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The analysis of methylation patterns is a promising approach to investigate the genealogy of cell populations in an
organism. In a stem cell–niche scenario, sampled methylation patterns are the stochastic outcome of a complex
interplay between niche structural features such as the number of stem cells within a niche and the niche succession
time, the methylation/demethylation process, and the randomness due to sampling. As a consequence, methylation
pattern studies can reveal niche characteristics but also require appropriate statistical methods. The analysis of
methylation patterns sampled from colon crypts is a prototype of such a study. Previous analyses were based on
forward simulation of the cell content of the whole crypt and subsequent comparisons between simulated and
experimental data using a few statistics as a proxy to summarize the data. In this paper we develop a more powerful
method to analyze these data based on coalescent modelling and Bayesian inference. Results support a scenario where
the colon crypt is maintained by a high number of stem cells; the posterior indicates a number greater than eight and
the posterior mode is between 15 and 20. The results also provide further evidence for synergistic effects in the
methylation/demethylation process that could for the first time be quantitatively assessed through their long-term
consequences such as the coexistence of hypermethylated and hypomethylated patterns in the same colon crypt.
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Introduction

Most tissues are renewed during the life of the organism
through a continuous replacement of their differentiated
cells by new mature cells that originate from tissue-specific
stem cell lineages. Genetic and epigenetic somatic variations
having long-term consequences are believed to preferentially
affect these cell lineages. Besides its intrinsic interest,
understanding the structure of the stem cell populations is
therefore expected to help gene therapy, cancer therapy, and
aging research. Our knowledge about the adult tissue-specific
stem cells is still sparse, but the experimental results
accumulated during the past decades on several tissues from
a few organisms suggest the existence of stem cell niches [1,2].
Each niche contains a small self-renewing population of
proliferating cells, the stem cells, whose progeny commit to
differentiation processes that span several rounds of cell
division. In some tissues, such as Drosophila ovary and testis,
cells that enter differentiation processes have been shown to
be the result of asymmetric stem cell divisions giving rise to
one stem cell and one cell committed to differentiation [3]. In
this context, rare symmetric stem cell division events
producing either two cells committed to differentiation or
two stem cells may compensate for occasional gain or loss of
one stem cell [4].

Cell turnover is particularly fast in the gastrointestinal
epithelium where the mature differentiated cells live only a
few days. In this epithelium, the self-renewing unit is a small
and morphologically well-identified structure known as the
intestinal crypt. Probably owing to this relatively simple
anatomical structure and its rapid cell turnover, the intestinal
epithelium is one of the tissues where the stem cells have been

the most studied in mammals. Results have been recently
reviewed in [5–7].
Each crypt contains about 2,000 cells in Human and

exhibits a strong polarity with mature epithelial cells located
at the extremity of the crypt opening onto the gastro-
intestinal tract. Phenotype markers allowing an accurate
identification of intestinal stem cells are still lacking,
although some progress is being made [8]. Staining experi-
ments of cell lineages in mouse using tritiated thymidine
show that cells migrate away from the base of the crypt
toward the lumen while they differentiate [9,10]. The stem
cell niche is therefore believed to be located at the base of the
colon crypt. In the small intestine, the situation is slightly
different as Paneth cells occupy the very base of the crypt (a
type of mature differentiated cell absent in the colon crypt)
and the stem cell niche is believed to be located just above the
Paneth cells.
Gastrointestinal stem cells have a short cell cycle: they seem

to divide daily in the mouse small intestine and may divide
about weekly in the human colon [5,6,11]. Staining experi-
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ments with tritiated thymidine in mouse reveal asymmetric
segregation of the DNA between daughter cells during stem
cell division: stained template strands are retained through
rounds of cell divisions at the likely location of the stem cell
niche [12]. This suggests that mechanisms reducing the
probability of mutations in the stem cell lineages may exist.
It also provides strong support for a central role of
asymmetric stem cell division in the stability of the intestinal
stem cell populations. Experiments with chimeric mice and
with mutagen agents have shown that crypts initially
polyclonal for one marker eventually become monoclonal,
which suggests that symmetric division occasionally occurs
and leads to a niche succession by stochastic extinction of
stem cell lineages. The time needed for a single stem cell
lineage to replace all other lineages, or ‘‘clonal stabilization
time,’’ was measured as approximately 24 weeks in the mouse
small intestine but only four weeks in the mouse colon.
Studies are much harder in human where mutagenesis
experiments cannot be undertaken. Making use of radio-
therapy-induced mutations, one study suggested that a
significant fraction of the somatic mutations in human colon
stem cells are lost within one year [13].

Most of the insights we have about the number of stem cells
in intestinal crypts come from mouse studies where the
number of crypts surviving increasing doses of radiation is
measured. The underlying hypothesis of these studies is that
the number of stem cells can be estimated assuming a simple
model for dose-dependent cell death if crypts regenerate, as
long as one stem cell survives the treatment. However, the
estimated number of stem cells increase from about six to 36
as higher doses of radiation are used. It may be that a cell that
would differentiate in a normal context can be recruited to
regenerate the crypt [5], but alternative explanations cannot
be ruled out [14]. This also emphasizes the difficulty of
estimating the actual number of stem cells in normal
physiological conditions by this approach. Another limitation
of this approach is that it cannot be used in humans.

