and mastitis occurrence were in-
cluded in the breeding goal. This was done to create an
initial population that had already been under selec-
tion. The second step consisted of 20 replicates of 4
different scenarios set up to make it possible to compare
the different models. Two scenarios were based on uni-
variate evaluations and one for udder health traits on
trivariate evaluations, with 2 different breeding goals.
In another scenario, an approximate multitrait model
using preadjusted data in a 2-step procedure was used
and in the last scenario, a complete linear multitrait
model was carried out. Differences in genetic response
in total merit over the last 15 yr of selection were com-
pared and used to rank the models. The linear
multitrait model gave the highest regression coefficient
of true genetic values on year (3.073 £ 0.069 in economic
units), and this was significantly better than for the
approximate multitrait model (2.819 + 0.047), which
again was significantly better than for the univariate
approach (2.672 + 0.060). The linear multitrait model
cannot be applied to nearly the same number of traits
as the approximate model. Therefore, the approximate
model with developments handling breeding values
from more complex models than presented in this paper
is an option of choice in countries providing total merit
indices that combine many traits because it does not
neglect correlations between these traits.
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INTRODUCTION

In the dairy industry, most countries have total merit
indices combining information from different traits to
achieve greater economic returns through the breeding
program (Miglior et al., 2005). This is, in general, done
by combining EBV for the individual traits without tak-
ing into account the correlation between traits and dif-
ferences in accuracy of EBV for the traits. Within pro-
duction traits, correlations between milk, fat, and pro-
tein yield are often taken into account when predicting
breeding values. With the introduction of functional
traits such as fertility, longevity, resistance to mastitis,
and other diseases, this approach is questionable (Lin-
dhé and Phillipson, 1998; Ducrocq et al., 2001). These
traits have low heritabilities, resulting in low accuracy
on EBYV, especially for cows and young bulls undertest-
ing when they get their first proofs. Therefore, decisions
on early selection for these traits are associated with
uncertainty.

Another problem in doing multitrait selection based
on breeding values from single trait analyses is that
breeding values are probably biased because early se-
lection decisions are not accounted for (Ducrocq et al.,
2003). An important condition for BLUP EBV to be
unbiased is that all selection decisions are included in
the data, and this will not be the case in single trait
evaluations when the selection is on a total merit index
(Henderson, 1975; Schaeffer et al., 1998; Ducrocq et al.,
2003; Mrode, 2005).

Even though breeding values for functional traits
have been provided in the Danish dairy cattle breeding
system for more than 2 decades, known selection for
these traits has not been emphasized as much as the
economic value of these traits implies. Instead, selec-
tion focus has been placed mainly on production and
type traits. This has resulted in a negative genetic trend
for many functional traits in the breeding goal (Danish
Cattle, 2006).

A large number of traits are recorded for breeding
purposes in the dairy industry and a number of these
are both phenotypically and genetically correlated to
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many of the cost-related traits (e.g., Short and Lawlor,
1992; Rupp and Boichard, 1999; Sgrensen et al., 2000;
Haile-Mariam et al., 2004). Using information from
these indicator traits, such as conformation traits or
SCS, can significantly increase accuracy of total merit
indices (Ducrocq et al., 2001; Lassen et al., 2003).

Multiple-trait BLUP evaluations combining direct
and indirect information have been suggested to cir-
cumvent these problems. Their properties, benefits, and
limitations compared with univariate models are well
known (Thompson and Meyer, 1986; Van der Werf et
al., 1992; Villanueva et al., 1993; Ducrocq, 1994). Al-
though theoretically possible, implementations of these
models for practical use are still unrealistic. Even
though computer power has increased greatly in recent
years, the amount of information to process is still a
bottleneck. Therefore, approximations are needed.
These approximations have been made with different
approaches using deregressed proofs, daughter yield
deviations, or preadjusted data (Schaeffer, 1994; Col-
leau et al., 1999; Druet et al., 1999; Ducrocq et al.,
2001). These approaches have been implemented in
both national and international evaluation procedures,
and they make it possible to account for the fact that
the traits under selection are indeed correlated. The
multiple-trait across-country genetic evaluation
(MACE) method of Schaeffer (1994) does not allow re-
sidual correlations to differ from zero, which is not a
problem when records of animals from different coun-
tries are used. When correlated traits are measured on
the same animal, this is no longer valid. However, re-
cent developments in MACE now allow it to account
for residual correlations between traits (Sullivan and
Wilton, 2001; Sullivan et al., 2005). Another way to do
multitrait evaluation is via the use of preadjusted data
in a 2-step procedure. The first step is an adjustment
of the phenotypes by subtracting the estimated fixed
effects and nongenetic random effects obtained from
single trait evaluation (Ducrocq et al., 2001). The sec-
ond step is a multitrait evaluation on the preadjusted
records, including residual correlations.

