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Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related
processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-
regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial
coexpression with OCL1 in maize organs, and several of them shared preferential expression in the epidermis with OCL1. They
encoded proteins involved in lipid metabolism, defense, envelope-related functions, or cuticle biosynthesis and include
ZmWBC11a (for white brown complex 11a), an ortholog of AtWBC11 involved in the transport of wax and cutin molecules. In
support of the annotations, OCL1-overexpressing plants showed quantitative and qualitative changes of cuticular wax
compounds in comparison with wild-type plants. An increase in C24 to C28 alcohols was correlated with the transcriptional
up-regulation of ZmFAR1, coding for a fatty acyl-coenzyme A reductase. Transcriptional activation of ZmWBC11a by OCL1 was
likely direct, since transactivation in transiently transformed maize kernels was abolished by a deletion of the activation
domain in OCL1 or mutations in the L1 box, a cis-element bound by HD-ZIP IV transcription factors. Our data demonstrate
that, in addition to AP2/EREBP and MYB-type transcription factors, members of the HD-ZIP IV family contribute to the
transcriptional regulation of genes involved in cuticle biosynthesis.

The outer-most cell layer or epidermis represents
the interface of sessile land plants with their envi-
ronment and has the somewhat incompatible roles
to provide a protective barrier against hostile biotic
or abiotic agents and at the same time to allow the

exchange of gas, water, and nutrients with the outside
world. The bulk of plant organs are covered by ground
epidermal cells such as pavement cells on leaves or
rhizodermic cells in the root. They show a certain
asymmetry in that the cell wall facing the environment
is frequently modified or reinforced (Glover, 2000). In
addition, some epidermal cells undergo particular
developments to form specialized structures such as
trichomes or stomatal guard cells on the aerial parts,
root hairs in the root, or the aleurone layer in the seed,
which are essential for defense, respiration, nutrition,
and starch degradation, respectively (Guimil and
Dunand, 2007). Over the past few years, a wealth of
knowledge has become available on the differentiation
of these specialized epidermal cells, highlighting the
importance of cell-cell communication, cell lineage,
and the formation of particular transcriptional com-
plexes in triggering specialization (Ishida et al., 2008;
Nadeau, 2009). In contrast, little is known about the
differentiation of ground epidermal cells. An impor-
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tant step forward was the analysis of the shoot epi-
dermal transcriptome in maize (Zea mays) and Arab-
idopsis (Arabidopsis thaliana) that highlighted the
preponderant role of lipid-related functions in the
epidermis. Indeed, genes involved in lipid metabo-
lism, cuticle biosynthesis, or biotic/abiotic stress re-
sistance were more abundantly expressed in shoot
epidermal cells than in underlying tissues (Nakazono
et al., 2003; Suh et al., 2005).

The control of the differentiation and maintenance
of epidermal cell fate involves members of the homeo-
domain-Leu zipper IV (HD-ZIP IV) family of plant-
specific transcription factors (Ariel et al., 2007). These
proteins are defined by the presence of four highly
conserved domains: a homeodomain (HD) associated
with a Leu zipper domain (ZIP), a steroidogenic acute
regulatory-related lipid transfer domain (START),
and a HD-START-associated domain (Mukherjee and
Burglin, 2006). The vast majority of characterized
HD-ZIP IV genes have an epidermis-specific expres-
sion pattern in a variety of species, including Arabi-
dopsis (Lu et al., 1996; Nakamura et al., 2006), cotton
(Gossypium hirsutum; Guan et al., 2008), maize (Ingram
et al., 2000), rice (Oryza sativa; Ito et al., 2002), and pine
tree (Pinus spp.; Ingouff et al., 2001). Functional data
concern almost exclusively the 16 HD-ZIP IV genes
identified in the Arabidopsis genome (Nakamura
et al., 2006), even though a systematic survey of single
mutants revealed detectable phenotypes for only three
of them. The glabra2 (gl2) mutant is affected in
trichome and root hair development, mucilage depo-
sition, and seed oil content (Rerie et al., 1994; Di
Cristina et al., 1996; Shen et al., 2006), the homeodomain
glabrous11 (hdg11) mutant in trichome branching
(Nakamura et al., 2006), and the anthocyaninless2 (anl2)
mutant in anthocyanin distribution and root develop-
ment (Kubo et al., 1999). A more spectacular pheno-
type was observed in the Arabidopsis thaliana meristem
layer1/protodermal factor2 (atml1/pdf2) double mutant,
which fails to differentiate a protoderm during em-
bryogenesis and is embryo lethal (Abe et al., 2003).
Little is known about HD-ZIP IV target genes, and
only four direct target genes have been identified.
PDF1, a gene coding for a Pro-rich protein, is directly
regulated byATML1/PDF2 (Abe et al., 2003), and genes
coding for the phospholipase D AtPLDz1, the cellulose
synthase CESA5, and the xyloglucan endotransgluco-
sylase XTH17 are directly regulated by GL2 (Ohashi
et al., 2003; Tominaga-Wada et al., 2009). The binding of
the HD-ZIP IV proteins to these target gene promoters
occurs at an 8-bp cis-element called the L1 box, which is
thought to be critical for driving epidermis-specific
expression (Abe et al., 2001).