We recently proposed to investigate the properties of the
human intestinal stem cell populations through the analysis
of methylation pattern polymorphism that occurs naturally
within the crypts in some CpG islands [15,16]. Methylation at
CpG sites serves as cell lineage markers in these analyses as
inheritable methylation changes occur somatically [17].
Compared with genetic DNA sequences that are widely used

in population studies at the organism level, epigenetic
methylation patterns have the advantage of evolving much
faster. Even a small number of CpG sites can carry
information about the underlying genealogy of cells sampled
from closely related lineages. Several aspects of the approach
make it particularly attractive: it does not require any
treatment that could disturb the normal self-renewal dynamic
of the crypt; it provides accurate discrete data richer than
binary phenotype polymorphism; and it is practicable in
humans.
Our previous analyses of the methylation pattern poly-

morphisms were based on forward simulations of the whole
crypt content under a simple stem cell–niche model [15,16].
Although it provided support for a stem cell–niche model
with multiple stem cell lineages whose genealogy shows
coalescent events leading to stochastic niche succession
during life, this approach allows only rather crude estimate
of the model parameters. In particular, it did not give us an
estimate of the number of stem cells. This study further
analyzes these data in light of the simple stem cell–niche
model using a more sophisticated methodological framework.
We present a full probabilistic model of the methylation
patterns sampled from a crypt together with a Markov chain
Monte Carlo (MCMC) algorithm allowing Bayesian inference
of its parameters that include the number of stem cells, the
depth of the genealogical tree (niche succession time), and
the rate of the methylation/demethylation process. The fit of
the model is assessed by comparing the observed values of
several statistics summarizing the data with their posterior
distribution under the model. We compare the estimates of
the model parameters in either an unconstrained model or a
model with short niche succession time.

Results

Polymorphic Methylation Patterns within the Crypts
In this study, we analyze methylation at nine CpG sites in a

77-bp locus within a CpG island upstream of the human
biglycan (BGN) gene on chromosome X [15]. Our data consist
of methylation patterns at loci randomly sampled from
individual colon crypts from seven male patients between 40
and 87 years old.
The total of 57 crypts studied here can be divided into

eight-pattern and 24-pattern datasets. The eight-pattern data
comprise the sequences of between five and 14 methylation
patterns for 37 crypts isolated from five patients whom we
described in a previous study [15]. The 24-pattern data are
new, and correspond to the sequences of between 20 and 24
methylation patterns for another 20 crypts sampled from
three patients (one patient is common to both the eight-
pattern and 24-pattern datasets). The patterns sampled from
these 20 crypts are shown in Figure 1.
All patients are males and therefore haploid for the BGN

locus. This simplifies the modelling of the genealogy of the
sampled sequences, as it ensures a one-to-one correspond-
ence between sequences and cell lineages.

Coalescent Model and Bayesian Methodology
Polymorphic methylation patterns arise from methylation

and demethylation events that take place in the genealogy of
the sampled cells. We propose a probabilistic model of the
observed polymorphism in terms of biologically meaningful
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Author Summary

The dynamics of the stem cell populations in human colon crypts
are of interest to cancer researchers and stem cell biologists alike.
One approach to studying stem cell divisions would be to adopt
methods from population genetics: cells are sampled from crypts,
DNA markers such as single nucleotide polymorphisms are
identified, and a model of how these mutations arose is used to
infer aspects of the ancestry of the sample. Because cells within an
individual are being studied, mutations of this sort are extremely
rare, and an alternative marker has to be used. Methylation patterns
provide a feasible alternative, containing information similar to that
obtained from short DNA sequences. The present study shows how
such data can be used to infer aspects of stem cell dynamics,
including inference about the likely number of stem cells in a crypt.
In addition, biological aspects of methylation and demethylation are
also studied.
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parameters that govern both the shape of this genealogy and
the methylation process. Events taking place in stem cell
lineages are believed to play a crucial role in the generation
of the observed patterns, and we first present how the model
accounts for the genealogy of those lineages along with their
methylation process. We next explain how the model relates
the sampled patterns to the patterns of the stem cell lineages.

The shape of the stem cell genealogy is described by two
parameters, N and s. N is the number of stem cells in a crypt
and s corresponds approximately to the average number of
years before niche succession within a crypt. Formally, s/2 is
the average waiting time for the coalescence of a pair of
lineages, whereas, from a biological point of view, s/(N�1) is
the average lifespan of a stem cell.

Methylation and demethylation in the stem cell genealogy
is modelled as a point process whose rates m are expressed in
terms of expected number of events per CpG site in time s
(before niche succession time). In agreement with experi-
mental observations [15], CpG sites at the BGN locus are
modelled as initially unmethylated at the birth of the patient.
Two models were compared for the somatic methylation/
demethylation process. In a first model, we distinguish
methylation and demethylation rates, but sites are independ-
ent. In a second, more complicated, model we allow for
interactions between sites through rates that depend on the
current level of methylation of the locus. We later refer to
this model as the context-dependent model.

Sampled methylation patterns are related to those found in

the stem cell lineages through three parameters, g, a, and e.
The parameter g can be interpreted as the number of cell
cycles of the cell differentiation process. It describes the
shape of the genealogy of cells sampled from the progeny of
the same stem cell (illustrated in Figure 2). Higher values of g
correspond to genealogies that tend to have longer terminal
branches (and so are more star-like). The parameter a reflects
the ratio between the amount of methylation and demethy-
lation in a cell lineage during the cell differentiation process
and in a stem cell lineage in time s. More precisely, a ¼ g/m,
where g is expressed in terms of the expected number of
events in a single lineage during the few cell divisions of the
differentiation process. The parameter e corresponds to the
rate of sequencing error per site per sequence.
Inference is carried out in a Bayesian framework using an

MCMC algorithm designed to sample the posterior distribu-
tion of the parameters given the data. An uninformative prior
is used. Parameters N, s, g, and e can take values in the
intervals (2,50), (0.5,200), (5,10), and (0,1), respectively.
Parameters m, a can take any positive values. The inference
framework was validated on simulated datasets.