In this study the objective was to validate an approxi-
mate multitrait evaluation using preadjusted data with
linear models so that systems were manageable and
comparable. The focus was to compare the outcome of
using an approximate multitrait model that was compu-
tationally feasible to a full linear model that was not
computationally feasible on large data sets for national
breeding value estimation. This was done in a stochas-
tic simulation study of a dairy cattle population in
which gains in total merit combining a limited number
of traits were compared over 4 different approaches.
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Table 1. Parameters for the population used in the simulation study

Parameter

Number of years simulated 15
Number of replicates 20
Number of herds 1,000
Herd size (number of females) 200

Young sires used for mating (%) 30
Semen doses used from each young sire 750

Semen doses from each proven sire per year 24,000
Maximum age of bull at mating (yr) 7
Age when observations from females become available (mo) 33
Maximum number of offspring per dam 6
Pregnancy rate (%) 0.9

MATERIALS AND METHODS
Outline of the Simulation

The simulation was in 2 steps each covering 15 yr of
selection. The idea behind this setup was to create a
population in the first step that had been undergoing
selection for a number of years before applying different
models for prediction of breeding values and different
breeding goals in the second step. Between the 2 steps,
(co)variance components for the traits were estimated
and used for prediction of EBV in the last step. This
corresponded to a situation that often occurs in practi-
cal breeding programs in which (co)variance compo-
nents are reestimated when new methods or models for
prediction of EBV are introduced and the breeding goals
are changed.

In the second step, 20 replicates of 4 scenarios were
simulated, all starting from the same population. Com-
parison of the different scenarios was based on the ge-
netic trend for total merit and the individual traits that
contributed to the total merit index were compared.

Population Structure

A population of approximately 100,000 animals was
simulated using a modified version of the stochastic
simulation program DairySim (Sgrensen et al., 1999).
The simulation was performed so that the population
generated mimicked a dairy cattle population (Table 1)
and followed a yearly cycle as shown in Figure 1.

Traits

Seven traits were chosen to represent different traits
of interest in a total merit breeding goal (Table 2). There
were 5 normally distributed (linear) traits and 2 binary
traits: milk production (Y, linear), udder depth (UD,
linear), mastitis occurrence (MO, binary), nonreturn
rate (NR, binary), dairy form (DF, linear), days open
(DO, linear), and SCS (linear). At generation zero, the
genetic and phenotypic parameters for these traits were
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Base population

Figure 1. One year in the simulation study.

known and considered to be the true ones (Table 3).
For all traits the phenotypic variance was set to 1,
meaning that the genetic variance was equal to the heri-
tability.

These traits were chosen both to represent traits with
considerable economic value in practical breeding and
because they represent different types of traits with a
wide range of genetic variance and correlation with
other traits. The parameters were obtained from an
intensive literature study, and the genetic (co)variance
matrix was positive definite. Breeding values and phe-
notypic observations are simulated multivariate as
Gaussian traits, but MO and NR are converted to binary
traits with thresholds corresponding to frequencies of
0.18 and 0.5.

The First Fifteen Years

Breeding values and phenotypes for the 7 traits were
simulated for base population animals, and they were
allocated to age classes, gender, and herd-year-season.
The observations were simulated using the information
from the parameters in Table 3. In the base population,
the animals were mated randomly. In later years, the

Selection > Mating > Offspring
Breeding value | Data
estimation ) generation

best males and females based on predicted total merit
index (TMI) were mated to produce offspring. The TMI
use was based on EBV for Y and MO with economic
weights of 19.4 and -50.0, respectively, corresponding
to the economic values currently used in the Danish
Holstein population (Danish Agricultural Advisory
Centre, 2006). The EBV for Y were obtained from a
single trait animal model, and the EBV for MO were
from a trivariate animal model for MO, UD, and SCS.
Selected bulls could be used in all herds, but to avoid
strong inbreeding, mating between full- and half-sibs
was not allowed. Bulls were allocated to 1 of 2 groups
representing young bulls and proven bulls. This was
done to mimic the current use of bulls as closely as
possible. Offspring were simulated individually and
randomly distributed on gender and for each individual
trait allocated to a herd-year-season. True breeding val-
ues were simulated as their parents’ average breeding
values plus Mendelian sampling terms. Residuals and
observations were also simulated. When females
reached the age of 35 mo, their phenotypes were real-
ized. Observations from animals that did not reach this
age were discarded. Cows were kept in the herds until
they were involuntary culled, until better replacement

