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While pleiotropic adaptive mutations are thought to be central for evolution, little is known on the downstream
molecular effects allowing adaptation to complex ecologically relevant environments. Here we show that Escherichia
coli MG1655 adapts rapidly to the intestine of germ-free mice by single point mutations in EnvZ/OmpR two-component
signal transduction system, which controls more than 100 genes. The selective advantage conferred by the mutations
that modulate EnvZ/OmpR activities was the result of their independent and additive effects on flagellin expression
and permeability. These results obtained in vivo thus suggest that global regulators may have evolved to coordinate
activities that need to be fine-tuned simultaneously during adaptation to complex environments and that mutations in
such regulators permit adjustment of the boundaries of physiological adaptation when switching between two very
distinct environments.
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Introduction

Bacterial populations are powerful model to explore the
mechanisms of evolution. Several in vivo experiments have
pointed to the possible important role of pleiotropic adaptive
mutations, but their molecular basis remain in most of cases
largely elusive [1–3]. Here we have used gnotobiotic mice that
offer a simplified and controlled albeit ecologically relevant
experimental environment model to analyse the adaptation
of E. coli MG1655 to the gut, as E. coli is usually the first
colonizer of the mammalian newborn germ-free intestine
[4,5]. Taking advantage that this laboratory strain is entirely
sequenced and easily accessible to genetic manipulations, we
could design a study that allowed deciphering the beneficial
effects of pleiotropic mutations during intestinal colonisa-
tion.

The mammalian intestine is a privileged physiological site
to study how coevolution between hosts and the trillions of
bacteria present in the microbiota has shaped the genome of
each partner and promoted the development of mutualistic
interactions. Genetic adaptation to the host over the millions
years of coevolution has translated into physiological
regulatory pathways that are rapidly mobilized in response
to intestinal colonization [6–9]. In the microbiota, the
contrast between the considerable number of species, more
than a thousand, and the small number of bacterial divisions
[10], indicates that coevolution has selected bacterial genera
possessing the genetic gear to adapt to the host environment,
a notion supported by recent evidence that gut habitats in
different host species dictate distinctive structures of
intestinal bacterial communities [11]. Yet, the intestine is a
complex and highly dynamic ecosystem composed of a large
diversity of niches that vary in space and time, where bacteria
face a permanent adaptive challenge. Furthermore, intestinal

bacteria must be able to hurdle between their hosts across the
exterior environment and for certain such as E. coli to switch
between two entirely distinct natural environments. Gnoto-
biotic animals that offer a simplified albeit relevant model to
study reciprocal mechanisms of adaptation between bacteria
and their hosts, within a few days, the host can only adapt via
physiological changes, whereas bacteria can adapt both by
gene regulations and adaptive mutations. Indeed, we have
previously demonstrated that adaptive mutations are central
for efficient intestinal colonization by E. coli MG1655 [12].
Here we show that adaptation of this strain of E. coli during
intestinal colonization entails rapid and parallel evolution in
the EnvZ/OmpR two-components transduction system [13].
The gain of fitness provided by the diverse mutations selected
in this global regulator during in vivo colonization results
mainly from two distinct and measurable effects on motility
and permeability that are both reduced in the mutant strains
selected in the gut environment. These findings suggest that
evolutionary pressures can put a diverse set of physiological
functions facilitating adaptation under the control of one
global regulator, and that mutations permit to adjust the scale
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of the physiological regulation controlled by this regulator in
a given environment.

Results

E. coli Strains Selected during In Vivo Colonisation Exhibit

a Reduced Motility Phenotype That Results from
Mutations in the EnvZ-OmpR Regulator System

We have shown that adaptive mutations play a critical role
in the success of the E. coli MG1655 strain in colonizing of the
mouse gut [12]. A possible clue to the nature of the
mutation(s) selected during colonization ensued from our
subsequent observation of bacteria with a reduced motility
phenotype in the feces of all gnotobiotic mice colonized with
the wild type MG1655 strain (WT) (Figure 1A). The colonies
displayed a new small and granular morphotype (SG) distinct

from the large and smooth morphotype (LS) of the WT
inoculated strain (Figure S1). SG colonies forming bacteria,
undetected in the initial inocula, appeared in the feces within
two days, and reached a prevalence of 90% within seven days
(Figure 1B). Their phenotype remained stable when grown in
vitro over many generations, indicating that it was heritable
and may result from the rapid in vivo selection of mutation(s).
In order to identify the potential mutations responsible for

the SG morphotype, a clone forming SG colonies (SG1)
isolated from mouse feces two days post-colonization, was
transformed with a genomic DNA plasmid library generated
from the parental WT strain. All plasmids that restored the
ancestral WT LS morphotype carried the ompB locus, coding
for the membrane sensor EnvZ and the transcriptional
regulator OmpR of a two-component signal transduction
system central to the osmolarity-dependent regulation of
genetic expression [13]. A chloramphenicol resistance gene
(cat), inserted downstream the ompB locus in the chromosome
of the WT ancestral and the SG1 strains, co-transduced with a
95% frequency with the morphotype (LS or SG), indicating
that in the SG1 strain, the DNA region surrounding cat was
responsible for the SG morphotype. This region was
sequenced for one SG and one LS clone harvested from the
feces of each of the 8 independent mice inoculated with
either MG1655 or an MG1655 E. coli strain carrying a yellow
fluorescent protein (YFP) as reporter of fliC expression
(MG1655pfliC-YFP) (see below). While no mutation was
detected in LS clones, all SG clones displayed a different
missense point mutation, seven located in envZ, and one in
ompR (Table1). The independent systematic and rapid
selection of mutations in the same genes under identical
experimental conditions is evidence for a strong selective
advantage of the mutants during gut colonization [1].
To confirm and estimate the relative fitness of the SG1

mutant versus the ancestral strain in the mouse gut, we
performed in vivo competition experiments between strains
isogenic except for the point mutation present in the envZ
gene of the SG1 strain (SG1 mutation) and the inducible
fluorescent marker (RFP vs. GFP). Prior experiments have
indicated that these inducible markers do not induce any

