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[1] To simulate multivariate daily time series (minimum and maximum temperatures,
global radiation, wind speed, and precipitation intensity), we propose a weather state
approach with a multivariate closed skew‐normal generator, WACS‐Gen, that is able to
accurately reproduce the statistical properties of these five variables. Our weather
generator construction takes advantage of two elements. We first extend the classical wet
and dry days dichotomy used in most past weather generators to the definition of multiple
weather states using clustering techniques. The transitions among weather states are
modeled by a first‐order Markov chain. Second, the vector of our five daily variables of
interest is sampled, conditionally on these weather states, from a closed skew‐normal
distribution. This class of distribution allows us to handle nonsymmetric behaviors. Our
method is applied to the 20 years of daily weather measurements from Colmar, France.
This example illustrates the advantages of our approach, especially improving the
simulation of radiation and wind distributions.

Citation: Flecher, C., P. Naveau, D. Allard, and N. Brisson (2010), A stochastic daily weather generator for skewed data,
Water Resour. Res., 46, W07519, doi:10.1029/2009WR008098.

1. Introduction

[2] Stochastic weather generators [Katz, 1996; Semenov
and Barrow, 1997; Qian et al., 2005] aim at reproducing
the statistical distributional properties of meteorological
variables. They have been applied to a wide range of hydro-
logical, ecological, and agricultural studies. For example
agronomical models and more specifically crop models need
a large variety of daily weather data as inputs [Wilks, 1997;
Brisson et al., 2003, 2009], to model past, present and future
variability for yields. Such daily inputs have to be simulated
quickly and easily for long time periods at a given station. In
this paper we focus on five variables: minimum and maxi-
mum temperatures (Tn and Tx), precipitation P, wind speeds
at two meters V and radiation R. The choice of these vari-
ables was motivated by the inputs required for the crop
models used in a research project (french CLIMATOR
project) aimed at exploring the impact of climate change on
agriculture in the 21st century. Most other variables that
hydrological, ecological and agronomical models may need
can be computed from these variables using physically
based relations, e.g., relative humidity and potential evapo-
transpiration. One year typical time series are presented for
these variables in Figures 1 and 2.
[3] Conceptually, the majority of statistical weather gen-

erators [Richardson, 1981; Richardson and Wright, 1984;
Semenov and Barrow, 1997; Rajagopalan et al., 1997] can
be classified into two categories. The first one consists in
pooling out analog days from a database of past observa-
tions according to a given criterion, e.g., with a k‐nearest

neighbors algorithm [Rajagopalan and Lall, 1999]. The
main advantage of this nonparametric approach is that the
statistical properties of the given database are adequately
reproduced. An important drawback resides in the incapa-
bility of creating new time series, i.e., unobserved meteo-
rological situations. To alleviate this undesirable feature, the
second category of weather generators is based on sto-
chastically drawing random realizations from a statistical
model whose parameters have been estimated on a database
of past observations. If such parametric or semiparametric
models are well built, then most of the distributional char-
acteristics of the studied variables can be reproduced. For
example, WGen and LARS‐WG, introduced by Richardson
[1981] and Semenov and Barrow [1997], respectively,
belong to this class of weather generators. Apipattanavis et
al. [2007] attempted to combine both categories in a single
semiparametric approach. By construction, analog or non-
parametric methods are not well adapted to the climate
change context. We thus decided to opt for a parametric
approach, in which climate change could be accounted for
by making the parameters varying. In this paper we present
the weather generator for a stationary climate. By this we
mean that, even though the parameters of probabililty dis-
tributions depend upon the season, they do not change from
year to year. Adaptation of the weather generator to climate
change is left to further works.
[4] Most parametric weather generators work by defining