Table 2. Name of traits, their type, and abbreviation in the simulation study

Milk Udder Mastitis Nonreturn Dairy Days
Trait production depth occurrence rate form open SCS
Type Linear Linear Binary Binary Linear Linear Linear
Abbreviation Y UD MO NR DF DO SCS

Journal of Dairy Science Vol. 90 No. 6, 2007
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Table 3. True heritabilities (diagonal, in bold), genetic (below diagonal), and phenotypic (above diagonal)

correlations for traits in the simulation study

Trait! Y UD MO NR DF DO SCS
Y 0.30 -0.20 0 -0.10 0.25 0.20 -0.15
UD —-0.35 0.30 -0.05 0 0 -0.10 -0.05
MO 0.35 -0.60 0.04 0 0 0 0.20
NR -0.35 0.30 -0.10 0.03 0 0.05 0
DF 0.45 -0.10 0.25 0 0.25 0.10 0
DO 0.55 -0.10 0.05 -0.10 0.45 0.04 0
SCS 0.15 -0.30 0.75 -0.20 0.25 -0.25 0.10

Y = milk production; UD = udder depth; MO = mastitis occurrence; NR = nonreturn rate; DF = dairy

form; DO = days open.

heifers were available, or until they reached the maxi-
mum age of 8 yr.

Estimation of (Co)variance Components

After the first 15 yr, (co)variance components to be
used in prediction of EBV for the last 15 yr were esti-
mated. Four scenarios were conducted: N1, B1, B2,
and B3, where N and B indicate a narrow or a broad
breeding goal, respectively, and 1, 2, and 3 indicate
which model was used for prediction of breeding values.
Estimation of the (co)variance components for each of
the 4 scenarios were performed on 10 sample datasets
each with ~8,000 animals with data. A sampling proce-
dure and an animal model were chosen to take better
account of selection among female individuals in the
population. For scenarios N1, B1, and the first step of
B2, (co)variance components were estimated using 3
single-trait animal models for Y, NR, and DO, and a 3-
trivariate animal model for MO and UD with SCS. For
the last step of scenario B2, (co)variance components
were estimated using a full multivariate animal model
on preadjusted data and keeping the variances fixed at
the values estimated for the first step. For scenario B3,
a full multitrait animal model was used. The average
over the 10 subsets was used as parameters for predic-
tion of EBV for the last 15 yr. The estimations were
conducted with the AI-REML module of the DMU pack-
age (Madsen and Jensen, 2005).

The Last Fifteen Years

After step 1 and estimation of (co)variance compo-
nents, 20 replicates of each of the 4 scenarios were
simulated. All replicates of all scenarios were started
from the same simulated population.

Scenario N1 was a continuation of the setup for the
first 15 yr but with reestimated (co)variance compo-
nents. All of the 3 other scenarios had a broader breed-
ing goal with weights on Y (19.4), MO (-50.0), UD (4.2),
NR (13.0), and DO (-16.75). The 3 scenarios differ in

the model for prediction of breeding values. In scenario
B1, the EBV were estimated in 3 single trait animal
models for Y, NR, and DO, and a trivariate animal
model for MO and UD with SCS as an additional trait
of information. Scenario B2 used an approximate
multitrait model as proposed by Ducrocq et al. (2001)
and Besbes et al. (2002). This is a 2-step procedure,
where the first step applied models corresponding to
the model used in scenario N1 and B1. Based on esti-
mates from these models, data were adjusted for all
effects other than the genetic effect. Using these pread-
justed data, breeding values for all traits were predicted
in a multitrait setting using a model with a mean, a
genetic effect, and a residual. The last scenario (B3)
used a full multitrait animal model on raw data for
prediction of EBV.