Figure 1. A New Colony Morphotype Is Rapidly Selected during Colonisation

(A) Morphotypes observed on motility plates: large smooth (LS; similar to the ancestral MG1655 strain) and small granular (SG; selected mutant).
(B) Evolution over time (in days) of SG colony forming units (mean (cfu) 6 standard deviation) in the feces of 12 mice.
(C) Evolution over time (in days) of the ratio of green to red cfu in the feces of mice inoculated with MG1655 ptet-GFP ompBSG1-cat (containing the SG1
envZ mutation) and MG1655 ptet-RFP ompB-cat (containing the WT envZ) mixed at initial ratios of 1:1, 1:100, and 1:1,000. The error bars represent the
standard error of the mean of four mice.
doi:10.1371/journal.pgen.0040002.g001
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Author Summary

The mammalian intestine is a privileged physiological site to study
how coevolution between hosts and the trillions of bacteria present
in the microbiota has shaped the genome of each partner and
promoted the development of mutualistic interactions. Herein we
have used germ-free mice, a simplified albeit ecologically relevant
system, to analyse intestinal adaptation of a model bacterial strain,
Escherichia coli MG1655. Our results show that single point
mutations in the ompB master regulator confer a striking selective
adaptive advantage. OmpB comprises EnvZ, a transmembrane
sensor with a dual kinase/phosphatase activity, and OmpR, a
transcription factor controlling more than 100 target genes. In
response to environmental changes, EnvZ modulates the phosphor-
ylation and thereby the transcriptional activity of OmpR. We further
show that the selective advantage conferred by OmpB mutations is
related to their additive and independent effects on genes
regulating permeability and flagellin expression, two major set of
genes controlled by OmpR. These results suggest that global
regulators may have evolved to coordinate physiological activities
necessary for adaptation to complex environments and that
mutations offer a complementary genetic mechanism to adjust
the scale of the physiological regulation controlled by these
regulators in distinct environments.



selection bias [14]. The ratio of mutant (GFP) to WT (RFP)
colonies was defined after culture of the feces and ex vivo
induction of the fluorescent marker. Competition experi-
ments using initial ratios of mutant to WT strain of 1:1, 1:100
and 1:1,000 indicated that the SG1 mutation confers a
considerable fitness gain (Figure 1C). With the assumption
that the mean generation time for E. coli in the gut is 60
minutes [15], the selective advantage of the SG1 mutation was
estimated to be 24% when the mutant to WT strain ratio
remained under 1:10 (Table S1). These data explained how
adaptive mutations in envZ, that are likely to happen at a
frequency below 10�7, can be very rapidly selected upon
colonisation with the WT strain. The selective advantage of
the SG1 mutation decreased to approximately 10% when the
ratio of mutant to WT strain increased over 1:10, indicating
that the selective advantage conferred by the mutation is
frequence-dependent, consistent with the observation that
the WT strain is not entirely displaced in the mono-
colonization experiment (Figure 1B).

Selected EnvZ-OmpR Mutations Exert Pleiotropic Effects
on Bacterial Motility and Permeability

Importantly, the selected mutants did not exhibit the same
motility phenotype as null mutations, since strains deleted for
envZ, ompR or both kept the wild type LS morphotype (Figure
S1). The membrane receptor kinase-phosphatase EnvZ forms
a two-component pair with its cognate response regulator,
OmpR, that enable cells to sense external changes of
osmolarity [13]. The native receptor exists in two active but
opposed signalling states, the OmpR kinase-dominant state
and the OmpR-P phosphatase-dominant state. The balance
between the two states determines the level of intracellular
OmpR-P, which in turn determines the level of transcription
of the many target genes [13].

One important bacterial function controlled by OmpR is
motility, as OmpR regulates transcription of the flhDC
operon, the master regulator of flagellar biosynthesis [16].
Several mutations identical to those selected in vivo during
colonization were previously shown, by in vitro mutational
analysis of EnvZ activities, to switch on the EnvZ kinase-
dominant state [17,18] (Figure 2), resulting in increased levels
of phospho-OmpR and repression of the flhDC operon [16].
Consistent with repression of flagellin expression in all SG

mutants, no flagellin could be detected in cell lysates or
supernatants obtained from stationary phase cultures, while
the ancestral WT strain and the LS colonies (that kept the
wild-type motility phenotype after mouse colonization)
synthesised large amounts of flagellin in the same in vitro
conditions (Figure 3B). We have previously shown that the
WT ancestral E. coli strain induces a potent NF-jB-dependent
inflammatory response in intestinal epithelial cells that
hinges on the interaction of flagellin with Toll receptor 5
[19]. Consistent with impaired flagellin expression, culture
supernatants of SG strains in stationary conditions, failed to
induce any inflammatory signal in monolayers of epithelial
cells (Figures 3A and S2).
These in vitro observations showing repression of flagellin

synthesis in SG mutants were thus compatible with the
observed defective motility morphotype. This morphotype
was however clearly distinct from the pin point morphotype
of the DfliC strain lacking the gene encoding flagellin, the

