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1974; McKee and Handel, 1993; Turner et al., 2002, 2005; 
Baarends et al., 2005). Several hypotheses have been pro-
posed to explain the failure of meiosis as a result of this as-
sociation. 

  According to different authors, this phenomenon could 
be due to partial reactivation of the sex body (SB) leading to 
the expression of some genes located on the X chromosome 
(Lifschytz and Lindsley, 1972), or to spreading of the SB in-
activation towards the autosomal segments attached to the 
SB, without reactivation of the latter one (Jaafar et al., 
1993).

  Until now, very few reports on the analysis of meiosis in 
individuals carrying Y-autosome translocations have been 
published. However, the recent development of protein im-
munolocalization techniques on surface spread spermato-
cytes now permits accurate analysis of the early stages of 
meiosis (recombination and pairing of homologous chro-
mosomes). Moreover, recent studies have indicated that 
meiotic silencing of unsynapsed chromatin (MSUC), in-
cluding meiotic sex chromosome inactivation (MSCI), 
could be mediated through recruitment of the kinase ATR 
by BRCA1 followed by phosphorylation of the histone 
H2AX (Turner et al., 2005). Therefore immunolocalization 

  Abstract.  A reciprocal translocation between the q arm 
of the Y chromosome and the q arm of chromosome 14 was 
identified in a young, phenotypically normal boar present-
ing azoospermia. Testicular biopsies were analyzed by clas-
sical histological and immunolocalization techniques, and 
by fluorescence in situ hybridization. Meiotic pairing anal-
ysis of 85 pachytene spreads showed the presence of an open 
structure corresponding to a quadrivalent formed by chro-
mosomes 14, X, and the derivative chromosomes 14 and Y 
in 84.7% of the cases. In the remaining cases (15.3%), a ‘tri-
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valent plus univalent’ configuration was observed. Immu-
nolocalization of  � H2AX revealed the presence of this mod-
ified histone in the chromatin domains of unsynapsed 
segments (centromeric region of chromosome 14) and 
spreading of the  � H2AX signal from the XY body through-
out chromosome 14 in 7.05% of the cells analyzed. The po-
tential causes of the observed infertility, i.e. activation of 
meiotic checkpoints and/or silencing of genes necessary for 
the progression of meiosis, are discussed. 

 Copyright © 2008 S. Karger AG, Basel 

 The prevalence of Y-autosome reciprocal translocations 
in the general human population is very low (1 in 2000) 
(Nielsen and Rasmussen, 1976; Powell, 1984). This kind of 
translocation has been observed in both fertile and sterile 
males (Delobel et al., 1998). The effects on fertility mostly 
depend on the part of the Y chromosome translocated to the 
autosome. Translocations of the euchromatic part of the Y 
chromosome to non-acrocentric chromosomes, for in-
stance, are frequently associated with azoospermia (Sun et 
al., 2005).

  In addition, in reciprocal Y-autosome translocations,
the autosomal parts of both derivative chromosomes are 
 associated with the sex chromosomes that are transcrip-
tionally inactive during prophase I (Monesi, 1965; Solari, 
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of  � H2AX on surface spread spermatocytes seems to be a 
pertinent strategy to identify genetically silenced chromo-
somal regions during meiosis (Baarends et al., 2005; Turner 
et al., 2005, 2006).

  To our knowledge, the use of such techniques to analyze 
meiotic synapsis and gene expression in spermatocytes of 
Y-autosome translocation carriers has been reported only 
twice (Sun et al., 2005; Sciurano et al., 2007). 

  The main observations of the authors were 1) gradual 
heterochromatinization of the autosome arms invading the 
sex body and 2) enlargement of the  � H2AX signals. Both 
were more consistent with the second hypothesis of a spread-
ing of inactivation from the sex body to the autosomal 
parts.

  Recently our group identified a Y-autosome transloca-
tion t(Y;14)(q1.1;q1.1) in the pig species (Ducos et al., 2007). 
We intend to improve our knowledge of the meiotic behav-
ior of Y-autosome translocations by using a fluorescence 
immunocytogenetic approach to study this case.