two daily precipitation states: dry or wet days. The state
transitions are classically modeled by a Markov chain
[Semenov et al., 1998]. Conditionally on the precipitation
state, the other meteorological variables are often assumed
to be independently and identically distributed (iid) (e.g.,
CLIMGEN [Stockle et al., 1998]). More complex models
have also been proposed. For example, Furrer and Katz
[2007] studied a generalized linear model conditioned on
rainfall occurrences in order to integrate the ENSO index as
a prior information. In contrast to these models for which
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only two states were defined, we have chosen to extend the
number of daily states. This strategy allows us to better
capture the complexity of weather changes. This concept of
daily states has been successfully applied in downscaling
large information to local scales. Boé et al. [2006] and Boé
and Terray [2008] used for example weather types defined
in terms of large‐scale circulation similarities based upon
the 500 hPa geopotential height resulting from the down-
scaled ARPEGE atmospheric model [Gibelin and Déqué,
2003]. Vrac and Naveau [2007] built precipitation‐related
patterns from a set of observed local precipitation records. In
order to differentiate our approach from the large scale, we
will use the term of weather state.
[5] Concerning the distribution of the variables of inter-

est, daily precipitation amounts have been either fitted by a
gamma or an half‐normal distribution [e.g., Semenov et al.,
1998]. Gaussian distributions generally model temperatures
and radiations. Semenov et al. [1998] emphasized that some
variables such as radiations can strongly depart from
Gaussianity (see, e.g., Figures 8g and 9g). To overpass this
problem, Young [1994] implemented a mixture of distribu-
tion. In this paper we also propose a mixture of distribution
but with two major differences. First, each cluster of the

mixture corresponds to one weather state and, second, the
distribution within each cluster (i.e., within each weather
state) belongs to the family of multivariate closed skew‐
normal (CSN) distributions [Genton, 2004; Pewsey and
González‐Farías, 2007]. This class of distribution offers a
general framework to fit both non‐Gaussian and Gaussian
variables. Conditionally to weather states, CSN distributions
will be fitted to our five variables.
[6] The present paper describes in section 2 the general

structure of our weather state approach with a multivariate
closed skew‐normal generator (named WACS‐Gen) and
briefly recalls the main properties of the closed skew‐normal
distribution. In section 3 an algorithm is proposed to esti-
mate the parameters of the model and then in section 4 a real
meteorological series measured in Colmar (France) is
compared to series simulated by WACS‐Gen with para-
meters estimated on a subset of this series.

2. WACS‐Gen: A Weather Generator Based on
Weather States and Skew‐Normal Distributions

[7] We first explain how seasonality is accounted for.
When a within‐year trend is detected on a variable, the

Figure 1. Measured (a) minimal temperature, (b) maximal temperature, and (c) radiation time series in
Colmar from 1 January to 31 December 1980. Thick grey lines show the medians. Thin grey lines show
median plus or minus absolute deviation.
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median and the average absolute deviation (defined as the
mean of absolute difference between the variable and its
median) are computed for each day and smoothed by a
spline function [Green and Silverman, 1994]. This smoothed

median is then subtracted to the studied variable and the
difference is rescaled by the smoothed average absolute
deviation. This normalization procedure is preferred to the
classical mean and standard deviation based technique
because rank statistics like median are more robust in pres-
ence of a departure from symmetry (see, e.g., the radiation).
For the example of the Colmar series studied below, tem-
peratures and radiations depend highly upon the day in the
year (Figure 1). Figures 1a, 1b, and 1c correspond to tem-
perature minima and maxima and radiations, respectively.
No significant trend could be detected for precipitation
intensity and wind speed (Figure 2). After transformation,
and given a season and a weather state (see below), these
temperature and radiation residuals are assumed to be
stationary. They are the main object of this study. They will
be studied independently within the four following sea-
sons: December‐January‐February (DJF), March‐April‐May
(MAM), June‐July‐August (JJA) and September‐October‐
November (SON) [Semenov et al., 1998].
[8] In the last decade, weather types have been frequently

used to analyze various physical and stochastic climate
models outputs at large scale [Boé et al., 2006; Boé and
Terray, 2008; Vrac and Naveau, 2007]. Weather types are
classically defined for each season and their number varies
from eight to ten types per season [Bubnova et al., 1995].
[9] The proximity among meteorologically similar days

can be determined by clustering methods. The two “wet”
and “dry” weather states defined in earlier versions of
weather generators can be viewed as a special case with only
two weather states. At the other end of the spectrum, analog
methods correspond to an extreme case in which there are as

Figure 2. Measured (a) precipitation and (b) wind speed
time series in Colmar from 1 January to 31 December 1980.