Table 1. Characterization of Isolated Mutations

Ancestral Strain Selected Mutant MRNAa

ompF ompC

MG1655 EnvZ I281S(SG1) 0.09 2.2

OmpR M57Ib 0.11 2.2

EnvZ L43Pc 0.14 2.9

EnvZ Q182R 0.18 2.9

MG1655 EnvZ V241Gd 0.20 2.4

pfliC-YFP EnvZ P248Ae 0.34 2.5

EnvZ Q283Pf,c 0.15 2.8

EnvZ T402Me 0.10 4.3

MG1655 EnvZ I86S nd nd

DfliC EnvZ Q283Pf,c nd nd

pfliC-YFP EnvZ W134R nd nd

OmpR M57Vb nd nd

MG1655 EnvZ Q283Pf,c nd nd

DompF EnvZ S204C nd nd

pfliC-YFP EnvZ S26Rc nd nd

aRelative mRNA levels compared to MG1655 measured by real-time PCR.
bDistinct point mutations in the same codon of OmpR.
c,dMutations previously described to increase the EnvZ kinase/phosphatase activity ratio
in references [17] and [18], respectively.
eMutation in the same location as the one described in [17], but leading to a different
amino acid change.
fSame mutation in clones originating from different ancestral strains.
nd, not determined.
doi:10.1371/journal.pgen.0040002.t001

Figure 2. Localization of the Selected Mutations

Mutations are depicted on a representation of EnvZ dimer, based on the
transmembrane/periplasmic domain model [47] and the NMR structures
of the homodimeric core [48] and the ATP-binding domain [49] with ATP
bound molecules depicted in balls and sticks. Localizations of the amino
acid where mutations had been identified are represented by red stars
(linker and periplasmic domain) and with red side chain in the known
EnvZ sub-structures. The side chain of active site His residues are in blue.
Underlined amino acids are mutations previously described to increase
the EnvZ kinase/phosphatase activity ratio in references [17] or [18].
doi:10.1371/journal.pgen.0040002.g002
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primary flagellar subunit (Figure S1). In order to confirm that
flagellin was downregulated by SG mutants in vivo in the
intestine, germ-free mice were inoculated with an MG1655 E.
coli strain carrying a yellow fluorescent protein (YFP) as
reporter of fliC expression. The bacterial fluorescence in the
feces was monitored in the feces by flow cytometry.
Fluorescence decreased rapidly in mice inoculated with the
WT strain, demonstrating in vivo down modulation of
flagellin (Figures 4 and S3). Fluorescence monitoring after

plating confirmed this result. Thus, in mice inoculated with
the WT strain, the fraction of fluorescent colonies decreased
to an average of 10% within 8 days, consistent with the
selection of SG mutants described above (Figure 4B).
Furthermore, all bacteria forming non-fluorescent colonies
tested on motility plate exhibited an SG morphotype, while
those forming fluorescent colonies retained the LS morpho-
type (Figure 4B).
As OmpR/EnvZ controls many activities, we looked for

other effects of the selected mutants. The characteristic
motility phenotype of the SG selected mutants could be a
result of an enhanced aggregation of bacteria to each other
via the production of curli fibres encoded by the csgBA
operon whose expression is regulated by the OmpR regulated
csgD gene [20]. However, in contrast to the previously
described ompR mutant of E. coli K12 that promotes biofilm
formation via the derepression of the csgA gene [21], none of
the SG mutants exhibited changes in csgA gene expression
and their biofilm formation was reduced compared to the WT
strain (data not shown).
Another essential function of the two-component system

envZ/ompR is to modulate membrane transport and perme-
ability in response to medium osmolarity [22]. In particular,
OmpR affects the reciprocal transcription of the small pore
OmpC and large pore OmpF porins [23], the two E. coli porins
that are thought to play a central role in the adaptation of
E.coli to the hyperosmotic conditions of the intestine [24].
Consistent with mutations that switch on the OmpR kinase-
dominant state of EnvZ, selected SG mutants had decreased
ompF and increased ompC mRNA and membrane protein
levels compared to the WT ancestral strain (Table 1, Figure
3C), i.e. a reduced permeability phenotype [23]. Membrane
permeability is central for both stress protection and nutri-
tional competence [25]. It has been postulated that reduced
permeability would be favourable in the environmental

Figure 4. Flagellin Expression Is Counterselected during Colonization

(A) fliC promoter activity monitored by flow cytometry: overlay fluorescence histograms in feces from germ-free mice (grey shading) and from two
representative mice (see Figure S3 for the complete dataset) colonized with WT (solid lines) or DfliC (dotted lines) E. coli strains containing an YFP under
the control of fliC promoter (pfliC-YFP), at different days post-inoculation.
(B) Evolution over time (in days) of fluorescent cfu (circles) and LS cfu (filled triangle) in the feces of 12 mice inoculated with the WT pfliC-YFP strain
(circles) and fluorescent cfu in the feces of 11 mice inoculated with the DfliC pfliC-YFP strain (square) (mean 6 standard deviation).
doi:10.1371/journal.pgen.0040002.g004

Figure 3. SG Mutants Lack Flagellin and Inflammatory Properties and

Exhibit an Altered Porin Profile

(A) IL-8 secretion measured by ELISA in supernatants of HT29-19A cells
after a 16-h stimulation with WT, DfliC, SG (SG1 and 2), LS (LS1 and 2)
strains, or medium alone (ctrl) (mean 6 SEM for triplicates in one
representative experiment out of five). (NF-jB DNA-binding activity and
CCL-20 mRNA expression are presented in Figure S3).
(B) Immunoblotting with an antibody against E. coli flagellin of proteins
concentrated from culture supernatants (upper panel) or extracted from
cell lysates (lower panel) of the same strains.
(C) Immunoblotting with an antibody against E. coli OmpF and OmpC
porins of outer membrane fraction of the same strains and control strains
deleted of ompF or ompC.
doi:10.1371/journal.pgen.0040002.g003
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conditions of the gut, consisting of high osmolarity, low
oxygen pressure and the presence of bile salts [24]. Indeed, all
SG mutants grew much better than the ancestor in medium
containing bile salts, the ancestor being entirely displaced
within 7 hours of growth (data not shown).

Parallel Selection of EnvZ-OmpR Mutations Results from
Additive Fitness Gains Conferred by Repression of Both
Flagellin and OmpF Expression

Transcriptome analysis has pointed to the potential role of
the two-component EnvZ/OmpR system in the regulation of
multiple genes, including genes involved in transport across
membranes and cell metabolism [22], which may perhaps
promote intestinal adaptation of E. coli.We therefore assessed
the importance of flagellin repression and/or porins regu-
lation on the parallel selection of envZ-ompR mutations.