For the final 15 yr, the population was simulated
following the same concept as described for the first
15 yr, although 4 different approaches were used to
perform the breeding value estimation, with 4 different
sets of estimated genetic (Gy) and residual (Ry) (co)vari-
ance matrices. In approach N1, the following model
corresponding to the model used during the first 15 yr
was used:

Yim = hysi + ajm + € [1]

where y; ,, represents the record for animal m for trait

i, hys; is the herd-year-season effect for each trait, and

a;m and e; ,, are the additive genetic and residual term

for trait i of animal m. This is done using the following

(co)variance structure to predict breeding values:
Gy®A 0

a
Var [eJ ~N ( 0; 0 R,® ID [2]

In N1, 4 traits were analyzed, so Gg and Ry were
structures with a 1 x 1 matrix for the univariate analy-
sis of Y and a 3 x 3 matrix for the analysis of MO, UD,
and SCS (Equation 2). This matrix was estimated using
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equation 1. In B1, 7 traits were analyzed, so Gy and R,
were structures with a 1 x 1 matrix for Y, NR, DF, and
DO, and a 3 x 3 matrix for the analysis of MO, UD,
and SCS. The matrix A defined the genetic relationship
among animals and the matrix I was an identity matrix
of proper order. Equivalently, the following (co)variance
structure was used to obtain EBV:

R0 0 00 0 0
0 hig Oewdmo 0 0 0 Oeudses
0 Ogudmo Prmo 0 0 0 Gepmoscs
0 0 0 K2 0 0 0
0 0 0 0 h% 0 O
0 0 0 0 0 K3 0
0 Ogrudscs) Tgtmoses 0 0 0 h2,

where heritabilities are on the diagonal, residual (co)-
variances above, and additive genetic (co)variances be-
low the diagonal. In approach B2 the data was adjusted
for the fixed effects in a 2-step procedure (equation 3).
The fixed effects were estimated from a model corres-
ponding to the model used in approach B1 so each trait
only contained a mean, a genetic, and a residual effect
(Ducrocq et al., 2001; Besbes et al., 2002). Correcting
the data for fixed effects led to preadjusted data, which
were used to predict breeding values for all traits in a
multitrait setting; as follows:

YVim = hysi + Qim + € = Vim = Wi + Qi + €, [3]

where y; ,, represents the record for animal m for trait
i, hys; is the herd-year-season effect for each trait, a; ,,
and e, ,, are the additive genetic and residual term for

trait i of animal m, y;,, is the preadjusted record for
animal m for trait i, p; is the overall mean for each

trait, and ai mand ei n are the additive genetic and resid-
ual terms for the preadjusted record i of animal m,
respectively. The second step in equation 2 was a com-
plete multitrait setting, where G, and Ry were 7 x 7
matrices. This configuration yielded the following (co)-
variance structure to predict breeding values:

2 £ # * # * *
hy  Cepud) Oepmo) Oepnr) Oepdp Oelpdo)  OTelp,scs)

hud Oe(ud,mo) Oe(ud,nr) Oe(ud,df) Oe(ud,do) Oe(ud,scs)

2
hmo

.
Og(p,ud)

Oe(mo,nr) Oe(mo,df) Te(mo,do) Te(mo,scs)

2
Ry

Og(p,mo) Oglud,mo)

Oe(nr,df) Oe(nr,do) OTe(nr,scs)

hir

* * *
Og(p,nr) Og(ud,nr) Og(mo,nr)
Tg(p,dp

*
Og(p,do)

* *
Oe(df,do) Oe(dfscs)

2
hdo

LOg(p,scs) Og(ud,scs) Og(mo,scs) Og(nr,scs) Og(df.scs) Og(do,scs)

* * *
Og(ud,df) Og(mo,df) Og(nr,dp
N
Oe(do,scs)

2
hscs -

* * * *
Og(ud,do) Og(mo,do) Og(nr,do) Og(df,do)
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where heritabilities are on the diagonal, residual (co)-
variances above, and additive genetic (co)variances be-
low the diagonal. Note that variances were kept fixed
at the estimates obtained from N1. Finally, approach
B3 was a complete multitrait model (equation 1), where
fixed and random effects were estimated at the same
time and where Gy and Ry were 7 x 7 matrices (equation
2). That approach used the same (co)variance structure
used to predict breeding values from the data as already
described for the preadjusted data, but variances were
not fixed.

RESULTS
Genetic Trend for the First Fifteen Years

The genetic trends for the first period in the replicate
used as the base for the second period are shown in
Figure 2. A substantial increase in genetic gain was
obtained for Y, and at the same time, it was possible
to obtain an improvement (i.e., a decrease) for MO and
SCS. Nonreturn rate stayed more or less at the same
level during the 15-yr period, whereas DO were mark-
edly increased. Udder depth and DF both had a positive
trend in the period. Using the results shown gives a
regression of total merit on year of birth of 1.81 using
the economic weights from breeding goal N.

