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This note describes how the incomplete markets model with aggregate uncertainty in 
Den Haan et al. [Comparison of solutions to the incomplete markets model with 
aggregate uncertainty. Journal of Economic Dynamics and Control, this issue] is solved 
using standard quadrature and projection methods. This is made possible by linking the 
aggregate state variables to a parameterized density that describes the cross-sectional 
distribution. A simulation procedure is used to find the best shape of the density within 
the class of approximating densities considered. This note compares several simulation 
procedures in which there is—as in the model—no cross-sectional sampling variation. 
1. Introduction

This paper describes the algorithm used to solve the model with incomplete markets and aggregate risk of Den Haan et
al. (2009). The algorithm of Krusell and Smith (1998), the most popular algorithm to solve this type of model, consists of an
iterative procedure and in each iteration a simulation of the economy with the approximating solution is used to solve for
the law of motion of aggregate capital. The simulation procedure of Krusell and Smith (1998) has two types of sampling
variation. The first is due to using a finite instead of a continuum of agents. As shown below, this sampling variation can be
avoided. The sampling variation that is due to the aggregate shock, however, seems unavoidable. Using simulated data to
obtain numerical solutions has two disadvantages. First, by introducing sampling noise the policy functions themselves
become stochastic. This effect can be reduced by using long time series, but sampling noise disappears at a slow rate.
Second—and more importantly—the values of the state variables used to find the best fit for the aggregate law of motion
are endogenous and are typically clustered around their means. But accuracy can be improved by using values that are
more spread out.1 In particular, the numerical literature advocates the use of Chebyshev nodes to ensure uniform
convergence and the procedure used here allows for this efficient choice of grid points.
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The algorithm described here uses projection methods and can—in principle—solve the model without relying
on any simulation procedure. Using projection procedures to solve a model with a continuum of agents typically
requires a parameterization of the cross-sectional distribution as in Den Haan (1997).2 We improve on the
procedure proposed in Den Haan (1997) in the following way. If one parameterizes the cross-sectional distribution, then
all parameters of the density are state variables. For example, if one uses a Normal density then there are two
parameters, i.e., the mean and the variance, and thus two state variables.3 But note that using a Normal density has
implications for the higher-order moments. These implied higher-order moments may not be correct. For
example, a Normal density implies no skewness, but the model one tries to solve may have a skewed distribution. In
that case one could allow for more general approximating functions with more free parameters. The problem
of adding coefficients to the approximating density is that one also adds state variables. Our procedure uses an
approximation for the density that allows for more flexibility, but does not increase the number of state
variables.

The idea is the following. Suppose one starts with the Normal as the approximating cross-sectional density and uses the
mean and the variance as state variables. Using this approximating density one can obtain a numerical solution of the
model using standard projection methods and without any simulation. Now that one has obtained a numerical solution
one can ask the question whether the cross-sectional density is described accurately with a Normal density. To answer this
question one has to rely on a simulation. Suppose that after simulating a panel and calculating the higher-order
(unconditional) cross-sectional moments, one concludes that the Normal does not provide an accurate representation.
When using the algorithm of Den Haan (1997), one would use a higher-order approximation of the cross-sectional
distribution and increase the number of state variables.

But one can also modify the functional form of the cross-sectional distribution without adding state variables. This is the
approach followed here, that is, the information obtained from the simulation is used to modify the functional form of the
cross-sectional distribution. Thus, if the Normal is not accurate one would use at each point on the grid a density
that (i) implies values for the higher-order moments equal to the values found in the simulation and, of course, (ii) implies
values for the lower-order moments that are included as state variables. The algorithm iterates on this procedure until the
information provided by the simulation is consistent with the assumptions made about the shape of the cross-sectional
distribution. The philosophy that underlies our algorithm is similar to the one in Reiter (2009). The differences are mainly
in terms of implementation, which is less cumbersome for our algorithm.

Although we rely on a simulation procedure, it plays a much smaller role than in, for example, the algorithm of Krusell
and Smith (1998); it is only used to determine the shape of the density. The procedure to solve for the policy rules uses
standard projection techniques without a simulation step.

