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Abstract

Background: There is considerable interest in the high-throughput discovery and genotyping of single nucleotide
polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of
EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge
genome size (,23.8 Gb/C).

Methodology/Principal Findings: A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected
in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of
neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in
silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of
SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only
polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates
than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low
(0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates).

Conclusions/Significance: This study demonstrates that ESTs provide a resource for SNP identification in non-model
species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost
benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for
population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds.
In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate
should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and
complex genome.
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Introduction

In the last few years, the development of high-throughput

methods for the detection and genotyping of single nucleotide

polymorphisms (SNPs) has led to a revolution in their use as

molecular markers [1]. Their abundance in animal and plant

genomes, the reduction in cost and the increased throughput of

SNP assays have made these markers attractive for high-resolution

genetic mapping, fine mapping of QTLs, linkage-disequilibrium

based association mapping, genetic diversity analyses, genotype

identification, marker-assisted selection and characterization of

genetic resources [2,3,4,5,6,7].

In non-model species, large scale SNP genotyping involves two

main steps: first the discovery of polymorphisms, and second the

genotyping of a set of specimens. SNP identification can proceed

either from in vitro or in silico approaches. In vitro methods, such as

the re-sequencing of targeted amplicons, are generally more

appropriate when sequence data is limited or when one is

interested in polymorphisms in specific genotypes or candidate

genes. This approach is generally costly and time consuming, but

has been proven successful to detect SNPs in many organisms

(reviewed by [8]). In contrast, in silico discovery is the most obvious

method for de novo SNP identification. Although this approach

mainly provides markers located in transcribed regions (mostly

coding and 39UTR), it offers a low cost source of abundant SNPs

and has been validated by large scale genotyping for a number of

plant species including Arabidopsis [9], maize [10], grapevine [11],

melon [12], tomato [13], spruce [14] or pine [15]. However, the

usefulness of EST resources for detecting in silico SNPs varies

depending on the assembly depth, the range of tissues considered,
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the diversity of the target species, but also on how well this

diversity is represented within the database [2,16,17]. The number

of in silico SNPs available will thus differ considerably between

species, although a global trend towards more SNPs for more

ESTs from different tissues is expected for species with similar

diversity. For example, about 9,000 high quality SNPs were

detected in a first catfish assembly comprising 54,960 ESTs [18];

this number extended to 48,000 when using a second assembly of

nearly 500,000 ESTs [19]. EST resources can also be very useful

for closely related species when the assembly is performed with all

ESTs together, since detection of interspecific in silico SNPs is then

possible, as shown by WANG et al. [19] for blue and channel catfish

species.

There is no one ideal method for SNP genotyping and the

selection of an appropriate technique largely depends on many

factors including cost, accuracy, multiplexing capacity and

throughput, equipment and difficulty of assay development

[20,21]. A range of high-throughput methods are currently

developed for model species such as humans, but their use in

non-model species with large genome size, high level of ploidy

or redundancy is often a challenge [22]. Recently, PAVY et al.

[23] and ECKERT et al. [24] achieved the multiplexed genotyping

of hundreds of SNPs in conifers, a group of plants that is

characterized by a large genome size [25]. They used the

Illumina bead array platform combined with GoldenGate assay

[26,27]. This genotyping platform was also successfully used for

genomes containing a high number of paralogous genes such as

barley [28], soybean [29] or tetraploid and hexaploid wheat

[30].

Maritime pine (Pinus pinaster Ait.) genome is extremely large (up

to 23.8 Gb/C, which is 150 times larger than that of Arabidopsis

thaliana) [25]. Despite the economical and ecological importance of

this species in south-western Europe, where it covers over 4M ha,

it will be many years before its full genome sequence is available.

However, about 30,000 P. pinaster expressed sequence tags (ESTs)

were produced in the past decade, followed by the re-sequencing

of more than 40 wood-quality and drought-stress related candidate

genes [31,32]. We report here the valorization of these resources

to the first highly multiplexed SNP genotyping array in P. pinaster.