To analyse the role of flagellin in the selection of SG
mutants, germ-free mice were inoculated with either the WT
or the DfliC strain carrying a fluorescent protein (YFP) as
reporter of fliC expression. Flow cytometry analysis of the
feces showed that in situ fluorescence decreased faster and
more extensively in mice inoculated with the WT than with
the DfliC strain (Figures 4A and S3), a result confirmed by
fluorescence monitoring after plating (Figure 4B). Thus, in
mice inoculated with the DfliC strain, the fraction of
fluorescent colonies had decreased to only 50% on day 8 as
compared to 10% in mice inoculated with the WT strain and
the kinetics of selection was slower (Figure 4B). Altogether,
these results point to a strong impact of flagellin on the
selection of EnvZ mutations. However, mutations down-
regulating fliC expression could still be selected despite the
absence of flagellin, presumably because of the pleiotropic

effect of these mutations. Sequencing the ompB locus in non-
fluorescent clones harvested from 4 mice inoculated with the
DfliC strain revealed missense point mutations (Table 1).
Three were located in envZ, including one identical to a
mutation found in a clone isolated from a mouse inoculated
with the WT strain. The fourth one was located in the same
codon of ompR as the mutation identified in a clone derived
from the WT strain (Table 1). These results show that the
adaptive advantage conveyed by selected mutations is only
partially flagellin-dependent, suggesting that selected muta-
tions provide further advantage resulting from the modu-
lation of other genes controlled by OmpR.
One likely candidate was the large porin encoding gene

ompF. Indeed we have observed that this gene expression is
downmodulated by the selected envZ-ompR mutations, result-
ing in a reduced permeability phenotype known to be
associated with increased resistance to bile salts [26], as
observed for SG mutants. To assess the role of OmpF in the
selection of EnvZ mutations, mice were inoculated with a
DompF mutant that expresses OmpC but no OmpF protein
(Figure 3C) and carries the YFP reporter of fliC expression.
Although the impact of OmpF deletion alone was not as
strong as the one of flagellin, selection of non fluorescent
mutants studied in the feces after plating was significantly less
efficient than in mice colonized with the WT E. coli strain
(Figure 5). In one out of five studied mice, all non-fluorescent
mutants exhibited an SG phenotype in soft agar plates. In two
other mice, the non-fluorescent colonies had a totally
nonmotile (NM) pinpoint phenotype comparable to the
DfliC-engineered strain (Figure S1). In the last two mice, both
SG and NM morphotypes were observed. Sequencing the
ompB locus revealed a missense mutation in envZ in all SG
clones tested (Table 1). In contrast, NM clones forming pin-
point colonies had a normal envZ sequence but contain large
deletions from 1.5 to 12 kb between the otsA and cheB loci,
encompassing the flhDC operon and thereby precluding any
expression of the whole flagellum operons (Figure 6).
Interestingly, all deletions had occurred immediately up-
stream of an Insertion Sequence (IS1) located just upstream
the flhDC operon, and probably reflecting an imprecise
excision of the IS [27]. The deleted genes, that all belong to
the chemotaxis/motility pathway, failed to be amplified by
PCR (data not shown), showing that they were indeed lost
rather than inserted ectopically. These results show that in
mutants with reduced permeability, the major fitness gain
results from repression of gene(s) controlled by FlhDC,
probably flagellar genes and in particular the fliC gene
encoding flagellin.
To confirm this hypothesis, mice were inoculated with

double DfliC DompF mutants carrying the YFP reporter of fliC
expression and expressing the fluorescent CFP protein under
the control of a constitutive promoter. Strikingly, combining
deletions of porins and flagellin had additive effects and
almost entirely abolished the in vivo selection of EnvZ/OmpR
mutants (Figure 5). At day 11 post-inoculum, only 9% of
clones were YFP-negative. None had mutation in the ompB
locus, a deletion in the flhDC region or a mutation in the
pfliC-YFP construct. These YFP-negative clones were all CFP
positive and remained CFP positive during the 100 days of
observation. Since YFP and CFP were expressed at the same
level in the inoculated strain, the hypothesis that YFP

Figure 5. In Vivo Selection of Mutations during Intestinal Colonization

Results from Two Independent and Additive Effects on FliC and OmpF

Expression

Evolution over time (in days) of non-fluorescent cfu in the feces of mice
inoculated with the WT pfliC-YFP strain (filled triangles, n¼ 12), the DfliC
pfliC-YFP strain (empty squares, n ¼ 11), the DOmpF pfliC-YFP strain
(empty diamonds, n ¼ 5), or the double mutant DompF DfliC pfliC-YFP
strain (crosses, n ¼ 4) (mean 6 standard deviation).
doi:10.1371/journal.pgen.0040002.g005
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expression was costly for the bacteria and eliminated by
mutations is unlikely.

Therefore, our results show that the selective pleiotropic
advantage conferred EnvZ/OmpR mutation predominantly
results from a combined effect of modulation of fliC
expression and membrane permeability, but does not exclude
minor additional effect(s) of (an)other as yet uncharacterized
gene(s) under the control of EnvZ/OmpR.

Discussion

Due to their high growth rate and large population size,
microbes have a remarkable capacity to evolve and diversify
by generation and spread of mutations that improve their
fitness in a given environment [1]. We have previously
observed that within a few days a mutant strain with a high
mutation rate increased in frequency to the expense of the
parental commensal E. coli MG1655 strain during gut
colonization. In contrast, the mutator strain lost the
competition against a clone collected from the feces of mice
colonized for 40 days with the parental commensal E. coli
MG1655 [12]. These results suggested that adaptive mutations
enable bacteria to rapidly and efficiently cope with the
drastic environmental changes encountered during gut
colonization. Our novel results identify the central role of
the EnvZ/OmpR regulon in the physiological adaptation of E.
coli MG1655 to the gut environment, and show that adaptive
mutations in this two-component system provide an addi-
tional gear to adjust precisely the scale of the physiological
regulation controlled by this regulator to the gut environ-
ment. Furthermore our results provide the molecular basis of
the beneficial effects of the pleiotropic mutations in EnvZ/
OmpR in adaptation of E. coli MG1655 to the mouse gut.