Genetic Trend for the Final Fifteen Years

Scenario B3 gave the highest true genetic progress
in total merit (Table 4). Scenario B3 was superior to
scenario B2, and these 2 approaches were both signifi-
cantly better than scenario B1. With the same amount
of data and information, scenario B2 increased the total
merit by 5.5% compared with scenario B1, and compar-
ing scenario B3 with scenario B1, the increase was
15.0% for progress in total merit. Scenario N1 gave the
lowest progress in total merit. The value for scenario N1
(2.35) is somewhat lower than the regression coefficient
obtained in the first 15 yr (2.47). This was expected
because estimated genetic parameters were used in-
stead of the true ones. Comparing scenarios N1 and
B1, a significant effect of changing the breeding goal
using the same model for prediction of breeding values
was observed. The predicted genetic trends for total
merit were all less than their observed values, and this
difference decreased with more advanced models.

All scenarios gave a large increase in true genetic
merit for Y (Table 5). Scenario N1 with the highest
relative weight on Y also gave the highest increase.
Given that the model used in scenario B3 was the opti-
mal model, scenario N1 gave a 30.2% higher increase
in Y than scenario B3. Scenarios B1, B2, and B3 all
had similar progress for Y and they were all signifi-
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Figure 2. Average genetic merit (Delta G) in the 7 individual traits for cows born in the respective years of the study.

cantly lower than scenario N1. There was a decrease
in UD score only in scenario N1. Scenario B3 had a
significantly higher genetic merit for MO than scenarios
N1 and B1, and scenario N1 was significantly lower
than the other 3 scenarios. For MO, only 8.6 and 65.2%
of the genetic progress obtained in scenario B3 was
obtained in scenarios N1 and B1, respectively. For the
2 reproduction traits (NR and DO), a genetic decrease
was observed in the last 15 yr in all scenarios, except
for NR in scenario B3. However, for NR the trend was
not significantly different from zero except for scenario
N1. For reproduction traits, scenario N1 was signifi-
cantly worse than the other scenarios, and the decrease
in genetic merit was smaller with more advanced mod-
els. Compared with the genetic progress in scenario B3,
the relative efficiency for DO in scenario N1 was 51.5%,
whereas it was 89.5 and 100% for scenarios B1 and B2,
respectively. For SCS, all models showed an improve-
ment of the genetic merit, but there was no obvious
pattern between scenarios. In general, there was very
little difference between individual traits, but these dif-
ferences summed up to a significant difference in to-
tal merit.

The trends for EBV from the 7 individual traits were
generally very close to the true breeding values (Table

6). For the production scenario, N1 was best—16.1%
greater than scenario B3. For MO, the difference be-
tween true and predicted breeding values was relatively
larger, and this difference was the primary cause of
the somewhat lower predicted breeding values for total
merit compared with the true total merit breeding val-
ues. In terms of relative efficiency, only 28.5, 50.0, and
64% of the genetic improvement obtained in scenario
B3 were obtained in scenarios N1, B1, and B2, respec-
tively. A reason for this could be the relatively large
change in the estimated genetic correlations between
MO and the other traits in the breeding goal compared
with the ones used to simulate the data. Another reason
could be the use of linear models for the analysis of
a discrete trait with a low frequency. As for the true
breeding values, it was not possible to observe an im-
provement for reproduction, and none of the scenarios
were significantly different from zero for NR. Compared
with MO, which was also simulated as a binary trait,
the estimated genetic correlations with the other traits
in the breeding goal did not change as much for NR
(Tables 7, 8, and 9). Also, the frequency for N was closer
to 0.5, which fit better with a linear assumption of the
trait. That might be the main reason why N did not
change as much between models as did MO. In scenario

Table 4. Average regression coefficients of true and predicted genetic values of cows for total merit on year
of birth for the 4 different scenarios using the economic values from breeding goal B with corresponding

empirical SE over 20 replicates

Scenario!

Value N1 B1

B2 B3

True

1.706 (0.060)
Predicted —2

2.672 (0.060)
2.325 (0.084)

2.819 (0.047)
2.566 (0.077)

3.073 (0.069)
3.021 (0.046)

IN = narrow breeding goal; B = broad breeding goal; 1 = using a single-trait model for milk production,
nonreturn rate, dairy form, and days open, and a multitrait model for udder depth, mastitis occurrence,
and SCS; 2 = using an approximate multitrait model; and 3 = using a full multitrait model.

%In scenario N1, breeding values for nonreturn rate, dairy form, and days open were not predicted.