Assessment of Model Fitness
The methodology developed by Gelman et al. [18] served to

assess the model adequacy. It consists in checking, through a
set of statistics, the extent of the discrepancies between the
data and datasets simulated with the model using parameters
sampled from their posterior. Here data are summarized by
the intercrypt average and standard deviation of five within-
crypt statistics. These summary statistics are the number of
distinct patterns, the number of polymorphic sites, the
average pairwise distance between patterns (the average
number of sites with distinct methylation status between
pairs of patterns), the number of entirely unmethylated
patterns, and the number of singletons (those patterns that
appear only once in the crypt).
Expected distributions and empirical values of the five

statistics are plotted in Figure 3. The fit of the model with
context-dependent methylation rate is much better than the
fit of the model with independent sites. This can be seen for
instance in the average and standard deviation of the number
of distinct patterns per crypt; in the standard deviation of the
average distance between patterns of the same crypt; or in the
average number of unmethylated patterns.
However, the model with a context-dependent methylation

rate still shows some lack of fit. In particular, intercrypt
variation in the number of singletons is higher than expected
for the 24-pattern datasets. A detailed patient-by-patient
analysis of the summary statistics (Table S1.1 in Protocol S1)
reveals that this discrepancy may be explained by variability
between patients: the observed intercrypt average of the
number of singletons by patient falls above the upper limit
99% confidence interval of its expected distribution for
patient X (4.0 singletons in average) and appears just at the
lower limit of the 95% interval for patient X (0.86 singletons
in average) (see Figure 1 for visual inspection).
This observation encouraged us to ignore data from

patient X. The results then show a remarkable match between
observed and simulated values (Figure 3, right, and Table S1.1
in Protocol S1). Such fit could not be achieved by exclusion of
either patient Y or M (Table S1.2 in Protocol S1). Besides,
data from patient X were found to shift the posterior of

Figure 1. Sampled Methylation Patterns at the BGN Locus from Three

Patients

(Top to bottom) Patient X, 58 years old; patient Y, 81 years old; patient M,
87 years old. Each circle represents the status of one CpG site in one
sequence (empty circle when unmethylated, filled circle when methy-
lated). A group of nine circles aligned horizontally corresponds to a
methylation pattern. The patterns from the same crypt form a block.
Notice that the BGN locus of the 87 year-old patient contains only eight
CpG sites due to a single nucleotide polymorphism (gray sites).
doi:10.1371/journal.pcbi.0030028.g001
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number of stem cells to higher values of N, probably due to
the high number of singletons (Figure 4). The consequences
of excluding either patient Y or patient M on the posterior of
N were also explored (Figure S1.1 in Protocol S1), and patient
X was found to impact the most on the posterior of N.
Ignoring patient X actually softens our conclusions on the
number of stem cells and can therefore be regarded as a
conservative choice which further illustrates the relevance of
a careful assessment of the model fit. We were also able to
show that enhanced rates of methylation/demethylation are a
possible hypothesis to explain the data from patient X (Figure
S1.2 and Table S1.3 in Protocol S1).

Posterior Suggests Many Stem Cells and Long Niche
Succession Time

The marginal posterior of each parameter of the model
with context-dependent methylation rate obtained after
removing data from patient X is shown in Figure 5 (N and
m) and Figure 6 (s, g, a, and e). The posterior distribution of N,
s, and g give a clear picture of the main features of the shape
of the genealogy. The posterior distribution of the number of
stem cells, N, reaches its mode between 15 and 20, gives little
support for values of N below 8, and seems to exclude any
value of N smaller than 6. The posterior distribution of s
suggests that the actual value of this parameter, which
corresponds approximately to the average time before the
stem cell population finds its most recent common ancestor,
is located between 15 and 40 years. Finally, there seems to be
very little information on parameter g that accounts for the
shape of the genealogy of the cells sampled from the progeny
of the same stem cell: the posterior distribution of g closely
matches its continuous uniform prior on (5,10).

The posterior distributions of the parameters that explain
the polymorphism given the genealogy are also enlightening.
Parameter m reveals synergistic methylation/demethylation
across the sites of the BGN locus. The methylation rate is
found to be highly dependent on the number of already
methylated sites. The rate is very low when no sites are
methylated and shows a more than fivefold increase when one

site is already methylated (the median of m moves from 0.05 to
0.35 methylation events per site in time s). It is then relatively
constant up to seven methylated sites and then increases
again. In contrast, demethylation dynamics does not seem to
depend on the current level of methylation. The posterior
distribution of the parameter a suggests that methylation/
demethylation events during cell differentiation contribute
little to the observed polymorphism: its density decreases
sharply between zero and 0.04, where it becomes negligible.
Finally, the posterior distribution of e indicates that
sequencing errors are extremely rare (rate smaller than
0.004 and more likely between zero and 0.002).
It is worth emphasizing the overall coherence of the picture

that emerges of this posterior inference: the genealogical
trees of the stem cell lineages up to their most recent
common ancestor are rather deep (high s), and most
methylation/demethylation events occur in those lineages
(small a). Furthermore, the value of a seems compatible with
the same probability of methylation/demethylation events per
cell cycle during differentiation and in the stem cell lineages.
A value of s of about 20 years suggests about 1,000 rounds of
cell divisions in the stem cell lineages before these lineages
find their most recent common ancestor (stem cells are
thought to divide about weekly in the human colon [6,11]),
whereas the number of rounds of cell divisions during
differentiation is certainly smaller than ten. Therefore, we
expect a value of a smaller than 0.01 ¼ 10/1,000.
The comparison with the posterior obtained from the full