In maize, five of the 17 OUTER CELL LAYER (OCL)
genes encoding HD-ZIP IV proteins have been char-
acterized and show an expression pattern restricted
to the epidermal or subepidermal layer of various
organs (Ingram et al., 2000). Functional data exist for
OCL4 involved in anther and trichome development
(Vernoud et al., 2009) and OCL1. Dominant negative

transgenic lines expressing an OCL1-ENGRAILED
fusion show a transient reduction in kernel size, which
is possibly caused by a decrease of gibberellin levels
(Khaled et al., 2005).

In addition to Arabidopsis andmaize, functional data
are available in tomato (Solanum lycopersicum), where
CUTIN DEFICIENT2 (CD2) is necessary for the biosyn-
thesis of an intact cuticle of the fruit (Isaacson et al.,
2009). The cuticle is a protective hydrophobic layer
deposited on the external cell wall of epidermal cells in
the aerial parts of the plant (Jeffree, 2006). The twomajor
constituents are cutin and waxes. The cutin polymer, a
polyester of C16 to C18 fatty acids, represents the
structural matrix, which is interspersed and covered
by waxes, a mixture of C24 to C34 alcohols, aldehydes,
fatty acids, alkanes, ketones, andwax esters (Jenks et al.,
2002; Nawrath, 2002; Kunst and Samuels, 2003). Beyond
its role in defense (Eigenbrode and Espelie, 1995), and
more generally as a mechanical and chemical barrier
against biotic and abiotic stress, the plant cuticle is also
an efficient means against water loss and sun radiation
and allows the control of gas exchanges (Gray et al.,
2000; Riederer, 2006). Over the past few years, genetic
studies in Arabidopsis have improved our understand-
ing of the enzymatic steps involved in fatty acid elon-
gation and wax biosynthesis (Samuels et al., 2008). In
contrast, the mechanisms behind the transport and
asymmetric deposition of cuticle components remain
poorly understood. For over a decade, many authors
hypothesized on the implication of lipid transfer pro-
teins (LTPs) in the transport of cuticular lipids through
the cell wall (Kader, 1996). A role of LTPs in cuticle
formation has recently been demonstrated by the char-
acterization of mutant Arabidopsis lines lacking LTPG1,
which revealed a significant reduction of C29 alkanes in
the cuticle (Debono et al., 2009; Lee et al., 2009). Beyond
LTPs, there is experimental evidence that the ATP-
binding cassette (ABC) transporters ABCG12/CER5
(for ECERIFERUM5) and ABCG11/WBC11 (forWHITE
BROWN COMPLEX11) are involved in the transport of
wax (CER5) or wax and cutin molecules (WBC11) from
their site of synthesis to the cuticle layer (Pighin et al.,
2004; Bird et al., 2007).

Here, we provide evidence for a link between the
HD-ZIP IV transcription factor OCL1 from maize
and certain elements of lipid transport/metabolism,
in particular elements needed for cuticle deposition/
biosynthesis necessary to make a protective epidermis.
We identified 14 direct or indirect target genes of OCL1
and show that the transcriptional activation by OCL1
of a gene coding for an ABC transporter is likely direct
and involves an L1 box.

RESULTS

Identification of 11 OCL1 Target Genes by
Microarray Analysis

Eleven target genes of the HD-ZIP IV transcription
factor OCL1 were identified by a transcriptome com-
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parison between transgenic maize plants overexpress-
ing OCL1 (OCL1-OE) under the control of the strong
cassava vein mosaic virus (CsVMV) promoter and
wild-type sister plants. RNA was extracted from the
aerial parts of plantlets at 18 d after sowing (DAS) and
used to hybridize a genome-wide 59 K microarray. A
first gene list of 204 differentially expressed genes was
established based on P , 0.01 for the biological trip-
licate and strong expression differences (logR. 2 or,
22). Using a medium to high spot intensity (logI . 0)
as an additional criterion, the list was shortened to 35
candidates. The differential expression was confirmed
for 11 of the 35 candidate genes by quantitative reverse
transcription (qRT)-PCR experiments based on the
same samples that had been used for the initial micro-
array analysis (Table I; Supplemental Table S1).
A survey of two additional organs suggested that

OCL1 was not the only regulatory protein influencing
the transcription of its target genes and/or that it
might interact with different proteins or via different
regulatory cascades in dissected shoot apices and in
immature ears. Three target genes (MZ00014373,
MZ00024305, and MZ00031955) had the same differ-
ential trend in all three organs, while in seven other
cases the trend was confirmed only in two of the three
organs and in one case only in the original 18-DAS
plantlets (Table I). Expression differences between
OCL1-OE and the wild type were generally lower
in the additional organs, reflecting lower ratios for
OCL1 itself, which were probably caused by less effi-
cient transcription off the CsVMV promoter in shoot
apices and immature ears. Taken together, we identi-
fied 11 genes that were either directly or indirectly up-
regulated (six genes) or down-regulated (five genes)
by OCL1.