Algan et al. (2008) (AAD hereafter) propose a new procedure to simulate cross-sections with a continuum of agents. The
most common procedure to simulate models with a continuum of agents consists of using a finite number of agents and a
random number generator to draw the idiosyncratic shocks. Consequently, the results are subject to cross-sectional
sampling variation. Models with a continuum of agents do not have this property and most solution procedures are based
on this lack of sampling variation.4 AAD show that sampling variation can be substantial and that properties of the laws of
motion may be overlooked because of the presence of cross-sectional noise. In this note, we compare three procedures that
all avoid cross-sectional sampling variation.
2. Algorithm

This section provides an overview of the key ingredients of the algorithm.5

Projection method: The numerical solution of the incomplete markets model with aggregate uncertainty in Den Haan
et al. (2009) consists of a policy function k0ð�; k; a; s;CkÞ, where � is the (exogenous) individual employment status,6 k the
individual capital stock, a the exogenous aggregate state, s a set of variables that characterizes the cross-sectional joint
distribution of capital and employment status, and Ck the coefficients of the policy function. The variable s refers to the
beginning-of-period distribution after the new employment status has been observed.

The standard projection procedure to solve for Ck consists of the following three steps.
1.
are

den

sho
Construct a grid of the state variables.
2 Den Haan and Rendahl (2009) show that aggregation without explicit distributional assumptions is possible when the individual policy functions

linear in the coefficients. They implicitly obtain information about the distribution by approximating auxiliary policy rules.
3 As shown below, one can establish a mapping between the parameters of the approximating density and a set of moments even if more flexible

sities are used. Instead of using the parameters of the density, we always use moments as state variables.
4 For example, solution procedures typically specify that next period’s distribution is fully determined by the current distribution and aggregate

cks.
5 A more in depth discussion can be found in AAD.
6 The value of � is equal to 0 when the agent is unemployed and equal to 1 when the agent is employed.
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2.
beg
At each grid point, define an error term, v, given values for �, k, a, and s as

vð�; k; a; s;CkÞ ¼
1

c
�
X
�0 ;a0

bðr0 þ 1� dÞ
c0

� �
paa0��0

¼
1

ðr þ 1� dÞkþwl� k0ð�; k; a; s;CÞ

�
X
�0 ;a0

bðr0 þ 1� dÞ
ðr0 þ 1� dÞk0ð�; k; a; s;CÞ þw0l0 � k0ð�0; k0; a0; s0;CÞ

� �
paa0��0

¼
1

ðr þ 1� dÞkþwl� k0ð�; k; a; s;CÞ

�
X
�0 ;a0

bðr0 þ 1� dÞ
ðr0 þ 1� dÞk0ð�; k; a; s;CÞ þw0l0 � k0ð�0; k0ð�; k; a; s;CÞ; a0; s0;CÞ

� �
paa0��0 , (1)

with

l ¼ ð1� tÞl�þ mð1� �Þ; l0 ¼ ð1� t0Þl�0 þ mð1� �0Þ,

r ¼ aa
K

lð1� uðaÞÞ

!a�1

; r0 ¼ aa0
K 0

lð1� uða0ÞÞ

 !a�1

,

w ¼ ð1� aÞa K

lð1� uðaÞÞ

!a

; w0 ¼ ð1� aÞa0 K 0

lð1� uða0ÞÞ

!a

,

t ¼ muðaÞ

lð1� uðaÞÞ
and t0 ¼ muða0Þ

lð1� uða0ÞÞ
.

Here, K is the aggregate capital stock, u is the unemployment rate (which is determined by the aggregate exogenous
state a), r is the rental rate, and w is the wage rate. If the worker is employed then he works l hours and his labor income
equals ð1� tÞwl. If he is unemployed then he receives mw. The first-order conditions of the agent, evaluated using the
numerical solution vð�jcÞ, correspond to the following set of conditions:

vð�; k; a; s;CkÞ � 0,

vð�; k; a; s;CkÞk
0
¼ 0 and

k0 � 0, (2)

for all possible values of �, k, a, and s.