dataset including patient X (Figures S1 and S2) reveals that
the data from patient X not only impact on the posterior of N
but also to a lesser extent on the distribution of a, e, and the
demethylation rates of hypomethylated sequences. In each
case, patient X shifts the distribution toward higher values of
the parameters. Inspection of the posterior obtained when
considering only the 24-pattern data without patient X
(Figures S3 and S4) indicates that most of the information
on N, g, a, and e is contained in the 24-pattern datasets while
the eight-pattern datasets greatly contributed to the infor-
mation on s and to a lesser extent to the information on m.

Figure 2. Modelling Differentiation Lineages

(Upper panel) Shows the genealogical structure of a crypt subpopulation made of the progeny of the same stem cell. Differentiation process spans
more than five rounds of cell divisions (g¼ 5), and differentiated cells are removed from the crypt when a new generation of differentiated cells arrives.
Levels of gray ranging from white for the stem cell lineage to black for the differentiated cells indicate the different differentiation stages.
(Lower panel) Illustrates the star-likeness of the genealogy of three cells randomly sampled from the progeny of the same stem cell. The lines of descent
of these three cells are highlighted in black.
doi:10.1371/journal.pcbi.0030028.g002
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Many Stem Cells versus Methylation Changes During Cell
Differentiation

Unconstrained posterior inference suggests that the high
level of intracrypt polymorphism is due to the existence of
many stem cells in each crypt (high N). An alternative
explanation for this high level of polymorphism could be a
significant amount of methylation/demethylation events
taking place in differentiation lineages (high a). Although
this hypothesis does not receive support from our analysis, a
closer look at the posterior reveals a negative correlation
between N and a shown in Figure 7. The posterior of N for
values of a below 0.01 virtually excludes values of N below ten,
but a number of stem cells below ten becomes likely when a
increases. These observations allow a better interpretation of
the posterior of a and N obtained in the unconstrained
analysis: a number of stem cells between eight and ten is
unlikely but may be compatible with the data if a . 0.01. In
the context of a niche succession time of 20 years, this would

indicate that the rate of methylation/demethylation is
enhanced during cell differentiation.
The model and its associated inference procedure provide

an invaluable tool to further explore the hypothesis of a high
amount of pattern changes during cell differentiation. A
relatively high value of a is particularly realistic in a scenario
with short niche succession time (small s). As an illustration,
we investigate here what could be the consequence of a niche
succession time of about one year (s¼1). We can see in Figure
8 that setting the parameter s to 1 has no impact on the
posterior of N. We also found that the constraint s¼ 1 has no
impact on the estimate of a (unpublished data) and g (Figure
8, right panel). From a biological point of view, however, a
short niche succession time does not seem compatible with a
very small value of a. Indeed, a s of one year suggests that
niche succession may be reached after only 50 cell cycles,
compared with a minimum of five cell cycles for cell
differentiation. We thus expect a greater than 0.1 ¼ 5/50.

Figure 3. Assessment of Model Fitness

(Left) Model with independent sites. (Middle) Model with context-dependent methylation rate. (Right) Model with context-dependent methylation rate
without data from patient X.
Five within-crypt statistics are examined (in rows). For each of these statistics, the observed intercrypt average and standard deviation are plotted
(vertical lines) along with their expected distribution given the posterior of the parameters. Statistics that fall within their expected distributions indicate
good fit of the model for the particular characteristics of the data measured by those statistics. The blue dashed lines show values computed for the
eight-pattern-s (37 crypts) dataset, whereas black solid lines correspond to computations for the 24-pattern dataset (left and middle: 20 crypts; right: 13
crypts).
doi:10.1371/journal.pcbi.0030028.g003
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The posterior of N was therefore investigated subject to this
constraint. Results are presented in Figure 8 and reveal the
deep impact of such a high value of a on the posterior of N,
which now indicates a value of N between four and 12,
whereas the value of g is close to five.

This impact of a prompted us to understand why the data
do not support a high value of a under our model
assumptions. The posterior of g concentrated close to its
lower bound suggest that g . 5 might be incompatible with a
. 0.1. This hypothesis is confirmed after examination of the
posterior of g when allowing g to take values smaller than five
(see Figure 8, right panel). The density decreases sharply
between zero and three and excludes values of g higher than
four. Data seem, therefore, incompatible with a scenario
where a significant fraction of the methylation/demethylation
events take place during cell differentiation across star-like
genealogies.