Our objectives were three-fold: i/ validate a number of SNPs for

future linkage mapping and candidate-gene-based association

studies, and ii/ compare the conversion rate of SNPs derived from

in vitro versus in silico datasets, as to our knowledge no other study in

conifers has attempted to genotype a large number of in silico SNPs

without preliminary re-sequencing, and iii/ estimate the genotyp-

ing error rate of the GoldenGate technology for a conifer genome,

which has not been reported so far. The SNPs validated in this

study have been made available through the NCBI database

(http://www.ncbi.nlm.nih.gov/SNP, see Table S1 for accession

numbers).

Materials and Methods

Plant material
Plant material consisted of 456 individuals, including: 212

unrelated trees resulting from mass selection in the natural forest of

south-western France (first-generation breeding population, re-

ferred as the ‘‘G0’’ Aquitaine population), 210 offspring resulting

from open-pollinated or controlled crosses among the G0 trees

(second-generation breeding population, referred as the ‘‘G1’’

Aquitaine population), 29 trees randomly sampled in the same

geographical area as the G0 trees, and 5 trees involved in two- and

three-generation outbreed pedigrees, used for linkage and QTL

mapping. DNA was extracted from needles using InvisorbH Spin

Plant Mini Kit (Invitek, Berlin, Germany), and quantified with a

Nanodrop ND-1000 spectrophotometer (NanoDrop Technolo-

gies, LLC, Wilmington, DEL, USA).

SNP discovery
For SNP discovery, two sets of sequences were considered. The

first dataset comprised maritime pine sequences for 41 different

genes involved in plant cell wall formation (candidate genes for

wood quality) or drought stress resistance (Table S2). For each

fragment, an average of 50 megagametophytes (haploid tissue

surrounding the embryo) from different populations were

sequenced. The chromatograms were visually checked (nucleotides

with phred scores below 20 were considered as missing data) and

the SNPs were considered as true. Indeed, the use of megagame-

tophytes lowered the risk of confusing polymorphism at a unique

locus with differences between paralogous loci, as amplification of

two or even more members of a gene family would have been

easily detected by the visualization of double peaks in the

chromatograms. This first set of SNPs will be referred to as in

vitro SNPs. The second sequence dataset consisted in a collection of

26,476 maritime pine ESTs assembled in 3,995 non-singleton

contigs and 7003 singletons (unigene available online at http://

cbi.labri.fr/outils/SAM2/COMPLETE/ under the project name

‘‘Pinus pinaster 14_02_2007’’). These ESTs were derived from six

different libraries constructed using different tissues, and a number

of segregating haploid genomes from 3 up to 300 from different

provenances (Table 1). We used the Polybayes software [33] to

detect SNPs with a high probability with the parameters described

for maritime pine in LE DANTEC et al. [15]. This second set of SNPs

will be referred to as in silico SNPs.

Table 1. cDNA library information.

Library Tissue Nb of haploid genomes Maritime pine provenance Nb of ESTs

GEMINI Xylem 4 Corsica 8,129

Normal aerial parts (AN) Needles 300 Aquitaine 240

Stressed aerial parts (AS) Needles 300 Aquitaine 475

Normal roots (RN) Roots 300 Aquitaine 4,592

Stressed roots (RS) Roots 300 Aquitaine 4,274

Buds (LG0ACA) Buds Unknown Spain 8,766

TOTAL 26,476

doi:10.1371/journal.pone.0011034.t001
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SNP selection for array construction
We developed a Perl script, snp2illumina, for automatically

extracting SNPs from multifasta sequence files and output them

as a SequenceList file compatible with the Illumina Assay

Design Tool software (available online at http://www.illumina.

com). This file contains the SNP names and surrounding

sequences with polymorphic loci indicated by IUPAC codes for

degenerated bases. The Perl script snp2illumina can work in

batch mode and is available upon request from the correspond-

ing author.

The functionality score provided by Assay Design Tool software

is similar to a predicted probability of genotyping success, taking

into account the sequence conformation around the SNP, the lack

of repetitive elements in the surrounding sequence, and in the case

of model species the sequence redundancy against the available

sequence database [34]. In the case of maritime pine, no sequence

database was available to test for sequence redundancy. All the

SNPs presenting a functionality score below 0.4, which is

considered as a lower limit for genotyping success by the

manufacturer, were discarded.