  Materials and methods 

 Animal material 
 The 6-month-old boar was recruited from the national systematic 

control program of young pedigree boars destined for artificial insem-
ination centers (Ducos   et al., 2007). Although it was phenotypically 
normal semen analysis revealed azoospermia.

  Cytogenetic and molecular characterization 
 Classical cytogenetic analysis (GTG banding) allowed the identifi-

cation of a reciprocal translocation t(Y;14)(q1.1;q1.1) (Ducos et al., 
2007) ( Fig. 1 ). This result was confirmed by dual color chromosome 
painting using chromosomes Y and 14 painting probes as previously 
described by Pinton   et al. (2005).

  Histological analysis 
 Specimens were routinely processed: tissue was fixed in 10% buff-

ered formalin, embedded in paraffin wax, cut at 4  � m and stained with 
haematoxylin and eosin.

  Fluorescence immunostaining and fluorescence in situ 
hybridization 
 A cell suspension was produced by mechanic dissociation of tes-

ticular material and transferred to a centrifuge tube. After deposition 
of the seminiferous tubule remnants, the supernatant was centrifuged 
at room temperature at 600  g  for 5 min. The pellet was washed in PBS 
and finally resuspended in a few drops of fresh PBS. Twenty microliters 
of cell suspension were mixed with 20  � l of 0.05% Triton X-100 solution 
(prepared in distilled water) and spread on a microscope slide. After 10 
min, the preparation was washed for 10 min by adding 60  � l of 0.04% 
Photo-Flo (Kodak) solution and finally fixed with 120  � l of fixative 
consisting of 1% formaldehyde, 0.016% Triton X-100, pH 10. After a 
further 10 min, the slides were rinsed in distilled water and air-dried 
at room temperature. 

  Immunolocalization of meiotic proteins was performed using pri-
mary antibodies at 1:   100 dilution in PBT (1 !  PBS, 0.15% BSA, 0.1% 
Tween 20) as follows: rabbit anti-SCP1, rabbit anti-SCP3, mouse anti-
 � H2AX (Abcam, Cambridge, UK) and human anti-centromere (Anti-
bodies Incorporated, Davis, CA, USA). The slides were incubated over-
night at room temperature in a humid chamber. After three 5-min 
washes in PBS, 0.1% Tween, the secondary antibodies, i.e. Alexa 594-
conjugated donkey anti-rabbit IgG, Alexa 488-conjugated goat anti-
mouse IgG (Molecular Probes, Eugene, OR, USA) and AMCA-conju-
gated donkey anti-human IgG (Jackson ImmunoResearch Laborato-

ries, Grove, PA, USA) were applied at 1:   100 dilution for 2 h at 37   °   C. 
After three 5-min washes in PBS, 0.1% Tween and a brief rinse in dis-
tilled water, slides were air-dried and mounted with antifade solution 
(Vector Laboratories Inc., Burlingame, CA, USA). Capture and analy-
sis of the surface spread spermatocytes were performed using the Cy-
tovision FISH imaging system (Applied Imaging, Sunderland, UK). 

  After synaptonemal complex (SC) analysis, the same cells were sub-
jected to fluorescence in situ hybridization using painting probes gen-
erated from flow-sorted or microdissected chromosomes X, Y and 14 
(Yerle et al., 1993; Pinton et al., 2003). The probes were labeled with 
biotin (SSC14), digoxigenin (SSCY) or FITC (SSCX). Biotin was re-
vealed by Alexa 594-conjugated streptavidin (Molecular Probes, Eu-
gene, OR, USA). Digoxigenin was revealed by a mouse anti-digoxigen-
in antibody (Roche Diagnostic, Meylan, France) and an Alexa 647-con-
jugated donkey anti-mouse antibody (Molecular Probes, Eugene, OR, 
USA). The probe labeled with FITC was revealed by a goat anti-FITC 
antibody (Bethyl, Montgomery, Texas, USA) and an Alexa 488-conju-
gated donkey anti-goat antibody (Molecular Probes, Eugene, OR, 
USA). FISH signals of the same cells for which SCs had previously been 
analyzed were captured and evaluated.