Discussion

The analysis of methylation patterns is a promising
approach to investigate the structure of cell populations in
an organism [15,19–21]. In a stem cell–niche scenario,
sampled methylation patterns are the stochastic outcomes
of a complex interplay between niche structural features such
as the number of stem cells within a niche and the niche
succession time, the methylation/demethylation process, and
the randomness due to the sampling. As a consequence,
methylation pattern studies can reveal niche characteristics
but also require appropriate statistical methods. The analysis
of methylation patterns sampled from colon crypts is a
prototype of such a study. Previous analyzes were based on
forward simulations of the whole cell content of the crypt and
subsequent comparisons between simulated and experimen-
tal data using a few statistics as a proxy to summarize the data
(number of distinct patterns per crypt, average methylation,
and intracrypt distance). In this paper we develop an

alternative inference framework based on likelihood compu-
tations that make full use of the data rather than making use
of the values of a few summary statistics.
Our assumptions about the biological mechanisms under-

lying the methylation patterns we observe are essentially the
same as in previous works but we reformulate the model
backward in time as a coalescent process. Coalescent
modelling is a starting point for carrying out likelihood
inference that makes use of the full data. It is also interesting
by itself as it permits direct simulations of the small part of
the whole crypt history that is relevant for explaining
observed samples of methylation patterns, the history of the
sampled cell lineages.
We developed an MCMC algorithm that allows inference of

all the parameters of the model. It is worth emphasizing that
the inference relies on a number of model assumptions that
we can summarize in four points: (1) the stochastic process
generating the methylation pattern we sample is the same in
all crypts, except for the age of the crypts, which differ among
patients; (2) the number of stem cells is stable and the loss of a
stem cell is compensated by the symmetric division of one of
the other stem cells. This justifies modelling the stem cell
genealogy as a simple coalescent process (this supposes, for
instance, that stem cell losses are not compensated by new
stem cells originating from another layer of stem cells); (3) the
genealogy of differentiation is star-like when branch lengths
are measured through the accumulation of methylation/
demethylation events; (4) appropriate modelling of methyl-
ation/demethylation can be achieved using a simple contin-
uous-time point process across lineages.
These assumptions are intended to be as reasonable as

possible, and the demonstration that the data are compatible
with this simple model is one merit of this work. Careful
assessment of the model fit, nevertheless, revealed the need
for partial relaxation of hypotheses (1) and (4). Data from
patient X were ignored owing to too high a number of
singletons, and a context-dependent model allowing methyl-
ation and demethylation rates to vary with the number of
already methylated sites was introduced. In the future,
additional data may reveal the need for further refinement

Figure 4. The Impact of Data from Patient X on the Posterior of N

Comparison between posterior of N obtained with (dashed line) and
without data from patient X (solid line).
doi:10.1371/journal.pcbi.0030028.g004

Figure 5. Posterior Distribution of N and m
Results are obtained using the model with context-dependent methyl-
ation rate and ignoring data from patient X.
(Left) Posterior of the number of stem cells, N.
(Right) Posterior of m, the rate of the methylation process relative to the
depth of the genealogy, depends on the number of methylated sites.
Therefore, median (solid lines), first and third quartiles (dashed lines), and
95% confidence interval (dotted lines) of both the methylation rate (bold
blue solid line) and demethylation rate (thin green solid line) are shown
as a function of the number of methylated sites.
doi:10.1371/journal.pcbi.0030028.g005
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of the model, and we can envision modelling parameter
variation across crypts and patients or introducing distinct
parameters for the methylation processes in stem cell and
differentiation lineages.

The need for a context-dependent model of the methyl-
ation process brings another piece of evidence for synergistic
methylation processes that are also supported by a number of
experimental studies. However, this seems to be the first study
that directly assesses those effects on the basis of their long-
term consequences such as the transition between hypome-
thylated and hypermethylated sequences that translate into
the coexistence of both types of sequences within the crypt.
These effects are likely to rely on interactions between
maintenance methyl-transferase (Dnmt1) and de-novo meth-
yl-transferase (Dnmt3a/b). It is believed that de-novo meth-
ylation by Dnmt3a/b (de-novo methyl-transferase) is
stimulated by Dnmt1 (maintenance methyl-transferase) act-
ing to maintain the methylation status through the methyl-
ation of the newly synthesized DNA strand at hemimethylated
sites after replication [22,23]. This mechanism could explain
the increase in the rate of methylation while the rate of
demethylation remains stable.

Development of models that can effectively account for
both dependencies between sites and variation in methyl-
ation/demethylation rates across CpG sites will be an
interesting challenge. Our results show that the average
distance between patterns and the number of distinct
patterns unambiguously call for context-dependent effects.
These statistics are known to be important indicators of the

effective population size in population genetics [24,25].
However, examination of the level of methylation at each
site of the BGN locus suggests the existence of some
differences between sites [15].
The main challenge in the estimation of the number of

stem cells from methylation patterns is to distinguish poly-
morphism due to methylation/demethylation events in stem-
cell lineages and the polymorphism due to events during cell
differentiation. The framework proposed here allows us to
address this issue in a quantitative manner. The results
suggest that the methylation changes in differentiation
lineages are rare while the number of stem cells is higher
than eight and reaches its posterior mode between 15 and 20.
The small contribution of the events taking place in differ-
entiation lineages to the diversity of methylation patterns is
coherent with our estimate of a relatively long niche
succession time of more than 15 years. This ‘‘high N–high
s’’ scenario can account for the rapid decline in the number
of partially mutant crypts reported by Campbell et al. [13], as
it is compatible with a short life of individual stem cells
(average s/(N�1)). The almost negligible amount of methyl-
ation events in the few cell divisions of the differentiation
process is also in agreement with small rates of methylation/
demethylation experimentally measured in some human cell
lineages around 0.001 change/site/generation [26–28], but
contrasts with the high rates found in other lineages or other
loci where errors in the replication of the methylation
pattern attain 0.01 to 0.15 change/site/generation
[22,28,29,30]. Changes are believed to occur when sites are
hemimethylated at the time of DNA replication after either
de novo or incomplete maintenance methylation. In the
future, experimental assessment of the frequency of those
hemimethylated sites by double-strand DNA methylation
pattern sequencing [28] in cells sampled from the crypt may
help to further calibrate the amount of methylation changes
in the differentiation lineages.