3.
 Ck is found by minimizing some objective criterion that weighs the values of the error terms at the nodes of the grid.

Two things are needed to be able to evaluate vð�; k; a; s;CkÞ. First, s and a must pin down K. If K would be an element of s

then this would be trivial. Second, it must be possible to obtain the values of s0 as a function of a, a0, and s. This can be done
if s implies an actual cross-sectional distribution. The cross-sectional distribution of the current period together with the
individual policy function can then determine the characteristics of next period’s distribution (and thus s0) using standard
quadrature techniques. Next, we explain how this can be done.

Linking s to a cross-sectional distribution: Let the first NM moments of the strictly positive capital holdings of agents with
employment status o be given by mo;j

 ��
, with j 2 f1; . . . ;N

M
g and suppose that these are elements of s.7 To link this set of

moments with a density, we approximate the density of individual capital holdings with a flexible functional form Pðk;roÞ
and choose the parameters ro such that the moments of the density coincide with those specified.8 The following
functional form is used:

Pðk;roÞ ¼ ro0 exp

ro1 ½k�mo;1
��
�

þro2 ½ðk�mo;1
��
Þ
2
�mo;2

��
�

þ � � � þ roN
M
½ðk�mo;1

��
Þ
N

M �mo;N
M

���
�

0
BBBBB@

1
CCCCCA. (3)

The advantage of this particular functional form is that the coefficients ro1 ; . . . ;roN
M

can be found with the following
minimization routine:

min
ro

1
;ro

2
;...;ro

N
M

Z 1
0

Pðk;roÞdk. (4)
7 We set o equal to e when the agent is employed and equal to u when the agent is unemployed. An arrow pointing left (right) denotes

inning(end)-of-period values.
8 To completely characterize the cross-sectional distribution one would also need to include in s the fraction of agents at the constraint.
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The reason is that the first-order conditions of this minimization problem are exactly the conditions that the first NM

moments are equal to the set of specified moments:Z 1
0
½k�mo;1

��
�Pðk;roÞdk ¼ 0,Z 1

0
½ðk�mo;1

��
Þ
2
�mo;2

��
�Pðk;roÞ dk ¼ 0,

..

.

Z 1
0
½ðk�mo;1

��
Þ
N

M �mo;N
M

���
�Pðk;roÞdk ¼ 0. (5)

AAD show that the minimization problem is convex, which means that the first-order conditions are monotone and thus
easy to solve.9 The coefficient rw

0 is determined by the condition that the density integrates to one. By increasing the
number of moments one increases the order of the approximating polynomial and the accuracy of the approximation.

The approximating densities are used to determine s0 and are not necessarily of interest to the researcher. In fact, it may
very well be the case that accurate predictions of s0 can be obtained with approximating densities that are not accurate in
all aspects. We document this in Section 3 by showing that an approximating density with continuous support (for strictly
positive capital levels) can accurately predict next period’s moments even though the true cross-sectional density has
points with positive point mass, i.e., the CDF is discontinuous.

Solving the model without simulation: The algorithm as it is described now can be executed without any simulation.
That is, ck can be chosen to minimize a loss function over the residuals defined in Eq. (1). The problem is that to obtain an
accurate solution one would need several moments as state variables, that is, the value of NM cannot be too low.
This statement seems to contradict the well-known finding of Krusell and Smith (1998) that the cross-sectional mean is a
sufficient state variable. But note that higher-order moments may not matter in predicting next period’s prices for different
reasons. The first is that changes in them truly have no effect. But they also may not matter because their time-series
variation is low.10 In the latter case, the effect of the higher-order moments would be captured by the constant term in the
time-series regression that relates next period’s mean capital stock to this period’s mean capital stock. AAD find that
higher-order moments do matter and that they have to be included to get the shape of the cross-sectional distribution
right. But using information about higher-order moments to get the shape of the cross-sectional distribution right does not
mean that one has to include all higher-order moments as state variables. This is the idea behind reference moments and
will be discussed next.