Figure 3. Density of a standard bivariate Gaussian vector with correlation parameter 0.5. Marginal
histograms are plotted on corresponding sides.
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many weather states as days. In this paper we strike a middle
ground in which the number of states is not fixed a priori but
is inferred from the data under study. More precisely, our
multivariate clustering in NW weather states is obtained by
separately running a clustering algorithm on wet days and
on dry days, respectively. The task is implemented with the
Mclust function from the MClust package developed by
Fraley and Raftery [2003, 2006] for R, an open source
statistical software. The likelihood increases when the
number of parameters, hence the number of clusters,
increases. Choosing a large NW also has to be viewed as a
cost, otherwise the number of clusters will always be equal
to the number of days. The number of weather states NW is
thus derived by optimizing the Bayesian information crite-
rion (BIC) [Schwarz, 1978]. BIC penalizes the log likeli-
hood of the model with a term equal to the number of free
parameters times the logarithm of the data number. The
transitions between successive weather states are modeled
by a first‐order homogeneous Markov chain with NW states.
This simply means that (1) the weather state of a day t,
say W(t), only depends on the weather state W(t − 1) at
day (t − 1) and (2) the probability of such transitions is
assumed to be independent of time and can be written as

pw;w0 ¼ p W t þ 1ð Þ ¼ w0jW tð Þ ¼ wð Þ; with w;w0ð Þ 2 f1; ::;NWg2:
ð1Þ

[10] Skew‐normal distributions are extensions of the
normal distribution which admit skewness while retaining
most of the interesting properties of the Gaussian distribu-
tion. An overview of theoretical and applied developments
related to skewed distributions is provided in the book
edited by Genton [2004]. More recently, a special issue
in the journal Communications in Statistics edited by
Pewsey and González‐Farías [2007] was centered on the
different aspects of skew distributions. Concerning its
definition, a k‐dimensional random vector Y is said to have a
multivariate closed skew‐normal distribution, denoted by
CSNk,l(m, S, D, n, D), if its density function is of the form

fk;l yð Þ ¼ cl �k y;m;Sð Þ �l D
t y� mð Þ;n;Dð Þ;

with c�1
l ¼ �l 0;n;Dþ DtSD

� �
; ð2Þ

where m 2 Rk and n 2Rl are both location vectors, S 2Rk×k

and D 2 Rl×l are both covariance matrices, D 2Rk×l,
�k(y; m, S) and Fk(y; m, S) are the probability distribution
function (pdf) and cumulative distribution function (cdf),
respectively, of the k‐dimensional normal distribution with
mean vector m and covariance matrix S, and Dt is the
transpose of the matrix D. In the particular case D = 0 then
Y is the usual k‐dimensional normal distribution with mean
m and variance covariance matrix S. The difference
between Gaussian and skew‐normal densities are illustrated
Figures 3 and 4. Clearly, adding a skewness parameter
through the skew‐normal distribution provides flexibility for

Figure 4. Density of a standard bivariate closed skew‐normal vector CSN*2 with skewness parameter
(−0.94, 0.70) and correlation parameter r = 0.5 simulated from equation (3). Marginal histograms are
plotted on corresponding sides.
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modeling skewness on the margins but also in the bivariate
density. González‐Farías et al. [2004] noticed that the CSN
distributions defined by (2) are overparameterized and that
without loss of generality n can be set equal to 0. In prac-
tice, the normalizing constant cl

−1 defined in (2) can be
difficult to compute. To simplify its expression, we assume,
without loosing the skew‐normal flexibility, that k = l, D =
S�1