  Cot RNA experiment 
 A Cot RNA experiment was carried out before immunostaining of 

the  � H2AX protein (to preserve RNA integrity) according to Turner et 
al. (2005). The Cot DNA probe was produced from 400 ng of porcine 
Cot DNA (Applied Genetics Laboratory, Melbourne, FL, USA) labeled 
with biotin by Nick Translation (Roche Diagnostic, Meylan, France).

  Results  

 Molecular characterization 
 Dual color chromosome painting confirmed the results 

of classical cytogenetic analysis ( Fig. 1 ) and the presence of 
a small green signal (Y chromosome) on the derivative chro-
mosome 14 proved the reciprocity of the exchange ( Fig. 2 , 
arrowhead). Moreover, as expected, the Y painting probe 
also labeled the pseudoautosomal region on the X chromo-
some p arm ( Fig. 2 , arrow).

  This experiment clearly demonstrated that chromosome 
14 was almost entirely translocated onto chromosome Y and 
that the small derivative chromosome was constituted by 
the centromeric region of chromosome 14 and a small Y 
chromosomal segment (Yq-ter chromosome segment). 

  Histology 
 Histopathological analysis showed a diffuse atrophy of 

the seminiferous tubules due to a complete arrest of sper-
matogenesis associated with a severe diffuse hyperplasia of 
the Leydig interstitial cells ( Fig. 3 a). At higher magnifica-
tion, the epithelium of the tubules showed the presence of 
spermatogonia and primary spermatocytes in great number 
but no evidence of further cell maturation. Numerous ab-
normal cells and cellular debris were observed in the lu-
men (megalocytosis, multinucleated cells, monstrous cells) 
( Fig. 3 b).

  Immunolocalization and FISH analyses 
 SC analysis of 85 pachytene nuclei showed the presence 

of an open structure corresponding to a quadrivalent formed 
by chromosome 14, chromosome X, and the derivative 
chromosomes 14 and Y in 84.7% of the cases ( Fig. 4 ). 
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  A ‘trivalent plus univalent’ configuration was observed 
in the remaining cases (15.3%). The origin of the univalent 
(derivative chromosome 14) was confirmed by FISH ex-
periments ( Fig. 5 a2–e2, univalent indicated by the arrow-
head).

  Immunolocalization of  � H2AX revealed the presence 
of this modified histone in the chromatin domains of un-
synapsed segments ( Fig. 5 b1, b2, b3). FISH experiments 
permitted more accurate identification of these regions 
( Fig. 5 c, d, e). In the majority of cells analyzed (92.94%), the 
histone accumulated on chromosomes X and Y and on the 
centromeric region of chromosome 14 in the quadrivalent 
configurations. Moreover, in the ‘trivalent plus univalent’ 
(derivative chromosome 14) configuration, a  � H2AX pos-

itive signal was always observed on this latter chromosome 
( Fig. 5 b2, arrowhead). Finally in 7.05% of the cells ana-
lyzed, a spreading of the  � H2AX signal from the XY body 
to the entire chromosome 14 was identified ( Fig. 5 b3, ar-
row). 
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  Fig. 1.   GTG-banded karyotype of the boar carrying a Y;14 translo-
cation. 
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  Fig. 2.   Metaphase of the translocation-carrying boar after dual-
color chromosome painting (Y probe is revealed in green and chromo-
some 14 in red). The arrowhead indicates the presence of Y chromo-
some material on the derivate chromosome 14 and the arrow the pseu-
doautosomal region at the extremity of Xp. 
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  Fig. 3.   Histological sections of testicular tissue. ( a ) Complete arrest of spermatogenesis with hyperplasia of the Ley-
dig interstitial cells ( ! 100). ( b ) Presence of spermatogonia and primary spermatocytes but no evidence of further cell 
maturation. Abnormal cells and cellular debris are visible in the lumen ( ! 400). 
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  Fig. 4.   Schematic drawing of the open quadrivalent. 
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  The Cot RNA FISH experiment carried out to analyze 
the transcription level of the cells revealed a lack of Cot 
probe signals in the  � H2AX domains suggesting transcrip-
tional repression of these regions ( Fig. 6 , arrow). 