Involvement of OCL1 Target Genes in Lipid Metabolism,

Lipid Transfer, and/or Plant Defense

To determine whether the 11 confirmed target genes
had similar functions, complete protein sequences
were assembled, starting from the 70-nucleotide oli-
gonucleotide deposited on the microarray, exploiting
the very rich maize EST data (Messing and Dooner,
2006) as well as the recently established draft of the
maize genome sequence (Pennisi, 2008). A group of
five genes shared annotations related to lipid metab-
olism or transport and/or plant defense (Table I).
Among them, three up-regulated target genes likely
encoded lipid transporters, as they were annotated as
nonspecific, type 2 lipid transfer protein (MZ00024305;
hereafter named ZmLTPII.12 according to Boutrot
et al. [2008]), ABC transporter of the WBC11/ABCG11
clade (MZ00031783), and SEC14/phosphatidylinositol
transfer protein (MZ00031955, PITP). Another up-
regulated gene (MZ00029574) shared highest identity
with AtCXE18 encoding an Arabidopsis carboxyles-
terase hydrolyzing in vitro short-chain acyl esters
(Cummins et al., 2007). Finally, the down-regulated
(MZ00005958) Indole-3-glycerol phosphate lyase (Igl) gene

had previously been shown to be involved in the
tritrophic defense of maize against herbivory (Frey
et al., 2000). While a sixth gene (MZ00018561) also
carried a plant lipid transfer protein domain, its
N-terminal extension made it an atypical LTP and led
to a classification as a Pro-rich cell wall-plasma mem-
brane linker protein with lipid-binding capacity. Two
other target genes also seemed to have a cell envelope-
related function due to their annotations as trans-
membrane proteins, and more precisely, members of
a plant-specific family carrying the DUF588 domain
(for domain of unknown function 588; MZ00030315)
and of the MtN3/Saliva family (MZ00014373) named
after NODULIN3 from Medicago truncatula and
SALIVA from Drosophila melanogaster (Gamas et al.,
1996). This group was completed by a down-regulated
gene (MZ00024414) annotated as a multidrug and
toxic compound extrusion (MATE) efflux carrier. The
last two genes were predicted to encode a cyto-
chrome P450 of the plant-specific subfamily A most
closely related to CYP78A6 from Arabidopsis and a
tetratricopeptide repeat (TPR) domain-containing
protein similar to the MALE STERILITY5 protein
(Glover, 2000). These results suggested that the ma-
jority of genes regulated by OCL1 were involved in
lipid metabolism or transport and other cell envelope-
related functions.

Due to the epidermis-specific expression of OCL1,
we scrutinized the 11 annotations for putative epider-
mis-related functions. In the case of the WBC11-like
gene (MZ00031783), which will be called ZmWBC11a
hereafter, functional data in a closely related gene
clearly suggested an epidermis-related function, since
both wax and cutin synthesis are impaired in the
Arabidopsis wbc11 mutant (Bird et al., 2007). In order
to determine if OCL1 regulated other members of the
WBC11 clade in maize, we identified all paralogous
genes in the maize genome. Among the four addi-
tional WBC11-like genes, ZmWBC11b to ZmWBC11e,
the first two showed up-regulation in transgenic 18-
DAS plantlets compared with wild-type plantlets
(Table I). Interestingly, the three ZmWBC11 genes
regulated by OCL1 (ZmWBC11a, ZmWBC11b, and
ZmWBC11c) fell into a single clade in the phyloge-
netic tree of the WBC family, while the remaining two
genes, ZmWBC11d and ZmWBC11e, not influenced by
OCL1 fell into a sister clade (Supplemental Fig. S1).
These results indicated that OCL1 regulated a well-
defined subset of genes coding for ABC transporters
in maize.

Overlapping Expression of OCL1 with Its Target Genes

To obtain additional clues with regard to gene func-
tion, we established the expression pattern of each
confirmed target gene by qRT-PCR in vegetative and
reproductive organs as well as during kernel develop-
ment (Fig. 1; Supplemental Table S2). Three genes of the
lipid group (ZmLtpII.12, ZmWBC11a, and MZ0031955)
and one of the envelope group (MZ00018561) showed
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strongest expression in reproductive organs, while
the remaining three genes of the envelope group
(MZ00014373, MZ00024414, and MZ00030315) and the
Cytochrome P450 gene (MZ00028617) were primarily
expressed in leaves (Fig. 1). The fourth lipid gene
(MZ00029574) and the defense gene (MZ00005958)
showed no clear preference for either reproductive
organs or leaves. The gene coding for a TPR domain
protein (MZ00022171) appeared to be preferentially
expressed in the maize kernel. During kernel devel-
opment, the majority of the 11 target genes showed a
peak of expression toward the end of early kernel
development, varying between 7 and 12 d after polli-
nation (DAP; Supplemental Table S2). One of the lipid-
related genes (MZ00031955) had a second peak during
the maturation stage (35–50 DAP). Expression of the
Nodulin gene (MZ00014373) was strongest in im-

mature ovules, while the Cytochrome P450 gene
(MZ00028617) was up-regulated during dehydration
(30–35 DAP).

In conclusion, most genes clearly showed preferen-
tial expression in a limited number of organs. Despite
preferences for either leaves or reproductive organs
and generally weaker expression in roots, we could
not establish an overall pattern common to all genes,
although the expression territories of all genes showed
at least some overlap with that of OCL1, in particular
during kernel development.