2 S and D = Ik − S2 where S�1
2
t

S�1
2 ¼ S�1, Ik is the k‐

dimensional identity matrix and S is a diagonal matrix with
elements in [−1, 1]. With this parameterization, equation (2)
becomes

fk;k yð Þ ¼ 2�k �k y;m;Sð Þ �k SS�1
2 y� mð Þ; 0; Ik�S2

� �
;

which will be denoted CSN*k(m, S, S) and is similar to the
homotopic framework described by Allard and Naveau
[2007]. On all climate series considered as part of the
research project CLIMATOR (11 sites in France), and in
particular on the Colmar series studied in this paper, we
observed that mixtures of skew‐normal densities could
adequately be fitted on (R, V, Tn, Tx). This hypothesis is
however not necessarily reasonable for precipitations. Daily
rainfalls were properly fitted in most cases by a Gamma
distribution, which does not belong to the class of CSN. The
gamma distribution was chosen for its flexibility to model
distributions of precipitation amount encountered the
11 locations in France. Other choices, like generalized
Pareto distributions (GPDs) are of course possible and can
easily be implemented. GPD was not chosen because it is

theoretically constructed to fit very high values above a high
fixed threshold. This paper does not focus on extreme
rainfalls. The aim is rather to model the entire distribution.
The variable P is thus transformed for all seasons into ~P =
F−1(G(P)) where G represents the fit by a Gamma cdf and
F−1 corresponds to the inverse of the standardized Normal
cdf. ~P is thus modeled as a Gaussian random variable; for a
given season and a given weather state, ~P will be considered
as a CSN in order to account for possible asymmetries
within clusters. This allows us to assume that, for a given
season and a given weather statew, the vector (~P, R, V, Tn, Tx)
follows a CSN*5(mw, Sw, Sw) with

mw ¼
�w;1

..

.

�w;5

2
664

3
775;Sw ¼

c1;1w c1;2w � � � c1;5w

c2;1w c2;2w
. .
. ..

.

..

. . .
. . .

. ..
.

c5;1w � � � � � � c5;5w

2
6666664

3
7777775
;

Sw ¼

�w;1 0 � � � 0

0 �w;2
. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 �w;5

2
666664

3
777775;

where the subscript w indicates that this vector is defined
conditionally to the weather state w and the subscript for the
season is dropped to simplify notations. Under this assump-
tion, correlations among our five variables are modeled
within a unique and common multidimensional distributional
framework.
[11] Concerning the representation of temporal persis-

tence [Rajagopalan and Lall, 1999], let us consider two
consecutive days t and t + 1 and their associated weather
states, say w and w′. The main question here is how the five
dimensional structure of the CSN* vector Xw at time t can
be changed to become a five dimensional CSN* vector Xw′

at time t + 1. This is achieved by first rotating the vector Xw

in order to make its margins independent. Lemma 1 (see
Appendix) provides the elements to perform this first step.
The transformed vector

~Xw ¼ S�1=2
w Xw � mwð Þ � CSN5* 0; I5; Swð Þ; ð3Þ

whose margins are independent and distributed as
CSN*1(0, 1, dw,i). For the particular case of dry days the
dimension of ~Xw is reduced to four since precipitation is
always equal to zero. Equation (3) allows to model the
temporal evolution from ~Xw to ~Xw′ only throughout their
marginals. As a second step, the pairwise structure between
the ith components of ~Xw and ~Xw′ is assumed to be a
bivariate CSN2,2(0, S

ið Þ
w;w0 , Dw,w′

(i) , 0, Dw,w′
(i) ) where

S ið Þ
w;w0 ¼ 1 �i

�i 1

� �
;D ið Þ

w;w0 ¼ 1

1� �2i

�w;i ��i�w;i
��i�w0

;i �w0
;i

� �
;

and

D ið Þ
w;w0 ¼ I2 � 1

1� �2i

�2w;i ��i�w;i�w0;i

��i�w;i�w0;i �2w 0 ;i

� �
:

Figure 5. Number and frequencies of weather states for
each season: wet weather states (black hatching) and dry
weather states (grey hatching).
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Lemma 2 ensures that the margins of this bivariate vector
are indeed CSN*1(0, 1, dw,i).