Journal of Dairy Science Vol. 90 No. 6, 2007
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Table 5. Average regression coefficients of true genetic values of cows for the 7 individual traits on year

of birth for the first 15 yr and for each of the 4 different scenarios' with corresponding SE

Scenario

1

B1

B2

B3

Desired First

Trait direction 15 yr N1

Milk production + 0.111  0.138 (0.005)
Udder depth + 0.025 -0.014 (0.009)
Mastitis occurrence - -0.015 —0.002 (0.005)
Nonreturn rate + 0.001 -0.019 (0.002)
Dairy form 0 0.025  0.050 (0.005)
Days open - 0.039  0.033 (0.004)
SCS - -0.026 —0.016 (0.005)

0.109 (0.008)
0.029 (0.005)
-0.015 (0.006)
—0.003 (0.004)
0.039 (0.008)
0.019 (0.004)
—0.022 (0.005)

0.097 (0.007)
0.043 (0.012)
-0.021 (0.006)
—0.002 (0.004)
0.035 (0.010)
0.017 (0.003)
—0.022 (0.004)

0.106 (0.007)
0.030 (0.008)
—0.023 (0.004)
0.001 (0.003)
0.032 (0.007)
0.017 (0.004)
-0.018 (0.005)

IN = narrow breeding goal; B = broad breeding goal; 1 = using a single-trait model for milk production,
nonreturn rate, dairy form, and days open, and a multitrait model for udder depth, mastitis occurrence,

and SCS; 2 = using an approximate multitrait model; and 3 = using a full multitrait model.

N1, there was a slight setback for genetic merit for UD.
In scenario N1, breeding values for NR, DF, and DO
were not predicted.

The estimation of (co)variances after 15 yr showed
rather large variability among the different models ap-
plied, especially when looking at the correlations be-
tween Y and the other individual traits (Tables 7, 8,
and 9). The genetic correlations obtained from the full
multitrait model showed the least discrepancy from the
genetic correlations used to simulate the data. The ge-
netic correlations obtained in the approximate
multitrait model were generally lower than the ones
used to simulate the data.

The breeding value estimation in the last round of
the simulation took 15% more CPU time using the full
multitrait model in scenario B3 than for the approxi-
mate multitrait model used in scenario B2. In each of
the 4 scenarios, more than 2 gigabytes of data was
generated from one replicate given the setup of the
simulations. With 20 replicates the result was more
than 160 gigabytes of data.

DISCUSSION

The purpose of doing 15 yr of selection before applying
the new models was not to quantify the genetic develop-
ment in that period, but to create a population with a
genetic structure that had undergone selection for a
period in correspondence to a real dairy cattle popula-
tion where the models will be applied. Because of a
computing time of approximately 80 h per replicate,
only 20 replicates were considered.

The full multitrait model gave the greatest genetic
progress in total merit. The approximate multitrait
model performed well, however, and provided signifi-
cantly greater genetic progress for total merit than with
univariate models. The genetic progress for the individ-
ual traits was changed: the contribution to the total
genetic merit came more from cost-reducing traits and
less from production when a more complex model was
used. This agrees with the results of Ducrocq et al.
(2001) and Besbes et al. (2002), who applied similar
methods on real data; they obtained a higher and more
sustainable breeding profile in their total merit index,

Table 6. Average regression coefficients of predicted genetic values of cows for the 7 individual traits on
year of birth for the 4 different scenarios® with corresponding SE

Scenario!
Desired

Trait direction N1 B1 B2 B3

Milk production + 0.137 (0.008) 0.106 (0.008) 0.113 (0.009) 0.118 (0.006)
Udder depth + -0.007 (0.007) 0.027 (0.006) 0.027 (0.011) 0.040 (0.008)
Mastitis occurrence - —0.004 (0.001) —0.007 (0.002) —0.009 (0.003) —0.014 (0.002)
Nonreturn rate + 2 —-0.001 (0.001) —-0.001 (0.002) 0.003 (0.001)
Dairy form 0 — 0.036 (0.007) 0.032 (0.009) 0.032 (0.006)
Days open - — 0.012 (0.002) 0.016 (0.003) 0.011 (0.003)
SCS - —-0.025 (0.009) —-0.020 (0.004) —-0.023 (0.005) —-0.030 (0.006)

IN = narrow breeding goal; B = broad breeding goal; 1 = using a single-trait model for milk production,
nonreturn rate, dairy form, and days open, and a multitrait model for udder depth, mastitis occurrence,
and SCS; 2 = using an approximate multitrait model; and 3 = using a full multitrait model.

2In scenario 1, breeding values for nonreturn rate, dairy form, and days open were not predicted.
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Table 7. Heritabilities (on diagonal, in bold), genetic (below diagonal), and residual (above diagonal) correla-
tions between the 7 traits in the simulation estimated for use in scenarios N1 and B1?