Reference moments: In the algorithm described so far, the cross-sectional density at a node on the grid was determined
by the set of moments included as state variables. But suppose that in addition to the moments that are included as state
variables one also has information about higher-order moments. Higher-order moments that are not included as state
variables, but used to determine the density are referred to as reference moments. For example, when only the mean is used
as a state variable one may have information about the variance. But if the variance is not a state variable, then one needs to
provide information about it from outside the projection procedure. One possibility would be to obtain this information
from the solution of the model without aggregate uncertainty. Another possibility, and the one that is chosen here, is the
following. Start with a guess for the reference moments, solve the model using the algorithm described above, and then
simulate the economy. The simulated panel can be used to update the information about the reference moments.
The simplest thing to do would be to use the unconditional values of the cross-sectional moments. We use the values of the
cross-sectional moments conditional on the realization of a. Alternatively, one could relate the reference moments to
the values of all included aggregate state variables. Note that this would only require a simple regression using data from
the simulated economy. At each node on the grid, the regression results can then be used to determine the appropriate
values of the reference moments.

Discussion of choices made: Several choices were motivated by convenience, such as, similarity to choices made in other
numerical work. Here we discuss choices that the reader should be aware of. To simplify the description of the algorithm,
we assumed that we had an approximation function for next period’s state variable, k. But one can just as well approximate
the consumption choice or the conditional expectation and we chose the latter.11 We approximate the conditional
expectation using Chebyshev polynomials. This and a grid constructed using Chebyshev nodes leads to several desirable
convergence properties.12 But there are also disadvantages. First, the conditional expectation displays a sharp non-
differentiability at the lowest level of k at which the agents choose a zero capital stock, kð�; a; sÞ. For k � kð�; a; sÞ, however,
the conditional expectation does not have to be approximated, so we simply approximate the conditional expectation on
those grid points at which the constraint is not binding. But this means not using the full set of Chebyshev nodes and some
of the optimality properties may be lost. Moreover, the conditional expectation has other—less pronounced—
9 For alternative specifications of the functional form one would have to solve the coefficients from a system like (5), which likely to be a more

challenging numerical problem.
10 Another possibility is that the time-variation of higher-order moments is related to movements in the mean.
11 Some motivation for choosing the conditional expectation is given in Christiano and Fischer (2000).
12 See Judd (1998, p. 221).
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non-differentiabilities due to the interaction of the constraint and the discrete support of �.13 In this particular problem
these disadvantages are minor because the constraint only binds at very low levels of k, but when the constraint plays a
more important role the reader should seriously consider using splines.

Another choice that the reader should be aware of is that we parameterize the law of motion relating s0 to the current-
period aggregate state variables. Conditional on this law we then solve for the individual policy rules and then update the
aggregate law of motion by projecting the calculated values of s0 on the grid on the approximating functional form. It is
possible that this sequential updating improves the stability of the algorithm when solving complex models. But if
convergence is not an issue, then it makes more sense not to use this two-step procedure. Even if one would like an
approximating aggregate law of motion, then it would be better to solve the model using the algorithm outlined above and
then simply get an approximation for the aggregate law after one has obtained the solution of the model. Further
information on the choices made can be found in the appendix and in AAD.

3. Simulating a continuum cross-section of agents

Simulation procedures fulfill an important role in the numerical analysis of models with heterogeneous agent models.
The popular procedure of Krusell and Smith (1998) uses simulated cross-sectional moments to determine the aggregate
law of motion. Even in our algorithm—that is designed to obtain numerical solutions to the policy functions without
simulation procedures—we still use a simulation procedure to reduce the dimension of the set of state variables while
keeping an accurate shape of the cross-sectional density. And even if an algorithm does not rely on a simulation procedure
at all, then many characteristics of the solution can only be determined using a simulation procedure.