3. Parameter Estimation and Weather Generator
Scheme

[12] The weather state transition probability defined by
(1) is simply estimated by

p̂w;w0 ¼ ] W tð Þ ¼ w;W t þ 1ð Þ ¼ w
0� 	

] W tð Þ ¼ w½ � ; ð4Þ

where ] denotes the cardinal.
[13] Concerning the inference of the marginal CSN*

parameters, Azzalini and Capitanio [1999] studied the
classical maximum likelihood estimation (mle) approach
and Flecher et al. [2009] proposed a weighted moment
method. Conditionally to the weather state w, a mle
approach ignoring temporal dependence is implemented to
estimate the parameters of CSN*5(mw, Sw, Sw). The esti-
mates are only slightly changed if the temporal dependence
is taken into account in the estimation procedure. It has a
larger impact on the covariance matrix of the estimators of

the parameters, but since this matrix is not used in the
weather generator, this point is simply ignored for the sake
of ease of use.
[14] Then the correlation coefficient ri inS

ið Þ
w;w0 ¼ 1 �i

�i 1

� �
is estimated via a weighted moment approach [Flecher et al.,
2009], i.e., by solving the following equation in ri

E �2 ~X ið Þ
w tð Þ; ~X ið Þ

w0 t þ 1ð Þ
� �

; 0; I2
� �� �

¼ 4�4 0; 0;M ið Þ
w;w0

� �
;

where ~Xw
(i)(t) corresponds to the ith component of the vector

~Xw at time t,

M ið Þ
w;w0 ¼ 1

1� �2i

2 1� �2i
� �

�i 1� �2i
� �

�w;i � �2i �w0 ;i �i �w0 ;i � �w;i

� �
�i 1� �2i
� �

2 1� �2i
� �

�i �w;i � �w0 ;i

� �
�w0 ;i � �2i �w;i

�w;i � �2i �w0
;i �i �w;i � �w0

;i

� �
1� �2i
� �

0

�i �w0 ;i � �w;i

� �
�w0 ;i � �2i �w;i 0 1� �2i

� �

2
666666664

3
777777775
;

Figure 6. Bivariate plot (Tx, R) with estimated densities for the three dry weather states during JJA
season. The plot inside the box shows the following: thin solid lines, kernel estimates of the bivariate
densities; thick dashed lines, estimated CSN* densities. Plots along the top and right of the box show
marginal densities: thin solid lines, kernel densities; thick solid lines, CSN* densities; thin dashed lines,
mixture of kernel densities; thick dashed lines, mixture of CSN* densities.
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andE(F2((~Xw
(i)(t), ~Xw′

(i)(t + 1)); 0, I2)) is replaced by its empirical
estimator.
[15] After estimating the parameters, the following algo-

rithm simulates realizations of the five dimensional vector of
interest.

1. A season is chosen and one ~X(0) is randomly chosen
(e.g., with an analog method).

2. The transition probabilities estimated with (4) are used
to generate a Markov chain sequence of weather states.

3. Given ~X(t) = xt and two consecutive weather states,
w and w′, a realization of the vector ~X(t + 1) defined by (3) is
drawn according to (see Lemma 2)

~X ið Þ
w0 t þ 1ð Þj~X ið Þ

w tð Þ ¼ x ið Þ
t

h i
� CSN1;2 �i x

ið Þ
t ; 1� �2i ;D

ið Þ
c ;n ið Þ

c ;D ið Þ
c

� �
;

where

D ið Þ
c ¼ 1

1� �2i

�i�w;i

�w0
;i

" #
;n ið Þ

c ¼ � 1

1� �2i

�w0
;i

��i�w;i

� �
x ið Þ tð Þ;

D ið Þ
c ¼ I2 � 1

1� �2i

�2w;i ��i�w;i�w0
;i

��i�w;i�w0
;i �2

w0
;i

" #
:

4. To invert relation (3), ~X is multiplied byS1=2

w0 andmw′ is
added.