Two contrasted strategies ‘‘depth vs. breath of SNP coverage’’

were adopted to select informative SNPs. In respect to in vitro

SNPs, our objective was to include as many polymorphisms as

possible for each gene fragment so depth of coverage was

preferred. For in silico SNPs, our goal was to include a low

number of markers per unigene in a large number of unigenes,

thus giving more emphasis to breath of coverage. The main

technical constraint for selecting in vitro SNPs was that the selected

polymorphisms should not be less than 60 nucleotides away from

each other. When several SNPs stood within this limit it was

decided to filter out lowest frequency variants and polymorphisms

showing high level of linkage disequilibrium with other selected

SNPs of the same fragment. Rare variants (minor allele frequency

,5%) were also discarded. To select in silico SNPs we used the log-

file of the snp2illumina script that records for each SNP the number

of ESTs considered for the detection, the minor allele frequency

(MAF) and the PolyBayes score. To minimize the number of false

positives we included in the assay only SNPs with a PolyBayes

score above 99%, with either a minor allele appearing at least

twice within four to ten ESTs, or a MAF above 20% when more

than ten ESTs were available. Indeed, it is highly unlikely that

sequencing errors of two independently sequenced ESTs occur at

the same base location. We also excluded SNPs that were

surrounded by other polymorphisms in the immediate 60 bases to

avoid technical problems due to neighboring polymorphisms. In

both cases, chromatograms were visually checked to ensure the

quality of the flanking sequences, and we used BLASTN analysis

[35] to ensure that in vitro and in silico SNPs belonged to different

genes.

SNP genotyping array
The Illumina GoldenGate technology (Illumina Inc., San

Diego, CA, USA) was used to carry out the genotyping reactions

in accordance with the manufacturer’s protocol [36]. To assess

the reproducibility of the genotyping assay, 19 DNA samples

were duplicated across the different plates. Negative controls

were also added to each 96-well plate. Highly multiplexed

extension reactions were conducted using 250ng of template

DNA per sample. The clustering was realized with the

BeadStudio software (Illumina Inc.), and a quality score for each

genotype was generated. A GenCall score cutoff of 0.25 was used

to determine valid genotypes at each SNP and the SNPs retained

had to get a minimum GenTrain score of 0.25, which represents

a stringent criterion that is used in human genetic studies [27].

GenCall and GenTrain scores measure the reliability of SNP

detection based on the distribution of genotypic classes (AA, AB

and BB). Clusters were visually inspected to ensure high quality

data (Figure 1). When we observed cluster compression (i.e. when

the homozygous clusters normalized theta values were not in the

[0, 0.1] or [0.9, 1] ranges, as illustrated in Figure 1 B, C and D),

we considered that the genotyping failed, as this is likely due to

genome redundancy [29]. Indeed, the compression of the BB

homozygous cluster towards the AA cluster could result from a

paralog gene matching the A allele, increasing the signal for the A

dye for both BB and AB genotypes. We also considered as

genotyping failures monomorphic SNPs for which clusters could

be divided in two or more subgroups such as illustrated in

Figure 1E.

Measuring error rate using pedigree data
We used the breeding population pedigree information

(relationships between first and second generation) to detect

possible Mendelian Inconsistencies (MIs) between parents and

offspring using the PedCheck software [37]. Then, we used the

method described in SAUNDERS et al. [38] to estimate the

genotyping error rate P from MIs. Genotyping errors (GEs) are

not all detectable as MIs, but there is a linear relationship between

the GE and the MI counts has shown by HAO et al. [39]. The

expected number of MIs at a marker (P.PMI) in a family in which

one or both parents and m children have been genotyped can be

derived from the marker allele frequency p in the studied

population, m and P as follows [38]. If only one parent has been

genotyped:
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These relationships can be easily generalized to large non-inbred

pedigrees and many SNPs, by summation of P.PMI over all

families and averaging P over all SNPs. This procedure allows to

estimate a per SNP as well as a global genotyping error rate [38].

We performed this analysis on 17 unrelated families from the

breeding population, using for each marker the allele frequency

(p) estimated on the Aquitaine G0 genotyping dataset (212

samples).

Results

SNP detection and construction of the SNP array
A total of 448 in vitro SNPs were detected in the dataset of re-

sequenced fragments. Overall 155, 81 and 28 SNPs were

discarded because of low functionality scores, neighboring

polymorphisms, or because they corresponded to rare variants,

respectively. The 184 remaining SNPs included in the assay

represented 40 different gene fragments (Table S3).