Figure 6. Posterior Distribution of s, g, a, and e
Results are obtained using the model with context-dependent methyl-
ation rate and ignoring data from patient X.
(Row 1) Reports the posteriors of the parameters s, the average depth of
the genealogy of the stem cells (in years), and g, the length of cell
differentiation in terms of number of cell generations. These two
parameters control, together with N, the shape of the genealogy.
(Row 2) Reports the results for the parameters a and e, responsible,
together with m, for the polymorphism given the genealogy: a is the
relative amount of methylation/demethylation events in the g gen-
erations of cell differentiation compared with the number of events in a
stem cell lineage up to the most recent common ancestor of the stem
cell population; e is the sequencing error rate.
doi:10.1371/journal.pcbi.0030028.g006

Figure 7. Posterior Correlation between N and a
The posterior of N subject to the constraint a ¼ 0, 0.01, 0.02, or 0.03
(dotted lines) are compared with the posterior of N without those
constraints (solid line).
doi:10.1371/journal.pcbi.0030028.g007
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Sequence redundancy artifacts caused by bisulfite treat-
ment and PCR amplification have been detected in the
context of bisulfite sequencing, although in a distinct
experimental setting [31]. In this study we limited our analysis
to a short 77-bp locus, sampled a relatively small number of
times (fewer than 24) compared with the number of copies
available from the biological sample (more than 1,000), and
amplified in four independent PCRs. All these precautions
certainly decrease the chances of artifacts [32,33]. In addition,
we have previously reported pattern redundancy at the BGN
locus between samples from both parts of bisected crypts [15],
and this suggests that a substantial fraction of the pattern
redundancy reported here reflects genuine biological redun-
dancy. Finally, our main biological conclusions are probably
robust against limited sequence redundancy artifacts. Little is
known about those artifacts, but intuitively we think they are
more likely to decrease than to increase the apparent number
of stem cells, and they can hardly be invoked in place of
synergistic methylation to explain the coexistence within the
same crypts of a substantial proportion of fully unmethylated
patterns and a diversity of related methylation patterns. We
nevertheless acknowledge the need for better verified data;
molecular barcoding will be the method of choice for this
purpose [29,31].

The inference framework proposed in this study will be an
invaluable tool to address questions related to the design of
future experiments. We could, for instance, wonder whether
it will be better to assess more cells or to get higher resolution
in the description of the cell lineages by sequencing more
CpG sites. As sequencing longer patterns could prove
technically hard, an intermediate route could consist in
sequencing additional loci sampled from the same crypt but
from independent cells. Our approach could rather easily be
extended to handle this kind of multilocus data as well as
diploid locus data. We also envision the development of less
computationally demanding inference methods based on
summary statistics, for which our work provides both a
simulation tool and a benchmark.

Materials and Methods

Colonic assays. Individual crypts were isolated from fresh
colectomy specimens, and, after extracting the crypt DNA content,

unmethylated cytosines were converted into uracil by bisulfite
treatment. The bisulfite-treated DNA was further amplified by
quantitative PCR, and the BGN locus of a relatively small number
of molecules (five to 24) was sampled and sequenced. Patients had
colectomies for adenocarcinoma, but the normal colon crypts
examined in this study were taken at least 10 cm away from the
tumors, and are unlikely to be directly involved with tumorigenesis.
Details of the experimental protocol can be found in [15].

Modelling stem cell lineages. We model the size of the stem cell
population in a crypt as identical in all crypts, in all patients, and kept
at a constant value N throughout the life of the patients. A stem cell is
said to die if it gives birth to two cells committed to differentiation.
The death of one stem cell is assumed to be instantly compensated by a
symmetric division of one of the remaining stem cells (chosen at
random) that produces two stem cells. Wemodel the lifespan of a stem
cell as an exponential random variable with rate c (mean 1/c). Under
these assumptions, when looking backward in time the stem cell
genealogy follows a particular coalescent process [34], a version of the
Moran model [35]. The waiting time for the coalescence of two stem
cell lineages is an exponential random variable with rate 2c/(N�1).
When considering k lineages, the waiting time for the first coalescence
event of two lineages is exponential with rate ck(k�1)/(N�1).
Furthermore, the two lineages that coalesce are chosen at random
with probability 2/k(k�1). This representation would be clearly
inadequate if used for the entire cell population of the colon crypt,
as it would not account for the very different behavior of the stem cells
and differentiating cells [36]. We explain later how our model
accounts for the properties of the lineages of differentiating cells.

In agreement with our previous experimental observations [15], all
the CpG sites that we analyze here are supposed unmethylated at the
birth of the patient, and the observed methylation patterns are
supposed to result from methylation and demethylation events that
took place across the genealogy of the sampled cells. In a first simple
model, we assume that every CpG site evolves independently at the
same constant rate. Such a model has two parameters l ¼ (lþ,l�),
where lþ is the rate of methylation per site and l� is the rate of
demethylation per site.

We also introduce a second, more sophisticated, model that
accounts for context-dependent effects on the evolution rate. In this
model, the rate of methylation and demethylation is allowed to vary
with the number of already methylated sites. To avoid introducing a
number of parameters as large as twice the number of CpG sites, we
consider only four sets of methylation/demethylation rates that apply
on four distinct ranges of numbers of methylated sites. Range
boundaries will be estimated. In the general case, the use of models
where sites do not evolve independently requires prohibitively heavy
computation. However, when all sites are supposed to evolve
according to the same model, we show how to take advantage of
the model symmetry to considerably speed up the computations (see
Protocol S2, section 1, ‘‘Calculations in the context-dependent
model’’). To our knowledge, it is the first use of this context-
dependent model for modelling biological sequences.