5. To add back trends and seasonal effects, we inverse the
steps of the standardization based on the median and the
absolute deviation described in the first paragraph of
section 2.

4. Weather Data in Colmar, France

[16] Colmar, a city in the north east part of France, is
located at 48°05′N latitude, 7°21′E longitude and has an
altitude of 175 m. A 20 year series is available from 1973
to 1992 for the five daily variables under study. Annual
precipitation amounts are about 530 mm and the frequency of
rainy days is about 1/4. The climate is characterized by warm
summers from June to September and cold winters (the
annual temperature cycle is well marked with a 25°C mean in
July and 2°C in January). Both oceanic and continental cli-
mate trades can affect this site. This produces an important
variability on the daily meteorology.
[17] For each season a maximum of eight different

weather states is allowed. The BIC criterion provides a
number of regime clusters that is equal to five for the JJA
season and six for the other seasons. The repartition per
season appears to be fairly homogeneous throughout a year
(see Figure 5).
[18] The estimation of the parameters of the CSN* dis-

tributions is illustrated during dry days of the JJA season on
the pair of variables (Tx, R) (Figure 6). The bivariate dis-
tributions in each cluster (i.e., weather state) are well
modeled by their corresponding CSN* densities. The two
marginal densities resulting from the mixture are fairly well

Figure 7. Dry spell lengths (a) from 2 to 15 days and (b) from 16 to 70 days. Solid line, measurements;
crosses, number of dry spells in 30 simulations; black line, mean of these simulations. Note the scale
change in the y axis between Figures 7a and 7b.
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Figure 8. Densities of (a and b) minimal temperatures, (c and d) maximal temperatures, (e and f) radia-
tions, and (g and h) wind speed for (left) DJF and (right) MAM. Black line, measurements; grey dashed
lines, simulations.

FLECHER ET AL.: STOCHASTIC DAILY WEATHER GENERATOR W07519W07519

8 of 15



Figure 9. Same as Figure 8 but for (left) JJA and (right) SON.
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reproduced. Although presented here with a pair of variables
for the ease of representation, similar results are obtained for
the full vector of 5 variables, and for all seasons.
[19] After estimating our CSN* model parameters, thirty

runs of 20 years are simulated. As a first step to compare our
simulated time series to Colmar measurements, Figure 7
shows the dry spell length distribution computed from the
Colmar observations (solid lines), the average on thirty
simulations (dashed line) and the values of the thirty simu-
lations (crosses), for all seasons pooled together. Similar
results were obtained when considering each season sepa-
rately. The left plot focuses on dry spell lengths shorter than
15 days and the right plot zooms on longer dry spells. Both
graphs indicate that this variable is fairly well reproduced by
our Markov chain. Concerning the five variables of interest,
their densities are shown in Figures 8 and 9. For each
season, Figures 8a, 8b, 9a, and 9b display minimal tem-
peratures, Figures 8c, 8d, 9c, and 9d display maximal tem-
peratures, Figures 8e, 8f, 9e, and 9f display radiation, and
Figures 8g, 8h, 9g, and 9h display wind speed densities. The
black solid lines correspond to the measurements and the
grey dashed lines represent the thirty realizations obtained
with our weather generator. In Figure 8, the left and right
plots correspond to DJF and MAM, respectively. Figure 9
shows the same information for JJA and SON, respec-
tively. These plots exemplify the advantage of the CSN
distribution, which is able to capture the skewness exhibited
in radiations and wind speed distributions. Note that the
probability density function of radiation is not very well
fitted during JJA (Figure 9e). The fit can be significantly
improved by defining two additional weather states (figure
not shown). The difference between the BIC criterion for 6