Given the importance of simulation procedures, it is important to compare alternatives. The most popular procedure is
to use a finite set of agents and to use a random number generator to determine the realizations of the idiosyncratic and
common shocks. But this means that the outcome is subject to cross-sectional sampling variation, whereas both the model
and the algorithm typically rely on there being none. AAD show that this sampling variation can be substantial especially
for the smaller group in the population such as the unemployed.

There are, however, procedures that avoid cross-sectional sampling variation, but to the best of our knowledge these
have not been compared. Section 3.1 outlines three different simulation procedures, Section 3.2 compares the three
simulation procedures for the model discussed here and for a model in which the CDF displays substantial discontinuities.

3.1. Three simulation procedures

To simplify the exposition we explain how to simulate across time a cross-sectional distribution of capital holdings
when there are no shocks and no constraint, that is, when the policy function for k0 is given by kðkÞ.14

3.1.1. Simulation procedure of AAD

Let f tðkÞ be the distribution of capital holdings in period t and let f 1 be given.15,16 Calculate the first NM moments of the
distribution of k0 using quadrature methods. The inputs are the policy function, k0ðkÞ, and the initial distribution, f 1. Using
the procedure discussed in Section 2 one can then obtain the density f 2ðkÞ that corresponds to these NM moments.17

Iteration on this procedure gives a time series f tðkÞ. Given f tðkÞ, any characteristic of the cross-sectional distribution can be
calculated.

3.1.2. Grid-based procedure of Young18

Construct a grid of capital holdings, kj̄, j̄ ¼ 0; . . . ;N, and let pj̄
t be equal to the mass of agents with a capital stock equal to

kj̄. We have

XN

j̄¼0

pj̄
t ¼ 1.

Calculate the values for pj
tþ1 using the following algorithm.
�

is e

wo

tha
Initialize by setting pj
tþ1 ¼ 0 for all j.
�
 Calculate the values of pj
tþ1 using the following procedure for j̄ ¼ 0; . . . ;N.
13 See Den Haan (1997, Figure 2).
14 For most sensible choices of kðkÞ, the distribution would then converge towards a single point. Adding stochastic elements that would prevent this

asy, but would make the exposition somewhat more tedious.
15 Alternatively, one can start the procedure with N

M
moments. The density f 1ðkÞ can then be determined using the procedure of Section 2.

16 It is easy to modify the procedure to include a constraint. f tðkÞ would in that case be the density of the strictly positive capital holdings and one

uld in addition keep track of the mass of agents at the constraint.
17 If there are no constraints on the range of k, then one has to choose a lower and an upperbound for k that are outside the ergodic set or at least such

t the mass below and above these two values is very small.
18 Proposed in Young (2009).
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� Calculate k0ðkj̄Þ. Let j be such that kj � k0ðkj̄Þokjþ1.
� The mass at the j̄th grid point, pj̄

t , is allocated to the two grid points that enclose the choice k0ðkj̄Þ—i.e., the jth and the
ðjþ 1Þth grid point—using the distance of k0ðkj̄Þ to the two grid points to determine the fractions. Thus,

pj
tþ1 ¼ pj

tþ1 þ
kjþ1 � k0ðkj̄Þ

kjþ1 � kj
pj̄

t

and

pjþ1
tþ1 ¼ pjþ1

tþ1 þ
k0ðkj̄Þ � kj

kjþ1 � kj
pj̄

t .
19 T
20 N
21 N
22 S

ll d
�
 The sum of all the pj
tþ1’s is by construction equal to 1.

In the model without aggregate uncertainty, this procedure can be expressed as a linear system that can be used to solve
for the stationary distribution (and thus the equilibrium aggregate capital stock) by solving for the normalized eigenvector
corresponding to the unit eigenvalue.

3.1.3. Grid-based procedure of Rı́os-Rull19

Again construct a grid of capital holdings, kj, j ¼ 0; . . . ;N. Let p̄0
t be the mass of agents at k0 and let p̄j

t be equal to the
mass of agents with a capital stock bigger than kj�1 and less than or equal to kj, for j40.20 This mass is assumed to be
distributed uniformly between grid points. We have

XN

j¼0

p̄j
t ¼ 1.