Due to the annotations suggesting epidermis-
related functions of the 11 target genes, we performed
RT-PCR experiments on epidermal and mesophyll
cells captured after laser microdissection of the central
part of juvenile leaf 4 (Fig. 2A) in order to reveal any
preferential or specific expression in the epidermis. Of

Table I. Relative expression levels of confirmed OCL1 target genes in OCL1-OE and OCL1-RNAi plants

Oligo IDa

and/or Gene

Name

Trend in

OCL1-OE

(Plantlet)

Ratio OCL1-OE/

Wild Typeb
Ratio OCL1-RNAi/

Wild Typec

Annotationf Maize Gene Modelg Class
18-DAS

Plantlet

Shoot

Apexd
Immature

Eard
18-DAS

Plantlete

OCL1 Up 23.80 4.00* 3.46* 0.51* Transcription factor
HD-ZIP IV family

GRMZM2G026643 Transcription
factor

MZ00005958 Down 0.18 1.50 0.00* 1.38* Maize indole-3-glycerol
phosphate lyase (Igl)

GRMZM2G015892 Defense

MZ00014373 Down 0.10 0.39* 0.04* 1.05 MtN3/SALIVA-related
transmembrane protein

GRMZM2G179349 Envelope

MZ00018561 Down 0.38 0.57* 1.87 0.99 Pro-rich protein; structural
constituent of cell wall

GRMZM2G345700 Envelope

MZ00022171 Up 20.88 0.43 0.43 1.04 Male sterility MS5 family
protein;

contains TPR domain

GRMZM2G075563 Other

MZ00024305
LtpII.12

Up 4.34 1.94* 2.40* 0.58* Nonspecific lipid transfer
protein (nsLTP) type 2

GRMZM2G387360 Lipid

MZ00024414 Down 0.09 0.65* 1.52 1.23* MATE efflux family protein GRMZM2G339488 Envelope
MZ00028617 Down 0.04 0.61* 1.61 1.30* Cytochrome P450; oxygen

binding;
CYP78A6-like

GRMZM2G034471 Other

MZ00029574 Up 7.35 1.25* nd 0.80* Carboxylesterase;
ATCXE18-like

GRMZM2G104141 Lipid

MZ00030315 Up 13.51 1.55* 0.18 0.55* Integral membrane family
protein; contains DUF588

GRMZM2G132128 Envelope

MZ00031783
ZmWBC11a

Up 6.94 1.05 1.27* 0.73* ABC transporter; ABCG11/
COF1/DSO/WBC11-like

GRMZM2G308860 Lipid

MZ00031955 Up 7.08 2.57* 2.17* 1.09 SEC14/phosphoglyceride
transfer family protein

GRMZM2G088501 Lipid

ZmFAR1 Up 2.78 nd nd 1.21 Fatty acyl-CoA reductase
(alcohol-forming)/
oxidoreductase; FAR1-like

GRMZM2G036217 Lipid

ZmWBC11b Up 2.69 nd nd 1.00 ABC transporter; ABCG11/
COF1/DSO/WBC11-like

GRMZM2G096952 Lipid

ZmWBC11c Up 2.06 nd nd 0.49* ABC transporter; ABCG11/
COF1/DSO/WBC11-like

GRMZM2G143668 Lipid

aIdentification number of the corresponding oligonucleotide deposited on the microarray. bMean of a biological triplicate and a technical
replicate; the expression values are reported relative to one of the wild-type samples. cMean of a technical triplicate; the expression values are
reported relative to the wild-type samples. dAsterisks indicate a trend of differential expression similar to the one observed inOCL1-OE plantlets.
nd, Not determined. eAsterisks indicate a trend of differential expression opposite to the one observed in OCL1-OE plantlets. fManually
improved annotations from SwissProt, GenBank, Trembl, and InterPro databases. gMaize genome release 4a.53 of March 8, 2010 (http://www.
maizesequence.org).
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the 11 target genes, ZmLTPII.12 (MZ0024305) and the
gene encoding a Pro-rich protein (MZ00018561) were
specifically expressed in the epidermis, while Igl
(MZ00005958) and the gene coding for an integral
membrane protein (MZ00030315) showed preferential
expression in this layer. Two genes were evenly ex-
pressed in both tissues (MZ00031955 and ZmWBC11a),
four showed stronger or specific expression in meso-
phyll cells (MZ00014373, MZ00022171, MZ00024414,
andMZ00028617), and one was not detectable in either
tissue (MZ00029574). The expression ofOCL1was only
preferential but not specific to epidermal cells (Fig. 2), a
situation reminiscent of the one observed by in situ
hybridization in very young embryos but in contrast
with in situ hybridizations on organ primordia or
meristematic tissues suggesting epidermis-specific ex-
pression (Ingram et al., 1999). In summary, the data
further strengthened the hypothesis of a role of OCL1

and the first four genes in epidermis-related functions,
but they do not exclude such a role for the remaining
genes.