Mutations in the envZ/ompR locus were systematically
detected in 90% of bacteria harvested from independent
mice feces within a week of colonization with WT E. coli
MG1655. Except for one mutation in its cognate transcription
factor OmpR, all mutations were found in the membrane
sensor EnvZ. The major fitness gain conferred by these
mutations was confirmed by in vivo competitions between the
ancestor WT strain and an isogenic mutant strain harboring
the prototype SG1 envZ mutation. The emergence of distinct
point mutations at the same two-component locus in
bacterial populations evolving in different colonized mice
suggested a comparable impact on the physiological effects
mediating the fitness gain due to these mutations. Indeed all
mutations resulted in profound repression of flagellin
expression and modulation of OmpF versus OmpC porin

expression yielding a reduced permeability phenotype. This
phenotype is typical of mutations that switch the phospha-
tase/kinase membrane sensor EnvZ toward a OmpR kinase-
dominant state. Indeed several of the missense mutations
selected during in vivo colonisation were previously identi-
fied by in vitro mutational analysis as turning on this
functional state [17,18]. Mutations selected during coloniza-
tion were not restricted to the catalytic domains of EnvZ, but
were also found in the periplasmic sensor and cytoplasmic
linker domains, highlighting the participation of all of the
protein’s domains in the control of gene regulation (Figure 2).
Interestingly in mice colonized with the DfliC mutant, where
adaptive mutants were mainly selected on their reduced
permeability phenotype, mutations were still exclusively
found in the EnvZ/OmpR system, a result that underscores
the prominent role of the EnvZ/ompR system in the
regulation of membrane permeability of E. coli MG1655
during intestinal colonization.
Notably, colonization with the WT E. coli did not select for

mutations inactivating genes specifically controlling motility
or permeability. Yet, selection of mutants with deletion of
flhD/C operon was observed during colonization by the DompF
strain, a result reminiscent of observations in streptomycin-
treated mice [28,29]. Clonal interference [30] thus likely
prevents the selection of mutations affecting only one
function, presumably associated with smaller selective value
than the pleiotropic mutations in envZ/ompR modulating
simultaneously functions as different as permeability and
motility. Indeed, using reporter mutant bacteria carrying a
fluorescent protein under the control of the fliC promoter, we
could clearly demonstrate that the selective advantage
conveyed by mutations in envZ/ompR resulted from their
pleiotropic and additive effects on the repression of flagellin
production and OmpF porin expression. The almost com-
plete abolition of adaptive selection of envZ/ompR mutations
in mice colonized with a double mutant E. coli strain that lacks
both fliC and ompF, underscores the major contribution of the
pathways controlled by envZ and ompR in the intestinal
adaptation of E. coli. The precise elucidation of the selective
forces is beyond the scope of this study, but likely scenarios
are briefly discussed below. Flagellin downregulation could be
selected for via its pro-inflammatory role [19,31–35], via its
direct energetic cost [28,36], or via still non-identified
mechanisms. The fitness gain conveyed by reduced perme-
ability was suggested by in vitro analysis indicating that,
similar to DompF mutants, all ompR/envZ mutants grew much
better in medium containing high concentrations of bile salts,
a major stress factor for bacteria in the intestinal lumen.

Figure 6. Deletions in the Region Downstream of flhDC Operon Are Selected for in Mice Colonized with the DOmpFpfliC-YFP Strain

Genetic map of the deletions detected in four non-motile clones isolated from four independent mice. All non-motile clones tested possess a deletion
in the flhDC region.
doi:10.1371/journal.pgen.0040002.g006
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Interestingly, it has been reported that the concentration of
biliary salts in the intestinal lumen decreases upon coloniza-
tion [37,38]. A lower concentration of biliary salts in mice
treated by streptomycin which empties the enterobacteriae
niche but does not deplete completely the intestinal flora,
might explain the predominant selection of mutants in the
flhD/C operon in this mouse model [28,29].

In E. coli, stress protection comes at the cost of nutritional
competence through the regulation of membrane perme-
ability [39]. In the gut rich environment, bacterial nutrient
intake is likely sufficient even if permeability is restrained, so
that the growth rate is not significantly affected [25]. Yet, the
extent of physiological regulation allowed by wild type EnvZ/
OmpR might not be optimal to respond to our experimental
mice gut conditions. Thanks to adaptive mutations in EnvZ/
OmpR, the trade-off between self-preservation and nutri-
tional competence (SPANC balance) might easily be switched
to either better resistance or faster growth [25]. To mutate
may thus represent a complementary genetic gear to adjust
precisely the scale of physiological regulation controlled by a
global regulator when switching between complex environ-
ments.

Notably, the selective advantage conferred by the envZ
mutations was frequency dependent, consistent with the
observation that in mice colonized with the WT strain, the
mutation invades rapidly and massively the population, but
does not go to fixation, as a minor part of the population kept
the original colony morphotype (and genotype for envZ-
ompR). These results suggest a mechanism causing the
coexistence of ancestral and evolved form, perhaps because
the ancestral phenotype confers some advantage to colonize a
specific niche. Work is in progress to address this issue.