Similarly, 9,364 in silico SNPs were detected in the unigene set,

and we selected 200 of them satisfying our very stringent criteria,

Genotyping Non-Model Species
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i.e. PolyBayes and functionality scores, polymorphism proximity,

minimum number of ESTs for the detection, MAF and visual

validation of the chromatograms. They represented 146 different

unigene elements. Figure 2 shows the number of ESTs considered

for the detection of the 200 in silico SNPs.

Reproducibility and overall success rate of the SNP assay
No discordance was detected between the 19 replicated

samples, i.e. the same genotype was observed over the replicates,

yielding a reproducibility rate of 100%. For nine polymorphic

SNPs we observed cluster compression (as in Figure 1B), and for

Figure 1. Examples of clustering observed for the P. pinaster SNP array. Each dot represents the mean intensity derived from a population of
beads for a single sample. The normalized R (y axis) is the normalized sum of intensities of the two dyes (Cy3 and Cy5), and the normalized Theta (x
axis) is ((2/ )Tan21 (Cy5/Cy3)), where a normalized Theta value nearest 0 is a homozygous for allele A and a Theta value nearest 1 is homozygous for
allele B. A/ classical pattern with three clusters for a SNP considered as successful and polymorphic. B and C/ ‘‘cluster compression’’ when both
homozygous clusters are closer to each other than expected. In panel B, the clustering algorithm is able to distinguish the three clusters and gives a
GenTrain score of 0.58, however this kind of pattern was considered as a genotyping failure in our analysis because one of the homozygous cluster
normalized Theta value does not fall in the [0, 0.1] or [0.9, 1] ranges. In panel C the clustering algorithm was not able to distinguish the three clusters
because of low separation scores, and the SNP was automatically considered as a genotyping failure because of its low GenTrain score. D and E/ SNPs
interpreted as genotyping failures either because of abnormal Theta values (D) or because of the presence of subgroups in a cluster (E).
doi:10.1371/journal.pone.0011034.g001
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nine monomorphic SNPs we found either unexpected normalized

theta values, or subgroups in a homozygous cluster (as in Figure 1D

and 1E, respectively). In those cases we considered that the

genotyping failed despite acceptable GenTrain scores.

To measure the global success of the genotyping assay we first

estimated the success-rate, which corresponds to the number of

SNPs that are successfully genotyped (considering both mono-

morphic and polymorphic SNPs) divided by the total number of

SNPs in the assay, and second the conversion rate, which is the

number of polymorphic SNPs divided by the total number of

SNPs in the assay, as defined in FAN et al. [27]. Among the 384

SNPs analyzed, 257 were successfully genotyped (Table 2), leading

to a global success-rate of 66.9%. The minimum GenTrain score

observed for these SNPs was 0.53. A total of 60 SNPs were found

to be monomorphic in the tested samples, yielding a conversion

rate of 51% (Table 2).

The mean call rate, which is 1 minus the rate of missing data,

exceeded 98% at the SNP level and ranged from 73.4% to 93.5%

at the sample level for four of the five plates analyzed. It dropped

to 77.5% at the SNP level and ranged from 13.8% to 87.5% at the

sample level for the fifth plate where we noticed evaporation

problems during the genotyping reactions. We found significant

differences depending on the origin of the markers: in vitro SNPs

generally showed significantly higher genotyping-success and

conversion rates compared to in silico SNPs (+11.5% and

+18.5% with x2-test P-values of 0.025 and 4.73.1024, respectively).

The distribution of allelic frequencies for in vitro- and in silico

SNPs is shown in Figure 3. Among successfully genotyped SNPs,

monomorphic loci were twice more abundant for in silico SNPs

compared to in vitro SNPs (30.9% versus 16.4%, respectively). Most

of the 22 monomorphic in vitro SNPs corresponded to either SNPs

that were monomorphic in the Aquitaine sequences (10 SNPs),

rare variants (3 SNPs with a MAF below 5% in the Aquitaine

sequencing dataset), or were detected on alignments that did not

include any sequences from south-western France (3 SNPs).

Among the polymorphic SNPs, 35.7% of in vitro and 29.4% of in

silico SNPs corresponded to rare variants (MAF #10%) (Figure 3).