Changes in Cuticular Wax Composition in

OCL1-OE Plants

Since the lipid-related target gene ZmWBC11a be-
longed to the same orthologous group as AtWBC11,
which has a clearly established role in cuticle forma-
tion in Arabidopsis, we analyzed the leaves of trans-
genic lines overexpressing OCL1 for structural
modifications of the cuticle. The thickness of the
cuticle was measured by transmission electron mi-
croscopy and confocal microscopy in transverse sec-
tions of juvenile leaves, while the density and shape of
wax crystals were assessed by scanning electron mi-
croscopy. Neither approach revealed any significant

Figure 1. Expression profile of OCL1 and its target genes in maize. Real-time RT-PCR experiments were carried out on cDNA
prepared frommajor organs of the maize plant forOCL1 and its 11 target genes identified by microarray experiments. The values
are means of a technical replicate. The values of truncated bars are indicated. S, Seedling aerial parts; Lj, leaf juvenile (leaf 4);
La, leaf adult (leaf 10); R7, root at 7 DAS; R30, root at 30 DAS; Ti, tassel immature; Tm, tassel mature; Ei, ear immature; Em, ear
mature; K12, kernel at 12 DAP. [See online article for color version of this figure.]
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differences between wild-type and OCL1-OE leaves
(Supplemental Fig. S2).

Next, we employed biochemical methods based on
chloroform extraction followed by gas chromatogra-
phy with flame ionization detection or mass spectrom-
etry detection to analyze the quantity and quality of
epicuticular waxes from juvenile leaves. Using juve-
nile leaf 4 from two independent OCL1-OE transfor-
mation events (K2 and K3) and their corresponding
wild type, we analyzed waxes from both the leaf
sheath (the leaf base enveloping the stem) and the leaf
blade (the part separated from the stem). No signifi-
cant difference could be detected in the total wax load
for either part of the leaf, but a detailed analysis of the
different constituents revealed that the same pools
were affected in the two independent OCL1-OE lines
(Fig. 3), which showed comparable levels of OCL1
overexpression (19.57-fold for K2 and 23.80-fold for
K3). In the leaf sheath, OCL1 overexpression modified
the content of the two major components of the waxes

with opposite effect: increase in C32 alcohol and
decrease in C32 aldehyde. Nevertheless, since these
constituents were present at about the same levels and
the modifications were similar but in opposite direc-
tions, total wax load was not affected. With respect to
minor components, strong modifications were consis-
tently detected in the levels of the wax esters, which
are made of very long-chain fatty acids and alcohols.
In the waxes of both OCL1-OE events, C44 to C48 wax
esters were two to three times more abundant. In event
K2, this increase in wax ester content was accompa-
nied by higher levels of C26 fatty alcohol and C27
alkane. In the leaf blade, the contents of the two major
components (C32 alcohol and C32 aldehyde) were
not affected. Among the minor components, C46 and
C48 wax esters were reduced (by approximately
30%) rather than increased as in the leaf sheath. Fatty
alcohols showed a much broader increase, since the
levels of C24 to C28 alcohols were about 30% higher in
both OCL1-OE events when compared with the wild
type. In addition, the levels of C25 alkane and C28 and
C30 aldehyde (event K2 only) were significantly
increased in the blade. Altogether, these analyses
suggested that overexpression of OCL1 resulted in
significant modifications of wax composition, with
somewhat different effects in sheath and blade.

Since in epicuticular waxes of Arabidopsis the pro-
duction of primary alcohols is catalyzed by the fatty
acyl-coenzyme A reductase (FAR) CER4 (Costaglioli
et al., 2005; Rowland et al., 2006), we hypothesized that
OCL1 could activate the transcription of FAR genes in
maize leaf blades. Therefore, we identified the FARs
present in the maize genome based on sequence ho-
mology to Arabidopsis FARs and examined their
expression level in wild-type and OCL1-OE plants.
Among the five putative ZmFAR genes detected in the
maize genome, only ZmFAR1 showed a differential
expression and was up-regulated 2.78-fold in OCL1-
OE plants (Table I). While reciprocal blast analyses
revealed that the closest relatives of the deduced
ZmFAR1 protein sequence in Arabidopsis were CER4
(At4g33790) and At5g22500, with 64% sequence iden-
tity each, phylogenetic analyses did not allow estab-
lishing orthologous relationships between individual
proteins. Four maize sequences including ZmFAR1
were clustered in a clade, and six Arabidopsis se-
quences including CER4 were clustered in a sister
clade (Supplemental Fig. S3). These results indicated
that OCL1 may trigger the reduction of fatty acid
precursors into primary alcohols through the tran-
scriptional activation of a particular ZmFAR related to
AtCER4.

Partial Knockouts of OCL1 Influence Target Gene

Expression But Not Wax Composition

To confirm the molecular and phenotypic changes
seen in OCL1-OE plants, OCL1-RNAi (for RNA inter-
ference) plants under the control of the rice Actin
promoter were produced. None of the 14 transforma-

Figure 2. Expression of OCL1 and its target genes in outer and inner
cell layers of leaf 4. A to C, From paraffin-embedded leaf sections (A),
epidermal (B) andmesophyll cells (C) were isolated using infrared laser-
capture microdissection. D, RT-PCR experiments assessing the expres-
sion of OCL1 and its target genes in microdissected epidermal (E) and
mesophyll (M) cells. The concentration of the cDNA templates was
normalized according to the abundance of the Actin RT-PCR product.
[See online article for color version of this figure.]