Indirect sampling of the stem cell lineages. Methylation patterns
sampled within the crypt are not directly sampled from stem cell
lineages. Most of them come from differentiated and differentiating

Figure 8. Posteriors of N and g in Models with Short Niche Succession Time

Three models that assume a niche succession time of about one year (s¼ 1) are compared: same model as before but with s¼ 1 (plain line); s¼ 1 and
high level of methylation/demethylation during cell differentiation (a . 0.1, dashed line); s ¼ 1, a . 0.1, without imposing a star-like genealogy for
differentiation lineages (0 , g , 10, dotted line).
doi:10.1371/journal.pcbi.0030028.g008
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cells that are the product of the few rounds of cell division that take
place during cell differentiation. The next two paragraphs explain
how our model relates the sampled methylation patterns to the stem
cell methylation patterns.

We suppose that the cell content of the crypt is composed of N
equal-sized subpopulations, each one corresponding to the progeny
of one of the stem cells. As we know that differentiated cells are short-
lived and that the differentiation process spans only a few
generations of cells, it is attractive to assume that all cells sampled
from the same subpopulation share the methylation pattern of their
most recent common stem cell ancestor. Under this hypothesis, we do
not need to keep track of the precise genealogical process that goes
back in time from the sampled cell to the most recent ancestral stem
cell. All we need is to model which sampled cells come from the same
stem cell lineage. A model of sampling with replacement is fairly
reasonable for this purpose as we believe that subpopulations are
large compared with the number of sampled patterns and DNA is
amplified by PCR before sequencing. In this model, when we sample n
sequences, we actually sample a random number M � N of stem cell
lineages. The probability mass function for C, the random variable
that defines M and the partitioning of the n sequences into M groups,
is given by

pððM;CÞ ¼ ðm; cÞÞ ¼ NðN � 1Þ � � � ðN � mþ 1Þ
Nn ð1Þ

Preliminary numerical experiments suggested that estimates of N
based on this simple model would be misleading even for a limited
amount of methylation/demethylation during cell differentiation.
Therefore, we preferred a more general model that can account for
methylation and demethylation during cell differentiation. For this
purpose, the model needs to describe the genealogy of the cells
sampled from the same subpopulation (Equation 1) back in time until
its ancestral stem cell lineage. Under our model, the genealogy of q
cells sampled from the same subpopulation results from a coalescent
process between random pairs of lineages whose times (sq,sq�1,. . .,s2)
are drawn according to the probability density function

f ðsq; sq�1; � � � ; s2Þ ¼ P
q

j¼2
j
2

� �
xgðsjÞexp �

j
2

� �
ðXgðsjÞ � Xgðsjþ1ÞÞ

� �
ð2Þ

where 0 � sq � sq�1 � . . . � s2 ,1 and xg is the first derivative of Xg,
an integrated rate function defined by Xg(t)¼�log((2g�2gt)/(2g�1)). The
parameter g controls the star-likeness of the genealogy of the
subsample back in time until the lineages of all the differentiated
cells of the crypt are stem cell lineages. The form of the integrated
rate function Xg is justified in Protocol S2 (section 2, ‘‘Genealogy of
cells sampled from the progeny of the same cell’’) as a continuous-
time approximation of the discrete genealogical process of the
subsample under a simplistic model where each subpopulation is the
result of g rounds of cell divisions. The timescale of this process is
expressed in arbitrary units that we do not try to compare with the
timescale of the genealogy of the stem cell lineages. Rather, the
methylation/demethylation process across the branches of this
genealogy has its own rate denoted g ¼ (gþ,g�) that is proportional
to l ¼ (lþ,l�), the rate of the methylation/demethylation process in
the stem cell lineages.

Possible sequencing errors were also accounted for through a
parameter e which corresponds to the probability of error at one
CpG site of a methylation pattern.

Parametrization and priors. Although we tried to introduce as few
parameters as possible in our model, any estimate of its parameters
will clearly be associated with a relatively high level of uncertainty
due to the limited amount of data. The Bayesian statistical framework
provides a straightforward approach to account for this uncertainty
by allowing us to compute the posterior distribution of the
parameters given the available data. However, the choices of a
parametrization and a prior distribution of the parameters are
important issues in the Bayesian context. Without reliable a priori
information, it is natural to look for an uninformative prior. To our
knowledge, current Bayesian methodology provides few guidelines
that may be useful in the context of our study. The approach we
decided to adopt consists of finding a parametrization that minimizes
the dependencies between the parameters according to the posterior
distribution. Several motivations justify this approach: it makes
reasonable the use of independent priors for each parameter, it
facilitates the interpretation of the posteriors, and it helps in
designing efficient MCMC algorithms to explore the posterior.

We chose a uniform distribution for the number of stem cells, N,
which is the primary focus of our interest. N is also the only

parameter that impacts on M, the random number of stem cell
lineages sampled in a particular crypt.

The speed of the coalescent process modelling the stem cells
genealogy is a function of the ratio c/(N�1). We denote the inverse of
this ratio by s ¼ (N�1)/c, which corresponds approximately to the
expected number of years before the entire stem cell population finds
a common ancestor (without considering the truncating effect of the
birth on this coalescent), and chose a uniform prior on (0.5,200) for it.
This seems a better choice than direct modelling of c, the expected
lifespan of a stem cell, as when n is small enough compared with N
thenM is equal or close to n and the only effects we observe are those
of the ratio c/(N�1). Under these conditions, the posterior distribu-
tion of c (but not s) will be highly correlated with that of N. The
parameter g that accounts for the star-likeness of the genealogy of the
cells sampled from the progeny of the same stem cell was chosen from
a uniform density on the interval (5,10).