and 8 clusters is positive, but small. In this paper we focus on
the general presentation of the generator; the problem of
finding other criteria than BIC for selecting the number of
clusters will be the subject of further work. We therefore
maintain the current fit with 6 clusters.
[20] Concerning precipitation intensity, its distribution

is represented by a quantile‐quantile plot (QQ plot) in
Figure 10. This QQ plot is defined as the sorted simulated
rainfalls versus the sorted historical record. A good fit
corresponds to the first diagonal. This graph indicates that
precipitation amounts are well reproduced by the generator.
On this site, the highest observed precipitation is 70 mm,
while the highest simulated precipitations are in the range
40–68 mm. Note however that the mean precipitation is well
reproduced and that on other sites the opposite situation
(higher simulated highest precipitations than measured
ones) can be observed (results not reported here).
[21] In Figure 11, star plots represent correlations between

our five variables for each season. Large positive correla-
tions are near the star plot border whereas large negative one
are near the center. Such graphs provide a graphical way to
view a correlation matrix. The correlations between pre-
cipitation and other variables are only computed for wet
days. Figure 11 shows that our model is capable to repro-
duce the observed cross correlations. For each variable, the
correlations between two consecutive days is represented
with the same star plot graph in Figure 12. The persistence
between two consecutive days is well reproduced except for
the winter season (DJF), which provides the most severe
discrepancy between observations and simulations, mainly
for temperature variables.
[22] Wind speed and precipitation are variables known to

be difficult to model. To study the improvement brought by
the introduction of multiple weather states, thirty additional
simulations of 20 year length are also obtained by forcing
our generator to only have the two classical wet and dry
weather states. In Figure 13, wind speed boxplots and
densities are obtained with a classical two weather states
(wet and dry) and for six weather states, as defined in
Figure 5, respectively. Figure 14 are quantile‐quantile plots
of the amount of precipitation for the Colmar series and for
each of the 30 simulations in the two cases: multiple
weather states case (Figure 14a) and classical wet/dry case
(Figure 14b). For both variables, introducing multiple
weather states improves significantly the fitting of the dis-
tribution. Current stochastic weather generators are for
example known to underestimate the probability of small
precipitations as explained by Semenov et al. [1998]. In the
case of Colmar, the precision of the data is 0.1 mm. The
overall frequency of precipitation less than or equal to 2 mm
is 6.1% on the data. On simulations with two wet/dry
weather states it ranges from 1.6% to 2.3%. On simulations
with a BIC optimized number of weather states, it ranges
from 5.6% to 7.1%.
[23] Figure 15 displays the wind speed autocorrelation

boxplot for each season computed with a two or six weather
states. The horizontal black lines correspond to the observed
wind speed autocorrelation per season. Despite the inca-
pacity for both generators to reproduce the wind speed
autocorrelation in the MAM season, Figures 13 and 15
clearly show the improvement brought by the introduction
of additional weather states for wind speed distribution

Figure 10. QQ plots of precipitations (all seasons pooled
together). Black line, measurements; grey dashed lines, si-
mulations. The five largest values are represented by points
for each simulation.
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Figure 11. Correlations between variables for each season. Large positive correlations are near the bor-
der of the star plot, whereas large negative ones are near the center. Black line, measurements; grey lines,
simulations.
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and autocorrelation modeling. Concerning precipitation,
Figure 16 indicates that generators with two or more weather
states do provide decent but not excellent results.