Experiments with microbial populations have been largely
used to gain insight into the mechanics of evolution and have
pointed to the possible important role of pleiotropic adaptive
mutations [1]. Thus, finding mutations in regulatory genes is a
recurrent observation both in natural populations and
during in vitro experimental evolution, that led to postulate
that mutations affecting regulators are more likely to
promote adaptation and evolution than those improving a
single enzymatic step [1,25,40]. Our results obtained in an in
vivo model of bacterial evolution supports this hypothesis. As
mutations in global regulators affect the regulation of many
genes, they must be pleiotropic and are thus expected to
result in the expression not only of beneficial but also of
detrimental traits. The molecular mechanisms responsible for
the selection of such pleiotropic mutations have therefore
remained largely elusive in most systems. A recent study in a
simple ecological in vitro model [41], has shown that adaptive
mutations allow P. fluorescens to occupy a novel ecological
niche at the air-liquid interface [42]. All selected strains had
pleiotropic loss-of-functions mutations in one gene encoding
a putative methyl-esterase in the wsp operon [2,3]. Drawing
analogy with the che operon of E. coli that encodes proteins
homologous to the wsp operon, the authors suggested that
this protein acts in concert with a putative methyl-transferase
to adjust the activity of a kinase. The mutations may thus
destroy the capacity of the pathway to fluctuate between
activity states, producing instead a steady state output
allowing niche specialization. Our results, combined with
previous biochemical works [17], provide direct evidence that
a distinct scenario promotes the in vivo adaptation of an E.

coli MG1655 to the gut of germ-free mice. In the case of EnvZ/
ompR, the two opposed enzymatic activities are exerted by
the cytoplasmic domain of EnvZ and are modulated in
response to signals sensed by the external domain of the
protein. Mutations in EnvZ, that directly affect the balance
between two activities, are selected because of their inde-
pendent and additive effects on genes controlling flagellin
expression and membrane permeability. Dissecting the fitness
gain due to these independent pathways allowed us to
demonstrate that the EnvZ/OmpR global regulator orches-
trates the physiological adaptation of E. coli MG1655 to the
gut environment. More generally, the observation that the
EnvZ/OmpR system gathers under its control genes central to
promote intestinal colonization leads us to suggest that global
regulators may have arisen during evolution to optimize the
coordination of genes that collaborate to adapt to a given
niche. Mutations in such global regulators may provide a
complementary genetic tool that allows bacteria to extend
the scale of the physiological regulation and promotes their
rapid adaptation when confronted to very specific environ-
ments.

Materials and Methods

Bacterial strains. All strains were derived from the commensal
flagellated E. coli K12 MG1655 sequenced strain [43]. The MG1655
DfliC E. coli isogenic mutant has been described [19]. To construct the
reporter WT pfliC-YFP strain used to monitor in vivo activity of fliC
promoter, sequence encoding the fluorescent protein YFPþþ [44] was
cloned downstream the upstream region of the fliC gene (pfliC: from
nucleotides�230 toþ5 relative to the translation start). The fragment
(pfliC YFP, T1T2 and cat) was flanked by 40 nucleotides sequences
homologous respectively to the 59 and 39 of the IS2 and IS30 insertion
sequences interrupting the ybdA E. coli gene and by KpnI and SphI
restriction sites and cloned in p5Y, a pUC-18-derived plasmid. After
plasmid amplification, the fragment was inserted into the ybdA gene
of the MG1655 E. coli chromosome replacing the IS sequences
following method already described [45]. MG1655 DfliC pfliC-YFP was
constructed by P1 phage co-transduction of the pfliC-YFP-vþ and the
cat alleles from MG1655 pfliC-YFP into MG1655 DfliC strain.

The MG1655 ompB-cat and SG1 ompB-cat E. coli strains (used to
assess the link between the ompB locus and the motility phenotype)
were constructed by inserting the FRT flanked cat gene of the pKD3
plasmid [45] between the envZ and pck genes as described [45], using
PCR primers that contained a 40 bases-59 end extension centered on
the translation stops of the envZ or pck gene. Insertion of the PCR
product was monitored using primers respectively identical or
complementary to the nucleotides 1562 to 1582 of pck and 1238 to
1258 of the EnvZ gene. These strains kept the motility phenotype of
the MG1655 and SG1 strains respectively.

The MG1655 ptet-GFP ompBSG1-cat and MG1655 ptet-RFP ompB-cat
E. coli strains (used to measure the relative fitness of the SG1 strain in
vivo) were constructed by introducing by P1 phage co-transduction of
the ompB region from the SG1 ompB-cat strain and the cat allele into
the MG1655 ptet-GFP and the MG1655 ptet-RFP strains respectively
(described in [14]). The MG1655 ptet-GFP ompBSG1-cat strain was
selected among granulous transductants (SG morphotype) in motility
agar whereas the MG1655 ptet-RFP ompB-cat was selected among
transductants that kept the WT motility phenotype (LS morphotype).

The DompF, DompC, DompR, DenvZ, and DompB strains were
constructed by replacing the ompF, ompC, ompR, envZ and envZ and
ompR open reading frame respectively from start to stop codon by the
FRT flanked cat gene of the pKD3 in the E. coli MG1655 strain
following method already described [45]. The MG1655 DompF pfliC-
YFP strain was constructed by P1 phage co-transduction of the DompF
and the cat alleles from MG1655 DompF into MG1655 pfliC-YFP
p2rrnB-CFP strain. The MG1655 DfliC DompF pfliC-YFP strain was
constructed by P1 phage co-transduction of the DompF and the cat
alleles from MG1655 DompF into MG1655 DfliC pfliC-YFP p2rrnB-CFP
strain.

To construct the reporter p2rrnB-CFP, sequence encoding the
fluorescent protein CFPþþ was cloned upstream of the promoter p2
of the rrnB operon (p2rrnB: from nucleotides 152 to 94 relative to the
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translation start of the rrsB gene). The fragment (prrnB-cfp, T1T2 and
cat) was flanked by 40 nucleotides sequences homologous respectively
to the 59 and 39 of the IntC (IntS) E. coli gene and by KpnI and PacI
restriction sites and cloned in a pUC-18-derived plasmid. After
plasmid amplification, the fragment was inserted into the IntC gene of
the MG1655 E. coli chromosome following method already described
[45].