  Discussion 

 To our knowledge this is the first report of a Y-autosome 
translocation in pigs. In contrast, several Y-autosome trans-
locations have been identified in humans, frequently associ-
ated with spermatogenesis impairment. In our case (azoo-
spermic boar), histopathological analysis revealed that the 
meiotic process halted during the first division. Previous 
studies have shown that the arrest of spermatogenesis can 
be due to synaptic anomalies associated or not with chro-
mosomal abnormalities (see e.g. Oliver-Bonet et al., 2005; 
Sun et al., 2005, 2007; Martin, 2006; Topping et al., 2006; 
Sciurano et al., 2007). 

  The aim of our study was to analyze the early stages of 
meiosis (using immunolocalization techniques) in order to 
identify the phenomena potentially responsible for the 
boar’s sterility. 

  The use of immunolocalization techniques revealed 
some meiotic abnormalities since SC analysis demonstrated 
the presence of an open quadrivalent in most cells studied, 
but also a ‘trivalent plus univalent’ configuration in some 
cells (15.3% of the spermatocytes analyzed). The formation 
of this latter configuration was probably due to meiotic 
pairing impairments caused by the small size of the deriva-

SCP3+SCP1

centromeres

�H2AX SSCY probe SSC14 probe SSCX probe

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

  Fig. 5.   Spermatocytes after immunolocalization and FISH experiments. ( a 1–3) Immunolocalization of SCP3, SCP1 
and centromeres. ( b 1–3) Immunolocalization of  � H2AX. ( c 1–3) FISH using chromosome Y probe. ( d 1–3) FISH using 
chromosome 14 probe. ( e 1–3) FISH using chromosome X probe. 

Fig. 6.  Cot RNA FISH experiment. Cot DNA positive signals (na-
scent transcripts) labeled in red and  � H2AX signal in green. Note the 
absence of Cot signals in the  � H2AX-positive area (arrow).
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tive chromosome 14. The presence of this univalent can re-
sult in a lack of tension of the kinetochores during meta-
phase I. This phenomenon can be detected by a specific mei-
otic checkpoint. Indeed, the ‘spindle checkpoint’ occurs at 
the metaphase I stage and blocks the metaphase-anaphase 
transition of cells presenting a defective spindle or mis-
aligned chromosomes (Eaker et al., 2001). In a more gen-
eral way, the observed meiotic pairing abnormalities (un-
synapsed regions in the quadrivalent and ‘trivalent plus 
univalent’ configurations) can be detected by another 
checkpoint, the ‘pachytene checkpoint’, which occurs dur-
ing prophase of the first meiotic division (Roeder and Bailis, 
2000). This checkpoint may trigger an arrest of the meiotic 
division. In this case, the presence of unpaired regions (open 
quadrivalents) and of a univalent in the spermatocytes ana-
lyzed could explain the observed arrest of spermatogenesis 
in this boar.

  Our analysis was completed by immunolocalization of 
the  � H2AX protein (phosphorylated form at serine 139 of 
the minor histone H2AX). This revealed an accumulation 
of the modified histone in the XY body as well as in the au-
tosomal unsynapsed regions, i.e. the centromeric region of 
chromosome 14 and the derivative chromosome 14 in the 
quadrivalent and ‘trivalent plus univalent’ configurations. 
These observations are in agreement with the recent results 
of Sciurano et al. (2007), i.e. presence of  � H2AX in the chro-
matin domains of the unsynapsed segments of the X and Y 
chromosomes as well as in some autosomal segments. Re-
cent studies in mice have shown that  � H2AX-positive do-
mains corresponding to unsynapsed chromatin regions are 
transcriptionally inactive (Baarends et al., 2005; Turner et 
al., 2005, 2006). We used Cot RNA FISH to confirm these 
results in pigs. Our data suggest that the accumulation of 
 � H2AX correlated with transcriptional silencing of unsyn-
apsed autosomal regions could be responsible for the inac-
tivation of genes located in the centromeric region of chro-
mosome 14 that are crucial for meiotic division, thereby 
leading to spermatogenesis arrest through apoptosis of the 
concerned cells.