SNP success rate according to SNP functionality score
Prior to the construction of the SNP bead array, a functionality

score was calculated for each candidate SNP using the Illumina

Assay Design Tool. The higher the score, the more likely will the

SNP be successfully genotyped. We could not genotype any of the

five SNPs with functionality scores below 0.5, and only 13 of the

27 SNPs with functionality scores between 0.5 and 0.6 (Figure 4).

SNPs with a predicted functionality score above 0.6 had a much

higher success rate than those below 0.6 (x2-test P-value of 0.0019),

as found in PAVY et al. [23] for white and black spruce. This also

agrees with Illumina’s recommendations of using only SNPs with a

functionality score above 0.6 to ensure a high success rate for the

assay.

Comparison of allele frequency estimated by sequencing
and genotyping

Among the 112 polymorphic in vitro SNPs of the genotyping

assay, 101 were previously identified in alignments containing 10

sequences or more from the Aquitaine population and were used

to assess the reliability of allele frequency estimates based on

sequencing data. The correlation between marker allele frequen-

cies determined by sequencing and genotyping was ,0.83

(considering only the 212 unrelated samples from the Aquitaine

G0 breeding population) (Figure S1), showing that allelic

frequencies estimated by genotyping were generally in the range

of those estimated by sequencing.

Measuring genotyping error rate with pedigree data
For 84 and 81 offsprings of the G1 population, either one or

both parental G0 trees were genotyped in the assay. This dataset

consisted in 36,991 genotyping datapoints corresponding to 222

samples (165 G1 and 57 G0 trees) genotyped for 188 polymorphic

SNPs, after excluding 4,745 missing data. We found a total of 181

Mendelian Inconsistencies (MIs). Most of these errors (75%)

appeared in only nine parents-offspring pairs for which the MI

rate ranged from 4% to 17%, suggesting laboratory errors (either

traceability errors during the controlled pollination, plant material

sampling and handling, wet lab experiment, or DNA contamina-

tion) rather than genotyping errors. In six cases we assumed that

the MIs originated from the offspring genotypes as the parents

were involved in other crosses where no MI was found. For the

other cases we could not tell parents and offspring MIs apart.

Setting aside these possible human errors, 46 MIs were detected

for 35,521 genotyping datapoints. MIs were not significantly more

abundant for samples presenting low call rates (x2-test P-value of

0.51, see also Table S4). To estimate the genotyping error rate P,

we used a subset of 17 unrelated families corresponding to 75 G1

trees and their 26 G0 parents genotyped for 188 polymorphic

SNPs (18,261 genotyping datapoints after removing 727 missing

Figure 2. Distribution of the 200 in silico SNPs according to the
number of ESTs considered for the detection.
doi:10.1371/journal.pone.0011034.g002

Table 2. Success rate of the genotyping assay.

Category
Nb of SNPs
(in vitro/in silico)

% of SNPs
(in vitro/in silico)

Failed1 127 (50/77) 33% (27%/38.5%)

Monomorphic2 60 (22/38) 16% (12%/19%)

Polymorphic3 197 (112/85) 51% (61%/42.5%)

Total 384 (184/200) 100% (100%/100%)

1Failed genotyping, i.e. GenTrain score ,0.25 or cluster compression.
2Genotyping successful but monomorphic SNPs.
3Genotyping successful and polymorphic SNP.
doi:10.1371/journal.pone.0011034.t002
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data). The observed MI count for this subset was 28, yielding a

global mean genotyping error rate P of 0.54%. At the SNP level, a

total of 181 SNPs showed no MIs and thus a null per SNP

genotyping error rate. Among the seven remaining markers, three

showed error rates ranging from 2.9% to 3.3%, and four (two in

vitro SNPs and two in silico SNPs) showed particularly elevated

error rates (P between 16% and 70%). In these cases (distribution

of error rates skewed owing to four SNPs with very high error

rates), the estimate of the mean error rate tends to be biased

upwards [38]. When removing these four SNPs, the observed MI

count dropped to 3, leading to a mean error rate P of 0.06%.