5. Conclusion

[24] We have presented WACS‐Gen, a new weather
generator, which presents several improvements compared
to previous ones: (1) the number of weather states is no
longer limited to the dry/wet states, but is fitted to the var-
iability of the observed data using a model‐based clustering
algorithm on detrended data and (2) conditionally on the
season and the weather state, the multivariate data are
modeled using CSN distributions, thus allowing for residual
skewness; correlation between variables and along time is
also modeled, including between successive days with dif-
ferent weather states.
[25] Allowing for multiple weather states is a major

improvement, but it raises the question of defining a good

criterion for selecting the correct number of clusters. Here,
we have proposed to use BIC, a widely used criterion in
model based clustering [Fraley and Raftery, 2003]. It pro-
vides most of the time a very good fit of the probability
densities. In one situation (radiation during JJA), the fit
could be improved by increasing the number of clusters, as
compared to the BIC criterion. Finding better criteria than
BIC will be the subject of future work.
[26] This generator has been tested on different weather

series measured in contrasted climatic regimes across
France. Although we only have reported results on the
Colmar series due to space constraints, our results showed
consistently that WACS‐Gen substantially improves the
reproduction of histograms, cross and temporal correlations
as compared to generators with only dry/wet weather states.
Histograms are also very well reproduced thanks to the
mixture of CSN distributions inherited from the multiple
weather states. Of particular interest is the ability of our
generator to model the correlation between the amount of

Figure 12. Correlations between two consecutive days for the same variable. Black line, measurements;
grey lines, simulations.
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precipitation and the other variables instead of only condi-
tioning these variables to the precipitation event.
[27] We still have some difficulties in reproducing some

statistics, in particular correlations with wind speeds and

extreme events. Wind speed is known to be a difficult
variable, with strongly nonlinear correlation to other vari-
ables. Although being able to account for asymmetrical
distributions, CSN are not targeted at modeling extreme
data. Future improvements on weather generators should be
focused on integrating extreme values theory to better
reproduce extreme events, and on modeling nonlinear rela-
tionship between variables. The impact of these improve-

Figure 13. Wind speed. Solid line, measured wind speed
density; box plots, simulated densities with dry/wet weather
states; grey lines, simulated densities with multiple weather
states.

Figure 14. QQ plots of precipitations (overall) (a) with multiple weather states and (b) with dry/wet
weather states. Black line, measurements; grey dashed lines, simulations.

Figure 15. Wind speed autocorrelation box plots for each
season. Grey boxes, dry/wet weather states; open boxes,
multiple weather states.
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ments on crop models still needs to be assessed, which will
be our very next task.
[28] In the framework of climate change studies, we not

only need to consider that the parameters will change with
time, but we also need to consider the change of support (i.e.,
downscaling) problem. General climate models provide
output variables varying with time. at very large scale, while
crop models need weather variables at very small scale; we
therefore need to provide models to estimate small‐scale
parameters from large‐scale data. This should be treated in a
forthcoming paper.

Appendix A

[29] The following lemmas can be derived from the CSN
properties described by González‐Farías et al. [2004] and
Genton [2004]. Proofs are technical, but otherwise
straightforward. They are available upon request.

Lemma 1. Let X be a CSNn,n(m, S, SS−1/2, 0, In − S2),
where S−1/2 is defined as a positive symmetric matrix such
that S−1/2S−1/2 = S−1 and S = diag(d), with d = (d1,…,dn)

t.
Then

~
Y =S−1/2(Y − m) follows a CSNn,n(0, In, S, 0, In − S2).

Lemma 1 indicates that the skewness parameter remains
unchanged after standardization.

Lemma 2. LetX = (X1,X2) be a CSN2,2(0,S,D, 0,D) with

S ¼ 1 �

� 1

� �
;D ¼ 1

1� �2
�1 ���1

���2 �2

� �
;

D ¼ I2 � 1

1� �2
�21 ��1�2

��1�2 �22

" #
;

then
1. both margins are distributed as a CSN1,1(0, 1, di, 0,

1 − di
2) for i 2 {1, 2}.

2. the conditional distribution of X2 given X1 = x1 is a
CSN1,2(mc, sc

2, Dc, nc, Dc) with mc = rx1, sc
2 = 1 − r2,

Dc ¼ 1

1� �2
���1

�2

� �
; �ð Þc ¼

1

1� �2
�1

���2

� �
x1;

Dc ¼ I2 �
�21 ���1�2

���1�2 �22

" #
:
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