Genomic library. Genomic DNA from E. coli MG1655 strain was
prepared with the Wizard Genomic DNA Preparation kit (Promega,
Charbonnières, France) and partially digested with the Sau3AI
restriction enzyme. Fragments ranging from 2 to 6 kb were eluted
from agarose gel (Gel extraction kit, Promega), and cloned into
BamHI-digested and dephosphorylated pACYC184 plasmid. The
purified ligation reaction was used to electro-transform DH5-a E.
coli. Transformants were selected on LB plates containing chloram-
phenicol. Ligation efficiency was 95% and average size of genomic
inserts 3 Kb. Plasmids were extracted from about 1.5 3 104 pooled
colonies (Miniprep kit, Promega). The SG1 clone was transformed
with the genomic library and transformants were selected on motility
plates supplemented with chloramphenicol. The clones with a wild
type motility phenotype (LS) were isolated and the E.coli MG1655-
derived locus carried by the transforming plasmids was determined
by sequencing with primers flanking the cloning site.

Sequence. Sequencing of the ompB locus (from the greB translation
stop to the pck translation stop) and pfliC-YFP construction of the
MG1655 strain and of the clones isolated from mouse feces was
carried out on purified PCR amplification products using standard
procedures in the Institut Cochin sequence facilities.

Determination of the sizes of the deletions. The following primers
were used to define the size of the deletions in MG1655 DompF pfliC-
YFP non motile (NM) mutants: otsAup (59-GTGCAACTCAGGCAT-
CATGG-39) either in association with CheBdwn (59-CGTATGGTG-
GAAAAGTCATCC-39) for clones NM2 and NM4, with CheAdwn (59-
cgctgaagccaaaagttcctgc-39) for the clone NM1 and with ArgSdwn (59-
CTAACGGCATGATGGGAGTTG-39) for clone NM3.

Bacterial counts and motility. Bacterial motility was monitored in
soft agar plates (4.5 g/L agar in Luria broth medium (LB)) at 30 8C for
24 h. Enumeration of fluorescent bacteria was made on solid LB agar
plates (15 g/L) after a 48-h incubation at 37 8C using a lighting system
(LT-9500–220 Illumatool, Lightools Research). YFP fluorescence was
detected in colonies using 470-nm excitation wavelengths and 530-
nm reading filters. Fluorescence detection in feces was performed on
dilutions of freshly passed feces using a BD-LSR flow cytometer
(Becton Dickinson). Data were analyzed with Cell Quest software
(Becton Dickinson).

Bacterial competition in the presence of bile salts. Strains were
grown in LB for 16 h, and population sizes were determined by
plating appropriate dilutions of the culture on LB plates. 50 lL of a 1
3 104 fold dilution of the pre-culture of the mutant and of the
reference parental strain were inoculated in 5 mL of LB and LB
supplemented with bile salts (Bile salts N83, Difco) at 5% (M/W) and
incubated at 37 8C under agitation. Mutant and parental population
sizes were determined after 7h30 of culture by counting SG and LS
populations on motility plates (for SG1 and SG2 against MG1655
competitions), or fluorescent and non-fluorescent populations as
described above.

Mice and in vivo colonization experiments. Conventional and
germ-free C3H/HeN mice were bred at the INRA facilities. Germ-free
and gnotobiotic mice were reared in isolators (Ingenia) in individual
cages and fed ad libitum on a commercial diet sterilized by gamma
irradiation (40 kGy) and supplied with autoclaved (20 min, 120 8C) tap
water. For colonization experiments, 8–12-week-old germ-free mice
were inoculated per os with 104 bacteria from the chosen strain in 0.5
mL 10�2 M MgSO4. Colonization was monitored by bacterial counts
in individual freshly harvested fecal samples as described [12].

For in vivo bacterial competition, MG1655 ptet-GFP ompBSG1-cat
(containing the envZ SG1 I281S mutant allele) and MG1655 ptet-RFP
ompB-cat E. coli (containing the envZ wild type allele) were grown in LB
for 16 h and mixed at the 1:1, 1:100, 1:1,000 SG to WT ratios. 0.5 mL
of a 13 104 fold dilution in 10�2M MgSO4 of these mix were used for
mouse colonization. Mutant and WT population sizes were deter-
mined every 12 h by counting Red and Green fluorescent CFU on
plates containing anhydrotetracycline (50 lM Acros) during 5 days
following colonization. The maximal relative fitness was estimated by
fitting an exponential curve to the evolution of the SG/WT ratio
between 12 and 36 hours following colonization with the initial ratios
1:100 and 1:1,000.

All procedures were carried out in accordance with the European
guidelines for the care and use of laboratory animals.

Cell culture and bacterial stimulation. Stimulation of monolayers

of the human IEC line HT29-19A with live bacteria, preparation of
epithelial cell nuclear extracts, electrophoretic mobility shift assay
(EMSA), determination of CCL-20 mRNA level by real-time quanti-
tative PCR after a 6-h stimulation and determination of IL-8
concentrations in epithelial cell supernatants by enzyme-linked
immunosorbent assay (ELISA) (Duoset kits, R&D Systems) were all
performed as previously described [19].

cDNA synthesis and real-time PCR. Total RNA was extracted from
5 ml of stationnary phase culture (at 37 8C, with agitation) using the
RNeasy kit (Qiagen), according to the manufacturer’s instructions.
RNA was treated with four units of the Turbo DNA-free (Ambion) for
1h at 37 8C. RNA was quantified by measuring the optical density at
260 nm and checked for degradation by an agarose gel electro-
phoresis. The cDNA synthesis was performed using 2 lg RNA with
random hexamers (12.5 ng/ml) and the Superscript II RNAse H� kit 5
(invitrogen) according to the manufacturer’s instructions.