Let xj be equal to the capital level at which an agent chooses kj.
21 Note that whereas the procedure proposed by Young

simply uses the capital choice at a set of nodes, this procedure uses the inverse of the capital choice. Thus,

k0ðxjÞ ¼ kj. (6)

Now compute the distribution function of next period’s capital at the grid points as

P̄
j
tþ1 ¼

Z xj

0
dP̄tþ1ðkÞ ¼

Xj

j¼0

p̄j
t þ

xj � k
j

k
jþ1
� k

j

p̄jþ1
t , (7)

where j ¼ jðxjÞ is the largest value of j such that kj � xj. The second equality follows from the assumption that mass is

distributed uniformly between grid points. Note that p̄0
tþ1 ¼ P̄

0
tþ1 and p̄j

tþ1 ¼ P̄
j
tþ1 � P̄

j�1
tþ1 for j40. Modifying the distribution

to take into account unemployment risk is—as for the procedure of Young—straightforward.

3.2. Comparison and discussion

3.2.1. Experiment 1

In this experiment, we use our numerical solution for the individual policy functions of the model outlined above to
simulate the cross-sectional distribution across time with the three simulation procedures for 10,000 periods. The initial
distribution is identical to the one used in Den Haan (2009).

We find that time-series plots of characteristics of the cross-sectional distributions, such as moments and percentiles,
are very similar. Not surprisingly, the largest differences are observed in the description of the lower tail. For example, for
the 1st percentile we find for the employed (unemployed) that the differences are 1.35% (2.48%), 1.60% (1.78%), and 0.76%
(1.60%) for AAD versus Rı́os-Rull, AAD versus Young, and Young versus Rı́os-Rull, respectively.22

3.2.2. Experiment 2

Generating an accurate simulated panel for the model presented here is relatively easy, because there are very few
constrained agents, which means that any subsequent jumps in the CDF for higher levels of capital are very small.
Moreover, the marginal propensity to save is almost constant and only varies with capital at low levels of capital.

Therefore, we also consider an example in which the marginal propensity to save varies strongly with capital and jumps
in the CDF are important. Both features may give difficulties for the procedure of AAD. The continuous approximating
his procedure is used in Heathcote (2005), Rı́os-Rull (1997), and Den Haan (2009).

ote that p̄j
t is not equal to pj

t (used in the last subsection), except for j ¼ 0. pj
t is the mass at a grid point and p̄j is the mass between grid points.

ote that if the capital choice would depend on aggregate state variables then x would be time varying.

ince the mass of agents in the first percentile is very small (between 3% and 9% for the unemployed), these percentage differences imply very

ifferences for the mass of agents in the first percentile.



ARTICLE IN PRESS

0

0.2

0.4

0.6

0.8

1

0
k

cd
f

Young AAD

EmployedUnemployed

10 20 30 40 50 60 70 80 90
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density used in the AAD procedure, of course, misses the jumps of the CDF. Missing these jumps is not important as long as
the marginal propensity to save is (locally) constant, but may matter if the savings function is nonlinear.

In the second experiment, the individual policy function, k0ð�; kÞ is assumed to be equal to

k0ð0; kÞ ¼maxf0; k� 25g

for the unemployed agent ð� ¼ 0Þ and is equal to

k0ð1; kÞ ¼ �g0 þ kþ expða0 þ a1kþ a2k2
Þ

for the employed agent ð� ¼ 1Þ. For the chosen parameter values,23 the marginal propensity to save of an employed agent
varies from 0 when k ¼ 0 to almost 1 when k ¼ 99. The laws of motion of the exogenous random variables are as in
experiment 1.