Discussion

Data summary
A 384-SNPs GoldenGate genotyping array for Pinus pinaster was

built from i/ 448 SNPs originally detected in a set of 41 re-

sequenced candidate genes (in vitro SNPs) and ii/ 9,364 SNPs

screened from ESTs (in silico SNPs). Two different SNP selection

strategies were followed, ‘‘depth vs. breath of SNP coverage’’. For

in vitro SNPs we aimed at validating as many polymorphisms as

technically possible for each fragment (depth), whereas for in silico

SNPs we aimed at validating few SNPs per unigene in a large

number of unigenes (breath). A total of 184 in vitro SNPs were

chosen on the basis of functionality scores, presence of neighboring

polymorphisms, MAF and linkage disequilibrium. Moreover, 200

in silico SNPs were selected based on three parameters that proved

critical for high validation rate of EST-derived SNPs [18]: the

number of ESTs used for SNP detection, the SNP MAF and the

quality of SNP flanking sequences. The global success rate of the

assay was 66.9% (considering monomorphic and polymorphic

SNPs), and a conversion rate of 51% was achieved (considering

only polymorphic SNPs). In vitro SNPs showed significantly higher

genotyping success (+11.5%, P-value 0.025) and conversion

(+18.5%, P-value 4.73.1024) rates than in silico SNPs. The

functionality score estimated for each SNP, which in our case

could not account for sequence redundancy in the genome,

showed a significant relationship with success of genotyping. The

reproducibility of the assay was very good (100%, based on 19

replicated genotypes), and the genotyping error rate very low

(0.54%, dropping down to 0.06% when removing four SNPs

showing elevated error rates).

Conversion rates of in vitro and in silico SNPs for Pinus
pinaster

Data obtained from the GoldenGate assay reported in this

paper suggest that the bead array technology is suitable for the

complex and large genome of P. pinaster: 66.9% of the SNPs were

translated into easily interpreted genotypic clusters. This success

rate is similar to that observed for Pinus taeda [66.9%, 24], but

lower than that observed for Picea glauca or Picea mariana [78.5%

and 81.1% respectively when considering polymorphic and

monomorphic SNPs, 23]. So far, two main causes have been

invoked in the literature for explaining genotyping failures in

GoldenGate assays for non-model species. First, the partial

knowledge of large and redundant genomes can be a limiting

factor to design an efficient SNP genotyping assay. Indeed,

flanking sequences cannot be fully validated for locus specificity

and the possible presence of repetitive elements [23,27,34].

Secondly, the sample size used for SNP discovery in species

presenting a high level of nucleotide diversity may be too small,

possibly leading to the presence of undetected SNPs within

Figure 3. Allele frequency spectrum for 257 successfully genotyped in vitro and in silico SNPs.
doi:10.1371/journal.pone.0011034.g003

Figure 4. Genotyping success rate according to functionality
score for the 384 SNPs of the assay. The number of SNPs in each
functionality score class is indicated above each bar.
doi:10.1371/journal.pone.0011034.g004
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priming sites when larger sample of trees are genotyped [24]. In

the case of Pinus pinaster, both hypotheses can be examined: we

reached a 79.6% success rate when considering a group of 103 in

vitro SNPs that were detected on more than 30 individuals from the

Aquitaine population, which is similar to that observed in Picea

species [78.5% and 81.1% in P. glauca and P. mariana, respectively,

23]. The rate dropped to 55.8% for another group of 43 in vitro

SNPs detected on 10 to 30 samples. We checked that this

difference in success rates was not due to differences between

allelic frequency distributions in both groups (data not shown).

This significant difference (x2-test P-value of 0.006) suggests that

the sample size of the SNP discovery panel has a large impact on

the conversion rate. However, the high conversion rate achieved

using SNPs from well characterized DNA regions (79.6%) still does

not reach that reported for human [.91% in 27,40,41,42]. As

discussed in PAVY et al. [23], the megagenome of conifers may

hinder the development of specific probes for the assay. The nine

cases of cluster compression detected in our assay support this

hypothesis. The shift of a homozygous cluster toward the other

one has previously been observed for a SNP in a gene presenting a

nearly identical paralog in soybean, and is likely the sign of the

targeted-sequence redundancy [29].