Javelle et al.

278 Plant Physiol. Vol. 154, 2010



tion events showed complete suppression of OCL1
transcript accumulation, and further work focused on
line 2, which showed the most efficient OCL1 gene
silencing, with a decrease of about 50% of the OCL1
mRNA level (Table I). This knockdown of OCL1 ex-
pression was sufficient to affect the expression level of
several target genes. In 18-DAS plantlets, eight target
genes had a trend opposite to the one observed in
OCL1-OE plants (Table I). Again, the lipid group was
the main representative, with the ABC transporter
genes ZmWBC11a, ZmWBC11c, and ZmLTPII.12 and
the Carboxylesterase gene (MZ00029574). Five target
genes showed no significant expression difference
between OCL1-RNAi plantlets and wild-type siblings,
and one gene showed the same trend as in OCL1-OE
plants. These data lend further credence to a direct or
indirect regulation by OCL1 of the eight genes, with
opposite trends in OCL1-OE and OCL1-RNAi plant-
lets.
Wax composition was analyzed in three indepen-

dent RNAi events named lines 1, 2, and 3, in which the
OCL1 expression level was reduced to 68%, 51%, and

64% of the wild-type level, respectively. A compara-
tive analysis of juvenile leaves from RNAi plants and
wild-type siblings revealed significant differences only
for wax esters (Supplemental Table S3), which were
somewhat difficult to interpret in light of the differ-
ences between sheath and blade. No opposite trend to
the increase of C24 to C28 alcohols seen in OCL1-OE
lines was observed, probably due to the insufficient
knockdown of OCL1. In fact, opposite trends are not
necessarily expected, since OCL1 expression was only
reduced by a factor of 2 in the bestOCL1-RNAi line but
increased by a factor of 20 in the strongest OCL1-OE
line; similarly, the alterations in the expression of the
eight target genes with opposite trends were consid-
erably stronger in OCL1-OE lines than in the OCL1-
RNAi line.

Transactivation of ZmWBC11a and ZmLtpII.12 by OCL1
after Transient Transformation of Maize Kernels

In order to discriminate between direct and indirect
OCL1 target genes, we obtained the genomic sequence

Figure 3. Cuticular wax composition of juvenile maize leaves. Total wax load as well as relative amounts of individual
compounds from the blade and sheath of juvenile leaves were compared between theOCL1-OE transformation events K2 and K3
(hatched bars) and their respective wild types (WT; white and gray bars). Means and SD indicated by error bars were calculated on
seven to 10 biological replicates (Supplemental Table S3). * P , 0.05, ** P , 0.01 as calculated by Student’s t test.
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of each target gene using maize genome resources
(www.maizegenome.org) and scanned the upstream
and intron sequences for the presence of an L1 or
L1-like (L1L) box. The asymmetric L1 box 5#-TAAATG
(C/T)A-3# is a cis-element showing a gel shift in
the presence of the HD-ZIP IV transcription factors
ATML1 (Abe et al., 2001), PDF2 (Abe et al., 2003), and
GL2 (Ohashi et al., 2003), while the slightly longer
palindromic L1L box 5#-GCATTAAATGC-3# has been
defined as the consensus-binding site of recombinant
HD-ZIP IV proteins HDG7, HDG9, and ATML1 in
PCR-assisted DNA selection assays (Nakamura et al.,
2006). The only L1 or L1L box detected in the 11
genomic sequences was located near the end of the
first intron of ZmWBC11a (Fig. 4), which became a
good candidate to be a direct target gene of OCL1. The
presence of regulatory elements in introns is not rare,
one of the best characterized examples being intron 1 of
AGAMOUS in Arabidopsis (Sieburth andMeyerowitz,
1997).

To further investigate the possible binding of OCL1
to regulatory regions of target genes, we chose the L1
box-containing intron of ZmWBC11a and the up-
stream region of the epidermis-specific ZmLtpII.12
(Fig. 4A). Immature maize kernels were cobom-
barded with fusions of the respective regulatory re-
gions to a GUS reporter gene and a second construct
expressing OCL1 under the control of the constitutive
CsVMV promoter. Quantification of GUS activity by
the 4-methylumbelliferyl b-D-glucuronide test re-
vealed a basal level of fluorescence after transient
transformation with the reporter constructs iWBC11a::
GUS and pLtpII.12::GUS on their own (Fig. 4B). When
cotransformed with OCL1, we observed a marked
increase in GUS activity indicating transactivation by
OCL1. In contrast, the cotransformation of pLtpII.12::
GUS or iWBC11a::GUS with OCL1DAD coding for an
inactive form of OCL1 lacking its activation domain
(N. Depège-Fargeix, personal communication) failed
to transactivate the transcription of the ZmLtpII.12 and
ZmWBC11a genes, and we even observed a weak,
nonsignificant decrease of the GUS activity with
regard to the basal level. These results clearly demon-
strated the capacity of OCL1 to activate the transcrip-
tion of two genes of the lipid group (Table I) in the
maize kernel.