Although these policy functions do not depend on the aggregate state, the choices still do because the employment
status depends on the aggregate state. The chosen policy function may look strange, but is motivated by its ability to
generate large jumps in the cross-sectional distribution. When the aggregate state randomly changes, then the
distributions generated with different procedures look similar because of these random aggregate shocks. The differences
between the solution procedures become more clear if we keep the economy in the same aggregate state. That is, the
23 a0 ¼ 2:70805, a1 ¼ �0:06667, a2 ¼ 0:000326, and g0 ¼ �0:6:
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Fig. 3. The fraction of agents at the constraint when the economy is in the bad state.
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Fig. 4. The means of the employed and unemployed when the economy is in the good state.
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economy remains in either the good or the bad state. Those are the results reported here. The fraction of agents at the
constraint is now substantially higher than in the problem discussed above. This higher fraction of constrained agents leads
to several substantial jumps in the CDF as is clear in Fig. 1 that plots the CDF obtained with the AAD and Young procedure
when the economy has been in the bad state for a long time period.

Fig. 1 documents that the CDFs obtained with the different procedures display substantial differences. The CDF
generated with the Young procedure nicely displays the jumps in the CDF that are also present in the true CDF. The CDF
generated by the AAD procedure, of course, does not have any jumps but it nicely approximates the distribution. That is, the
inability of AAD to capture the jumps does not lead to a systematic bias.

This is also documented by the time series of standard characteristics of the cross-sectional distribution that are very
similar across the two procedures. This is documented in Figs. 2 and 3, which plot the simulated mean capital stocks and
the fraction of agents at the constraint when the economy is (and remains) in the bad aggregate state. Figs. 4 and 5 report
the results when the economy is (and remains) in the good aggregate state.
3.2.3. Discussion

Although the procedures are quite different, they generate very similar results in both experiments. Of course, our
results may not carry over to all problems and one always should check whether the simulated data are accurate. But the
results presented here indicate that convenience may be an important element in the choice made as well.
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Fig. 5. The fraction of agents at the constraint when the economy is in the good state.

Table 1
Parameters of the numerical procedure.

Variable Range Number of grid points Order of approximating polynomial

k ½0;99� 50 grid points 27

mu;c
�1

��! ½0;0:002� 5 grid points 3

me;1
 �� ½35;42:4� 5 grid points 3

mu;1
 �� ½33:5;41:5� 5 grid points 3
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In terms of programming, the easiest procedure is the one proposed by Young (2009). In contrast to the grid-based
procedure of Rı́os-Rull (1997), it does not require calculating the inverse, which can be a costly operation. Both grid
procedures allow quite naturally for discontinuities in the CDF. But the second example showed that the procedure of AAD
also can lead to an accurate characterization of the movements across time of key characteristics of the cross-sectional
distribution, even in the presence of substantial discontinuities. The main advantage of the procedure of AAD is that it
characterizes the cross-sectional distribution with a much smaller number of parameters. For the procedures discussed
here, the simulation procedure of AAD uses ten parameters whereas the grid-based method uses 1000. For some
applications, it may be extremely helpful to limit the number of parameters.
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Appendix A

The state variables used are

s ¼ ½a�1; a;m
u;c
�1

��!
;me;1
 ��

;mu;1
 ��
�,

where mu;c
�1

��!
stands for the fraction of constrained unemployed agents at the end of the last period, and mo;1

 ��
stands for the

beginning-of-period mean capital holdings of agents with employment status o and strictly positive capital holdings. Note

that this set of state variables has enough information to determine mu;c
 ��

and me;c
 ��

.25 In addition to these moments, we use
five higher-order moments (for both the employed and the unemployed) to determine the density of the cross-sectional
distribution. In the simulation we use a total of 10 moments.
25 Alternatively, we could have used s ¼ ½a;mu;c
 ��

, me;c
 ��

;me;1
 ��

;mu;1
 ��
�. The advantage of our choice is that a�1 can take on only two values and is, therefore,

‘‘cheaper’’ as a state variable than an additional fraction of constrained agents.
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Parameter settings of the numerical procedure, such as the order of the polynomial and the number of grid points, are
given in Table 1. We use Chebyshev nodes as the grid points and the indicated range of the state variable is used to
transform the variable into one that is between �1 and 1. For the exogenous random variables we use two grid points
related to the two possible realizations.
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