We found a significant difference between in vitro SNP and in

silico SNP conversion rates, a lower rate being observed for in silico

SNPs. According to WANG et al. [18], genotyping failures in ESTs-

derived SNPs may come either from sequencing errors that lead to

the identification of false-positive SNPs (pseudo-SNPs), from low

quality of SNPs flanking sequences, or from the presence of an

exon-intron junction near the SNP of interest. In our study, the

selection of false-positive SNPs should have been prevented by the

use of trace data for SNP detection [33], and a set of stringent

criteria including MAF and contig size. Indeed, WANG et al. [18]

achieved a 70.9% conversion rate for catfish in silico SNPs detected

on at least four sequences and with a minor allele present twice,

against a rate of 33.3% for SNPs detected on four or fewer

sequences with minor allele present only once. In our case,

chromatograms have also been checked to ensure high-quality of

flanking sequences for primer design, but the presence of

undetected polymorphisms in these regions is likely as most SNPs

were detected on only ten ESTs or less (Figure 2). We could not

confirm whether or not in silico SNPs were located at exon-intron

borders, as we lack a fully sequenced conifer genome to compare

with. The presence of introns has been identified as a major cause

for in silico SNP genotyping failures [18], and may explain the

conversion rate difference between in vitro (revealed from genomic

DNA sequences) and in silico (discovered from mRNA sequences)

SNPs. We previously defined the conversion rate as the number of

polymorphic SNPs divided by the total number of SNPs in the

assay. Since monomorphic loci were twice more abundant for in

silico SNPs than for in vitro SNPs, this also partly explains their

lower conversion rate. Indeed, the EST database used for in silico

SNP detection included sequences from samples of various origins

(Corsica, Spain and Aquitaine, see Table 1), leading probably to

the detection of a small quantity of population-specific in silico

SNPs. On the other hand, more than 80% of in vitro SNPs

originated from individuals collected in the Aquitaine provenance

region (Table S3), i.e. the same material than the genotyped

population. Therefore one should remain careful to check and

control that the discovery panel for SNPs, whether in silico or in

vitro, matches as closely as possible the genotyped plant material in

order to improve the conversion rate. When material of different

origins needs to be genotyped in a species showing significant

population structure, the genotyping array can only be a

compromise, and this situation is likely to be common with the

development of arrays including thousands of SNPs. Identifying

and better accounting for the provenance of sequences in EST

databases when choosing in silico SNPs thus seem crucial and is

more and more documented either in unigene assemblies or in

SNP databases (see for example the NCBI database available at

http://www.ncbi.nlm.nih.gov/SNP/). This information not being

available upfront in the unigene that we used for in silico SNPs

discovery, we had overlooked its influence initially, but have been

integrating it in future studies.

Surprisingly, six in vitro SNPs were found monomorphic on the

genotyped trees, while they were detected as polymorphic loci with

intermediate frequency estimates in the re-sequenced haploid

panel from the Aquitaine population. Given that we are confident

that they were not sequencing artifacts, this observation could be

explained by either the lack of amplification of one allele due to

polymorphism in the priming site, the presence of gametophyte

selection against deleterious mutations (as sequences were

obtained from haploid megagametophytes while genotyping was

performed on diploid DNA), or the general complexity of the pine

genome as previously discussed. In the latter case, the distinction

between genotyping reaction failures and monomorphic SNPs is

not obvious. In this study we decided to discard nine monomor-

phic SNPs with acceptable GenTrain scores but showing either

subgroups in the homozygous cluster, or normalized theta values

departing from the classical 0/1 values for an homozygous locus.

These patterns might be particular forms of cluster compression

(shift of the BB cluster toward the AA cluster as illustrated in

Figure 1D, or putative shift of the AA and AB clusters toward the

BB cluster, Figure 1E). The main quality metrics for SNP assays

(GenCall and GenTrain scores) measure the capacity to group

samples into genotypic clusters, but to our knowledge no study

have established yet the ability of genotype calling algorithms to

tell apart failed reactions from monomorphic markers, or to detect

cluster compression. Even if geneticists are generally not interested

in failed or monomorphic markers, as they do not carry any

information, detecting cluster compression would be very useful

for non-model species. Markers presenting such patterns should

not be used in highly heterozygous populations such as mapping

pedigrees, as the heterozygous cluster is often indistinguishable

from one or both homozygous ones [29].