Trait? Y UD MO NR DF DO SCS
P 0.27 NE3 NE NE NE NE NE
UD NE 0.29 0.03 NE NE NE 0.10
MO NE —0.41 0.05 NE NE NE 0.09
NR NE NE NE 0.03 NE NE NE
DC NE NE NE NE 0.25 NE NE
DO NE NE NE NE NE 0.06 NE
SCS NE —-0.23 0.51 NE NE NE 0.12

IN = narrow breeding goal; B = broad breeding goal; 1 = using a single-trait model for milk production,
nonreturn rate, dairy form, and days open, and a multitrait model for udder depth, mastitis occurrence,
and SCS. The SE on the heritabilities were below 0.01, and SE on correlations were all below 0.05.

2Y = milk production; UD = udder depth; MO = mastitis occurrence; NR = nonreturn rate; DF = dairy

form; DO = days open.
3NE = correlation was not estimated.

with less increase in production traits and more prog-
ress, or at least less decline, in a number of cost reducing
traits. The genetic progress obtained by Ducrocq et al.
(2001) was partly due to a change in the breeding goal
at the same time as implementing the approximate
multitrait model. In this study, estimating new genetic
parameters after 15 yr of selection seemed to be the
main element influencing the results, because the
multitrait model corrects for selection bias due to ignor-
ing the genetic correlation between production and the
other traits.

Within breeding goal, no significant differences were
observed between scenarios for the individual traits.
Using a more advanced model led to a more favorable
genetic trend for the cost-reducing traits, and this led
to significant difference in total merit. However, a more
advanced model for prediction of breeding values did
not increase progress for production.

In recent years, much effort has been expended into
developing test-day models for analysis of production
traits. Methodology to implement breeding values from
a test-day model in an approximate multitrait model,
as described in this paper, and in a MACE setting has

been developed (Liu et al., 2004; Tarrés et al., 2006b).
Such approaches were not used in this study, however.
To use this as the method of this study, a simple esti-
mate of genetic merit for production is needed even if
a test-day model is used. One possibility is to calculate
yield deviations as the sum of the vector of random
regression coefficients times the orthogonal elements
of the model and equivalent daughter yield deviations
(Mrode, 2005). This can be done to create pseudo-305-
d records for production to use in the approximate
multitrait model.

Although the multitrait model performed better than
the approximate model, such a model is not computa-
tionally feasible for data sets that are much larger than
the data set simulated in this study. The purpose of
comparing the approximate model to the full linear
multitrait model was to assess the efficiency of the ap-
proximate model to the optimum. The total merit index
in Denmark consists of a large number of traits. There-
fore, clustering traits into groups of traits might be a
useful implementation of the approximate 2-step
multitrait model, as may ignoring correlations that are
numerically small, such as <0.10 in absolute value.

Table 8. Heritabilities (on diagonal, in bold), genetic (below diagonal), and residual (above diagonal) correla-
tions between the 7 traits in the simulation estimated for use in scenario B2!

Trait? Y UD MO NR DF DO SCS
Y 0.27 -0.17 -0.05 -0.08 0.17 0.21 -0.21
UD -0.38 0.29 0.03 -0.05 -0.24 -0.14 0.02
MO 0.42 -0.39 0.05 -0.01 -0.04 -0.00 0.09
NR -0.27 0.20 —-0.15 0.03 0.00 0.04 0.02
DF 0.48 -0.16 0.24 0.12 0.25 0.06 0.02
DO 0.32 -0.17 0.11 -0.16 0.34 0.06 0.020
SCS 0.16 -0.24 0.68 -0.19 -0.07 -0.33 0.12

B2 = broad breeding goal using an approximate multitrait model. Heritabilities were estimated with
univariate models and kept fixed in the multitrait setting. The SE on the heritabilities were below 0.01,

and SE on correlations were all below 0.06.

%Y = milk production; UD = udder depth; MO = mastitis occurrence; NR = nonreturn rate; DF = dairy

form; DO = days open.
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Table 9. Heritabilities (on diagonal, in bold), genetic (below diagonal), and residual (above diagonal) correla-
tions between the 7 traits in the simulation estimated for use in scenario B3!