The real-time PCR experiments were performed using the SYBR-
green PCR Master Mix (Applied Biosystems) to quantify the
expression level of the ompC and ompF genes. The rpoD gene was
chosen as a reference gene for data normalization. The primers
RpoD1RT (59-GTAGTCGGTGTTCATATCGA-39), RpoD1FT (59-
CGTCTGATCATGAAGCTCT-39), OmpC2RT (59-GTCAGTGT-
TACGGTAGGT-39), OmpC2FT (59-CGACTACGGTCGTAACTA-39),
OmpF2RT (59-CCTGTATGCAGTATCACCA-39) and OmpF2FT (59-
CCAGGGTAACAACTCTGAA-39) were designed by the Primer
Express software (Applied Biosystems). Amplification and detection
of the specific products were carried out with the 7300 Real Time
PCR System (Applied Biosystems). Data analysis was performed with
the 7300 System Software. For each target gene, the average Ct value
was calculated from triplicate reactions for RNA samples. The
difference between Ct of the target gene and Ct of the endogenous
reference gene (rpoD) was defined as the DCt. The DDCt value
described the difference between the DCt of the wild type strain and
the mutant strain. The difference in expression was calculated as
2DDCt, and a twofold difference was considered as significant.

FliC western blotting. Bacterial proteins were obtained from
culture supernatants precipitated by 10% trichloroacetic acid and
from bacterial pellets sonicated in PBS containing an anti-protease
cocktail (Roche Diagnostics) and 1% Triton X100 (Sigma). Twenty lL
of 25-fold concentrated bacterial supernatants or 20 lg of total
proteins from bacterial lysates were electrophoresed on 10% SDS-
PAGE gels and transferred onto PVDF membranes (Amersham
Biosciences, Saclay, France). Membranes blocked with 5% nonfat
dry milk in 20 mM Tris pH 7.5, 150 mM NaCl, and 0.05% Tween-20,
were incubated overnight with a 1:2,000 dilution of monoclonal
antibody 15D8 against E. coli flagellin (Bioveris Europe), and then for
1 h with a 1:8,000 dilution of HRP-conjugated goat anti-mouse
immunoglobulins (Amersham Biosciences). HRP was revealed with
ECL-Plus light (Amersham Biosciences) using a luminescent image
analyzer LAS-1,000plus (Fujifilm).

OmpF and OmpC western blotting. Cultures (20 ml) grown at 37 8C
with agitation were harverested and washed in 20 mM sodium
phosphate buffer, pH 7.4. The pellet were suspended and sonicated in
10 mM Hepes buffer, pH 7.4 (Vibra-cell, Bioblock Scientific). Sarkosyl
was added to a final concentration of 0.5% and the detergent
extraction was carried out at room temperature for 1 hour. The
unbroken cells were removed by centrifugation at 3,000 rpm for 10
min, and the outer membrane fraction was obtained by an
ultracentrifugation at 40,000 rpm for 1 hour. The outer membrane
proteins were suspended in 10 mM Hepes and quantified by Bradford
Method (Biorad). Samples were analyzed by SDS-polyacrylamide gel
electrophoresis containing 8M urea as described previously [46]. Gels
were transferred onto PVDF membranes at 200 mAmp for 50
minutes. Membranes blocked with 5% nonfat dry milk in 20 mM Tris
pH 7.5, 150 mM NaCl, and 0.05% Tween-20, were incubated
overnight with a 1/1,000 dilution of an rabit anti-OmpC/F (gift from
Roland Lloubès, CNRS UPR 9027, Institut de Biologie Structurale et
Microbiologie, Marseille), and then for 1 h with horseradish
peroxidase conjugated anti-rabbit immunoglobulins (Cell Signaling
Technology).

Supporting Information

Figure S1. Motility Morphotypes on Soft Agar Plates

WT: large and smooth morphotype of the MG1655 strain. DfliC: pin
point morphotype of an isogenic strain carrying a deletion in the fliC
gene and therefore non-motile. DompR: large and smooth morpho-
type comparable to that of the WT strain. SG1: small and granular
morphotype of a clone isolated 2 d after inoculation from the feces of
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a mouse colonized with the WT strain; NM1: non-motile morphotype
of a clone isolated 8 d after inoculation from the feces of a mouse
colonized with the DompF pfliC-YFP strain. Soft agar plates after a
24-h incubation at 30 8C.

Found at doi:10.1371/journal.pgen.0040002.sg001 (1.2 MB PDF).

Figure S2. Clones Forming SG Colonies Fail to Induce an
Inflammatory Response in an Intestinal Epithelial Cell Line

(A) NF-kB DNA-binding activity assessed by EMSA as described [19]
for HT29-19A cells stimulated 3 h with MG1655 (WT), DfliC strain
(DfliC), and clones forming SG (SG1 and 2) or LS (LS1 and 2) colony
or medium alone (ctrl). Data are representative of five experiments.
(B) CCL-20 mRNA expression measured by real time RT-PCR on
RNA extracted from 6-h stimulated cells (mean 6 SEM for triplicates
in one representative experiment).

Found at doi:10.1371/journal.pgen.0040002.sg002 (66 KB PDF).

Figure S3. fliC Promoter Activity Monitored by Flow Cytometry

Overlay histograms of fluorescence level in feces from germ-free mice
(gray shading) and from mice colonized with WT pfliC-YFP or DfliC
pfliC-YFP E. coli at different days post inoculum. (A) and (B) are the
results of two experiments run at different times in the same
conditions with six mice inoculated with the pfliC-YFP E. coli (WT)
and six (A) or five (B) mice inoculated with the DfliC pfliC-YFP E. coli
(DfliC).
Found at doi:10.1371/journal.pgen.0040002.sg003 (1.6 MB PDF).

Table S1. Selective Advantages Conferred by the envZ SG1 Mutation
during Gut Colonization

Found at doi:10.1371/journal.pgen.0040002.st001 (48 KB DOC).
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