Genotyping error rate
All large genotype datasets have errors that can be either due to

sample mishandling, failures of analysis algorithms, or simply

biochemical anomalies. Inclusion of incorrect data in genetic

analysis can lead to an inflation in genetic map distances [43], an

increase in type I error and/or a decrease in statistical power in

association studies [44,45], or to biased estimates of linkage

disequilibrium [46] and other allele-frequency related parameters

[47]. Errors in a dataset can be detected either by comparing

genotypic information obtained from different technologies or by

using Mendelian Inconsistencies (MIs) in family-based samples. In

this study, we identified nine samples that concentrated 75% of all

the observed MIs, which was interpreted as human errors. Sample

mishandling has already been identified as a main issue during the

genotyping process [47,48], and could be reduced by the use of

traceability systems such as Laboratory Information Management

Systems (LIMs), quality insurance standards, and reduced human

manipulation, according to the automation possibilities.

Using pedigree information of unrelated families, we also

estimated a per SNP genotyping error-rate [38], which provides

complementary information and helps to identify error-prone loci

that can be removed from the study to increase its reliability. For

example, the mean error rate per locus dropped from 0.54% to
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0.06% when removing the four (out of 188) polymorphic loci that

had the highest error rate. These genotyping error-rates are in the

range of those recently reported for tetraploid and hexaploid

wheat [0% and 1%, respectively, 30]. Unfortunately, genotyping

error-rates have seldom been reported for GoldenGate assays in

non-model species. While this technique already proved accurate

for human, the species for which it was developed [27], its

reliability in the complex genomes of plants should be estimated

before extensive use. If moderate error rates can be tolerated in

cases such as QTL studies involving frequent alleles [44], or

identical by descent-based analyses when considering a large

number of markers [38], conversely low error rates can be

dramatic in association-mapping studies [49]. Once the genotyp-

ing error-rate has been estimated, statistical tools that account for

it have been developed for linkage analysis [50], family or

population-based association mapping [51,52,53].

Conclusion and perspectives
In this study, we demonstrated that ESTs provide a resource for

SNP identification in non-model species, which do not require any

additional bench work and little bioinformatics analysis. However,

the time and cost benefits of in silico SNPs are counterbalanced by

a lower conversion rate than in vitro SNPs. This drawback is

acceptable for population-based experiments (in our study, a

42.5% conversion rate was achieved for in silico SNPs, compared to

61% for in vitro SNPs), but could be dramatic in experiments

involving samples from narrow genetic backgrounds. For example,

ECKERT et al. [24] only reached an 18.2% conversion rate in a P.

taeda mapping pedigree, using in vitro SNPs from a database that

did not include any sequences of the parental lines of the mapping

population. In addition, we showed that both the visual inspection

of genotyping clusters and the estimation of a per SNP error rate

should help identify markers that are not suitable to the

GoldenGate technology in species characterized by a large and

complex genome.

Recently, a larger-scale SNP-array was designed for maritime

pine, comprising 1,536 SNPs (826 in vitro SNPs, including 560

SNPs detected from re-sequenced amplicons provided by David

Neale, UC Davis, CA, USA, http://dendrome.ucdavis.edu/crsp/,

and 710 in silico SNPs selected with the same criteria as in this

study). This second generation SNP-array will be used to establish

a species consensus map based on the analysis of seven pedigrees,

and for association mapping for a series of traits (biomass

production, wood and end-use properties, drought stress resis-

tance) measured on clonal and progeny tests on the first and

second breeding populations.

Supporting Information

Figure S1 Correlation between allele frequencies estimated by

sequencing and genotyping for 101 in vitro SNPs. The plain lines

and dashed lines correspond to the 95% bootstrap confidence

intervals for allele frequencies estimated on 20 or 50 samples,

respectively.

Found at: doi:10.1371/journal.pone.0011034.s001 (6.54 MB TIF)

Table S1 NCBI ss accession numbers for in vitro and in silico

SNPs that were polymorphic in the assay.

Found at: doi:10.1371/journal.pone.0011034.s002 (0.03 MB

XLS)

Table S2 List of the 41 candidate genes used for in vitro SNPs

detection and associated projects.

Found at: doi:10.1371/journal.pone.0011034.s003 (0.03 MB

XLS)

Table S3 List of the 184 in vitro SNPs and their frequencies in

the total sequencing dataset, in the Aquitaine sequencing dataset

and in the genotyped samples.

Found at: doi:10.1371/journal.pone.0011034.s004 (0.06 MB

XLS)

Table S4 Call rate classes of the genotyped samples.

Found at: doi:10.1371/journal.pone.0011034.s005 (0.02 MB

XLS)
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