Trait? Y UD MO NR DF DO SCS
Y 0.27 -0.13 -0.06 -0.08 0.15 0.19 -0.20
UD -0.41 0.33 0.03 -0.05 -0.20 -0.12 0.01
MO 0.39 -0.38 0.05 -0.01 -0.05 -0.01 0.11
NR -0.36 0.16 -0.12 0.04 0.00 0.04 0.02
DF 0.47 -0.21 0.24 0.08 0.24 0.05 0.01
DO 0.34 -0.19 0.16 -0.17 0.32 0.05 0.02
SCS 0.18 -0.23 0.75 -0.16 —0.02 -0.31 0.11

B3 = broad breeding goal using a full multitrait model. The SE on the heritabilities were below 0.02,

and SE on correlations were all below 0.05.

2Y = milk production; UD = udder depth; MO = mastitis occurrence; NR = nonreturn rate; DF = dairy

form; DO = days open.

Such an approach would probably still be better than
ignoring correlations between traits completely, which
would lead to low accuracies of EBV, selection bias, and
less genetic progress.

For the individual traits, scenario N1 is clearly best
for Y. This is mainly due to the relative higher economic
weight put on the trait in this scenario. In general, the
genetic trends depend a lot on the economic weights
that have been applied. The weights used are similar
to those used in the Danish breeding value system
for Holsteins.

Substantial differences in the genetic trends for ud-
der depth were observed between scenario N1 and the
other scenarios (Table 5). In particular, for scenario B1,
with a nonzero economic weight on UD, a positive trend
for the trait was obtained.

In this study, increases for NR or DO were observed
only in scenario B3, and the genetic change was not
significantly different from zero. In fact, few studies
have been able to show important improvements in
genetic gain for reproduction, but surely the results
obtained in this study are also a consequence of the
economic weights used. Days open is very highly corre-
lated to Y and DF, and the positive weight put on Y in
this study made it practically impossible to improve DO.

No differences were observed for SCS among the sce-
narios. The trait served only as an indicator trait in
this study and its genetic trend was mainly influenced
by the correlations to MO and Y and the weights on
these 2 traits. The selection for less MO improved SCS,
whereas the selection for increased Y made it decline.

Dairy cattle breeders face the challenge that many
traits with significant economic value have an unfavor-
able genetic correlation with milk yield, and yield re-
mains the most important trait in the breeding goal.
Using multitrait models and taking into account these
unfavorable genetic correlations makes it possible to
improve production simultaneously with other traits of
economic importance. Multitrait selection using single
trait EBV is currently practiced in many countries. This
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study shows that this procedure not only leads to less
genetic progress, but also results in EBV that are biased
due to the fact that selection on correlated traits is
ignored.

Although this study was based on linear models, the
same approach can also be applied with nonlinear, bi-
nary, and survival traits (Ducrocq et al., 2001; Besbes
et al., 2002; Tarrés et al., 2006a). The focus of this study
was not to examine the effect of implementing different
models on different traits, but to quantify the efficiency
of the model proposed by Ducrocq et al. (2001) against
a full linear model. Use of linear models for evaluation
of nonlinear traits is still common worldwide. Linear
models might also be the first choice when a full
multitrait analysis is computationally feasible to apply.
Therefore, this study focused on comparison of the ap-
proximate multitrait model to a full linear model.

The use of preadjusted data in a 2-step procedure has
never been formally compared with the use of daughter
yield deviation (DYD) in a MACE procedure where re-
sidual correlations are taken into account. In some ways
the 2 procedures are similar, however. For traits with
one observation per animal, the deregressed proof or
DYD of a trait is the same as correcting a phenotype
for fixed effects. Methodology has been developed to
include EBV from test-day models, threshold models,
and survival models for both methods. In the MACE
procedure, effective daughter contributions are used to
take account for the different amount of information
from each animal, whereas the 2-step procedure uses
the accuracy obtained from the univariate evaluations
as weights in the multitrait evaluation. Lately, a lot of
effort has been put into including EBV from a test-day
model into a MACE setting using DYD and a multiple
effective daughter contribution methodology (Liu et al.,
2004; Tarrés et al., 2006b). In this study, where only
one observation per trait was simulated, using a MACE
procedure as described by Sullivan and Wilton (2001)
would lead to the same results as using the 2-step proce-
dure as described by Ducrocq et al. (2001).
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CONCLUSIONS

When evaluating and selecting for many correlated
traits, using an approximate multitrait model for pre-
diction of breeding values will yield greater genetic
progress for total merit than will using EBV from indi-
vidual univariate models. The difference in response in
the individual traits appears negligible, but in total the
effect on total merit can be substantial. The approxi-
mate model yields less selection response than does
using EBV from a full linear multitrait model, but has
the advantage of being computationally feasible with
the large data sets typical of national selection pro-
grams with large numbers of traits.
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