Concerning the methylation process, it is worth mentioning that
the rate of the coalescent and the overall speed of the methylation
process are distinguishable only if the methylation pattern in the
most recent common ancestor of the stem cell population does not
follow the stationary distribution of the methylation process. When
the stationary distribution of the methylation process is reached in
this ancestor, the data carry information only about the relative
speed of the methylation compared with the depth of the
genealogical tree (ls). As a consequence, l and s can be highly
correlated under their joint posterior while m ¼ ls and s would be
relatively independent. We therefore preferred a prior that models m
independent of s rather than l independent of s. Looking for an
uninformative prior on m, we chose a log-normal distribution such
that log(m) is normally distributed with mean zero and standard
deviation r. The potential difficulty of the choice of r was bypassed
by modelling r as an exponential random variable with mean one (a
strategy known as hyper-prior modelling). The rate g of the
methylation process relative to the arbitrary timescale of the
genealogy of the differentiation lineages was chosen as g¼ am where
a follows an exponential distribution with mean one. The parameter
a corresponds to the relative amount of methylation/demethylation
events taking place before a sampled cell finds its stem cell ancestor,
compared with the number of events occurring in the lineage of this
stem cell up to the most recent common stem cell ancestor.

Finally, we modelled the probability of sequencing errors, e, as a
continuous uniform on (0,1).

MCMC algorithm and software. The posterior distribution of the
parameters has been investigated using an MCMC algorithm [37].
Denoting X the observed methylation patterns, the purpose of the
algorithm is to sample from the joint posterior distribution of the
parameters h¼ (N,s,g,r,m,a,e) given X (we use bold fonts to emphasize
where there is a random variable per crypt analyzed). An MCMC
algorithm creates a sample of dependent realizations from the target
distribution by updating in turn the components of h, each update
preserving the target distribution. For practical reasons, the MCMC
algorithm samples an augmented space much larger than h. It consists
of (h,K,Y), where K denotes the genealogies of the methylation
patterns (topology and coalescent times) and Y stands for the
methylation patterns in the nodes of K.

Updating N in our model is difficult and we propose an original
strategy to solve the problem. As explained in Protocol S2 (section 3,
‘‘A slightly modified model for the number of stem cells’’), our
approach consists of embedding our model in a slightly more general
model that allows N to differ by one between crypts. Another
challenging task of the algorithm is to explore the huge space of
possible genealogies K. This is performed efficiently using the
‘‘branch-swapping’’ strategy introduced by Wilson and Balding [38].
In this scheme, the sequences Y at the nodes of K serve to propose
relevant modifications of the genealogy. Further details of the
algorithm are given in Protocol S2 (section 4, MCMC algorithm).

We obtained all the results presented here by running the
algorithm for 5,000,000 iterations and recording (N,s,g,m,r,a,e,K,Y)
every 100 iterations once past the first 500,000 iterations. Systematic
visual checking of the samples did not reveal convergence problems.
Each run of the MCMC algorithm takes approximately ten days on a
3-GHz Intel Pentium processor when the model with context-
dependent methylation rate is used.

Software and data can be downloaded at http://genome.jouy.inra.fr/
;pnicolas/mcmcniche/.

Estimating the number of stem cells on simulated datasets.
Bayesian methodology ensures that posterior distributions are
meaningful ‘‘on average’’ for values of the parameters drawn from
their prior, although the data are generally compatible only with a
small fraction of the parameter values allowed by the prior. It is
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therefore a good idea to check that the prior gives relevant results for
combinations of parameters having some level of compatibility with
the data.

We validated our inference framework on ten synthetic datasets.
Five were simulated with N¼ 6, whereas the other five were simulated
with N¼ 24. Two sets of values for s, m, a, g, and e were chosen after
running the MCMC algorithm with N constrained either to six or 24.
Both sets of parameters are given in Protocol S2 (section 5,
‘‘Parameters used to generate simulated datasets’’). They differ
mostly in the value of a, which reflects the relative contribution to
the polymorphism of the methylation/demethylation events taking
place during cell differentiation compared with those occurring in
stem cell lineages. The six and 24 stem cell datasets were simulated
with a¼ 0.082 and a ¼ 0.018, respectively.

Posterior distributions were able to distinguish between both
series of datasets (Figure 9). For all but one dataset simulated with N¼
6, the posterior shows a clear peak around five or six while the last
dataset is less informative as the posterior gives a similar support for
any value of N greater than five. On the other hand, posterior
distributions obtained on datasets simulated with N ¼ 24 were all
found to increase slowly between N¼5 and N¼15 and to be relatively
flat for N greater than 15.

Two kinds of effects combine to explain that posteriors of N
obtained for large N are flatter than posteriors found for small N.
First, the posterior mechanically becomes flatter as N increases
because models with neighbor values of N tend to look more and
more alike. Second and less obvious, the data carry an amount of
information on N that is limited by the number of cells sampled from
each crypt, as all the information on N comes from the fact that some
patterns are sampled from the progeny of the same stem cell (see
Equation 2). When N becomes large compared with the number of
cells sampled in each crypt, each cell tends to belong to the progeny
of a different stem cell, and at best we may be able to say that N is
large compared with the number of patterns sampled.
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