  Recent data available through the pig genome sequenc-
ing project (‘http://pre.ensembl.org/Sus_scrofa/index.html’ 
– currently release 43 code – Nov 2006) (Hubbard et al., 
2007) revealed that some genes involved in the meiotic pro-
cess are located on chromosome 14 in the region corre-
sponding to the chromosome 14 segment of the derivative 
chromosome 14. The first one is  CKS2  (cyclin-dependent 
kinase subunit 2) located around 400 kb from the centro-
mere. Studies carried out in knockout mice for that gene 
showed that  Csk2  is involved in the meiotic process (Spruck 
et al., 2003). Indeed  Csk2  –/–  mice presented normal early 
meiotic progression but an arrest of spermatogenesis at 
metaphase I. The phenotype previously described in these 
mice is very similar to the observations in the azoospermic 
boar. 

  The second gene, located approximately 8 Mb from the 
centromere of chromosome 14, encodes the Kinesin-like 
protein KIF13B (Kinesin-like protein GAKIN) that plays a 
critical role in spindle function and chromosome   segrega-

tion (Hanada et al., 2000). The inactivation of  GAKIN  may 
lead to the inability of chromosomes to segregate at the first 
meiotic division.

  Consequently the meiotic arrest observed in our azoo-
spermic boar could be explained by the inactivation of these 
two genes  (CKS2  and  GAKIN) . 

  Gene expression analyses of  CKS2  and  GAKIN  using 
quantitative RT-PCR will be carried out on RNA extracted 
from the testicles of the translocation-carrying boar and 
compared to results obtained from a normal individual. 
This study will be complemented by RNA FISH experi-
ments using BAC clones containing these two genes.

  In a limited number of cases (7.05%) the presence of 
 � H2AX has also been observed on the entire chromosome 
14 suggesting a spreading effect of the transcriptional re-
pression from the sex chromosome towards the autosomal 
translocated chromosome. These observations are coherent 
with a spreading of the SB inactivation towards the attached 
autosome segments (Jaafar et al., 1993) rather than gene ac-
tivation on the X chromosome (Lifschytz and Lindsley, 
1972). 

  Other consequences of meiotic disturbances have been 
observed in Y-autosome translocation carriers. Sun et al. 
(2005), for example, reported a decrease of the recombina-
tion rate in a man carrying a (Y;1) translocation. We tried 
to analyze the meiotic recombination using antibodies 
against MLH1 (Baker et al., 1996) but without success. No 
clear signals of the recombination foci were obtained with 
these antibodies. This suggests a need to improve the meth-
odology (use of antibodies specific to other recombination 
proteins such as MLH3 or MSH4). Nevertheless, the occur-
rence of a similar phenomenon in our case cannot be ex-
cluded. Such a decrease in the number of recombination 
foci, i.e. future chiasmata, could be responsible for inappro-
priate orientation and segregation of the chromosomes dur-
ing the first meiotic division. This meiotic disturbance may 
also be detected by the previously described meiotic check-
points.

  In conclusion our results show the interest and power of 
immunolocalization techniques for studying the early stag-
es of meiosis. They open up a new way for identifying and 
understanding the mechanisms of meiotic disturbance. The 
identification of  � H2AX-positive domains in the spermato-
cytes of individuals exhibiting impaired spermatogenesis 
could be a first step in the identification of new genomic 
regions potentially carrying genes involved in the control of 
meiosis.
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