In order to provide further arguments for a direct
interaction between OCL1 and the regulatory region
of ZmWBC11a, we mutated the L1 box 5#-TAAATG
(C/T)A-3# to 5#-TAAGGG(C/T)A-3#, thereby intro-
ducing the same mutation previously used in the
PDF1 promoter to demonstrate loss of binding of the
HD-ZIP IV factor ATML1 in Arabidopsis (Abe et al.,
2001). We observed that in the presence of the mu-
tated L1 box, OCL1 lost the capacity of transactivate
the transcription of ZmWBC11a (Fig. 4C). This result
demonstrated that a native L1 box was required
for the transactivation by OCL1 and suggested di-
rect binding of OCL1 to the L1 box in intron 1 of
ZmWBC11a.

DISCUSSION

Transcription of 14 Genes Is Altered in Plants
Overexpressing OCL1

The identification and molecular characterization of
14 direct or indirect target genes of the HD-ZIP IV
transcription factor OCL1 showed that half of them
encode proteins known to be involved in the biosyn-
thesis or transport of cuticular waxes in maize, fitting
well with the preferential or specific expression of
OCL1 in the epidermal cell layer of various plant
organs. Plants overexpressing OCL1 do not only show
up-regulation of seven genes with suggestive lipid-
related annotations but also alterations in the wax
composition of juvenile leaves. The annotations of
the remaining seven genes were less informative and

Figure 4. Transactivation of ZmLTPII.12 and ZmWBC11a by OCL1 in
maize kernels. A, Genomic structures of ZmLTPII.12 and ZmWBC11a
indicating the region fused to the GUS reporter gene (hatched). UTR,
Untranslated region. B and C, Quantification of GUS activity from
transiently transformed maize kernels. B, The reporter construct alone
(no motif), with OCL1 (black stripes) or with OCL1 lacking its activation
domain (AD; stippled stripes), was used for particle bombardment. C,
An iWBC11a reporter construct mutated in the L1 box (light green) or
with an intact L1 box (dark green) was used. Means and SD indicated by
error bars were calculated on three biological replicates. Each replicate
represented a pool of 36 bombarded kernels. ** P , 0.01, *** P ,
0.001.
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could not be readily linked to specific biological pro-
cesses. The predicted localization of four gene prod-
ucts in the plasmamembrane or cell wall hints at a role
related to the cell envelope, which is not incompatible
with epidermis-specific modifications. Two genes be-
long to the large gene families of TPR proteins and
P450 cytochromes, which have been implicated in very
diverse biological processes (Small and Peeters, 2000;
Schuler andWerck-Reichhart, 2003); unfortunately, the
position of the proteins encoded by OCL1 target genes
is far from members with established functions in
phylogenetic trees. The defense-related function of
many P450 cytochromes provides a possible link with
the last target gene Igl, which has previously been
shown to be involved in the tritrophic defense of
maize against herbivory (Frey et al., 2000).
Among the 14 genes with expression changes in

OCL1-OE plants, eight genes showed an opposite
trend in OCL1-RNAi knockdown lines, further sup-
porting the hypothesis of a critical role of OCL1 in the
transcriptional regulation of these target genes. The
fact that a decrease inOCL1mRNA levels by 50% does
not affect the expression level of the remaining six
genes can possibly be explained either by a more
complex or a less sensitive chain of events between
OCL1 expression levels and target gene transcription.
OCL1 is certainly not the only regulatory protein

influencing the transcription of its target genes, and it
likely interacts with different proteins or via different
regulatory cascades in different parts of the maize
plant. These conclusions are based on the fact that the
up- or down-regulation by OCL1 in seedlings is not
always observed in other organs of OCL1-OE plants
and that the expression profiles of OCL1 and its target
genes in the different organs of the maize plant over-
lap but do not coincide. A concrete example for
independent regulation of a target gene by two differ-
ent regulatory pathways is the regulation of Igl by
volicitin (Frey et al., 2004) and OCL1. Igl expression
was lower in OCL1-OE than in wild-type leaves, yet a
treatment with volicitin increased Igl expression by a
similar factor in both materials (data not shown).

OCL1 Regulates Target Genes Involved in Lipid

Metabolism or Transport

Our data provide further evidence for the hy-
pothesis that HD-ZIP IV transcription factors play
important regulatory roles in the differentiation or
maintenance of the epidermis in general and cuticle-
related lipid metabolism and transport in particular.
This hypothesis is based on the L1-specific expression
pattern of most HD-ZIP IV family members on the one
hand (Ariel et al., 2007) and on transcriptome data
comparing epidermal cells with underlying tissues in
Arabidopsis (Suh et al., 2005) and maize (Nakazono
et al., 2003) on the other hand, where several HD-ZIP
IV genes were found strongly up-regulated in epider-
mal tissues, just like genes involved in lipid metabo-
lism and transport.

Here, we demonstrate the causal relationship be-
tween the overexpression of OCL1 and the up-regula-
tion of genes coding for a nonspecific, type 2 lipid
transfer protein (nsLTPII), an AtCXE18-like carboxyl-
esterase, a SEC14/PITP, three ABC transporters of the
WBC11/ABCG11 clade, and a FAR.

Plant nsLTPs are small, soluble proteins that facili-
tate the transfer of fatty acids, phospholipids, glyco-
lipids, or steroids between membranes. They are
encoded by gene families with 49 and 52 members
in Arabidopsis and rice, respectively (Boutrot et al.,
2008). The lipid-binding capacities of the proteins and
the epidermis-specific expression of many nsLtp genes
are well documented (Kader, 1996). Roles in two
distinct biological processes, defense and cuticle bio-
synthesis, have been demonstrated. On the one hand,
overexpression of barley (Hordeum vulgare) LTP2 en-
hances tolerance to Pseudomonas syringae in Arabidop-
sis (Molina and Garcia-Olmedo, 1997), and defective
induced resistance1 mutants lack systemic acquired
resistance after attack by Pseudomonas (Maldonado
et al., 2002). On the other hand, certain Ltp genes can
be induced by the presence of cutin monomers (Kim
et al., 2008), and mutant plant lines lacking LTPG1
show a dramatic reduction of C29 alkanes (Debono
et al., 2009). The two biological roles may involve a
common molecular mechanism, since the ltpG1 mu-
tant also shows enhanced susceptibility to infection by
the fungal pathogen Alternaria brassicicola (Lee et al.,
2009). The OCL1 target ZmLtpII.12 clusters far from Ltp
genes with established biological functions in a phy-
logenetic tree, and its closest characterized neighbors
are TaLTP2 andHvLTP2. While no precise role has been
attributed to the latter genes, there is converging
evidence that ZmLtpII.12 and consequently OCL1 are
involved in lipid transfer for cuticle biosynthesis and/
or plant defense.

The second OCL1 target coding for a carboxylester-
ase close to AtCXE18 is also linked to both lipid
metabolism and plant defense. While the biochemical
function of AtCXE and related carboxylesterases (EC
3.1.1.1) is to hydrolyze esters of short-chain fatty acids
(Cummins et al., 2007), a majority of carboxylesterase
genes have been associated with functions in plant
defense (Marshall et al., 2003).

The third lipid-related OCL1 target contains a
SEC14/PITP domain named after the yeast mutant
sec14 perturbed in endosome trafficking and distinct
trans-Golgi export pathways (Curwin et al., 2009).
PITPs catalyze phosphatidylinositol and phospha-
tidylcholine transfer in vitro, and PITP deficiencies
are known to be responsible for several diseases in
mammals (Bankaitis et al., 2005). For example, lack
of a-TOCOPHEROL TRANSFER PROTEIN causes
vitamin E deficiency due to an impaired transport of
a-tocopherol (Manor and Morley, 2007).

Three further OCL1 target genes involved in lipid
transport are ZmWBC11a, ZmWBC11b, and ZmWBC11c,
coding for ABC transporters of the WBC subfamily
(also called ABCG subfamily), which is specialized in
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the ATP-dependent translocation of steroids and other
lipids in animals (Velamakanni et al., 2007). In the plant
kingdom, mutant analysis has identified CER5
(WBC12) and WBC11 as key components of the cutic-
ular lipid export pathway (Pighin et al., 2004; Bird
et al., 2007). The mutants cer5 and wbc11 present a
decrease of total cuticular wax load and varying effects
on wax composition; in addition, wbc11 presents a
decrease in cutin load. While BLAST searches with
entire protein sequences identified AtWBC11 as the
closest relative of ZmWBC11a, a phylogenetic tree
based on conserved blocks of maize, rice, and Arabi-
dopsis sequences revealed a more complex picture
(Supplemental Fig. S1). The orthologs of AtWBC11
seem to be ZmWBC11d and ZmWBC11e, which are
not regulated by OCL1, while the three OCL1-con-
trolled maize proteins ZmWBC11a, ZmWBC11b, and
ZmWBC11c fell into a sister clade containing only
maize and rice sequences. Nevertheless, the phyloge-
netic closeness to WBC11 and CER5 together with the
changes in cuticular wax load observed in OCL1-OE
plants strengthen the hypothesis that ZmWBC11a,
ZmWBC11b, and ZmWBC11c are part of the cuticular
lipid export pathway.

Plants Overexpressing OCL1 Show Changes in Cuticular
Wax Composition

A direct link betweenOCL1 and cuticle biosynthesis
was established by the observation that the C24 to C28
fatty alcohol contents were significantly increased in
the leaf blade and ester contents were systemically
affected in the sheath and blade of OCL1-OE leaves.
Since the decarbonylation pathway, which is respon-
sible for the synthesis of aldehydes and alkanes,
appears less affected, it seems that OCL1 expression
principally affects the acyl reduction pathway. The
qualitative shift in the composition of epicuticular
waxes could possibly be explained by the up-regulation
of the last lipid-related OCL1 target ZmFAR1, coding
for a fatty acid reductase. Just like four other ZmFAR
genes not regulated by OCL1, ZmFAR1 is related to
CER4 (Supplemental Fig. S3). The phenotype of the
OCL1-OE plants is somewhat complementary to the
Arabidopsis cer4 mutant, which does not accumulate
C24 to C28 primary alcohols and contains intermedi-
ate levels of C30 primary alcohols (Rowland et al.,
2006). More detailed comparisons between ZmFAR1
and CER4, which may accept a narrower range of
substrates, are interesting but difficult, because the
phylogenetic tree does not allow the identification of
orthologuous gene pairs and rather establishes the
existence of orthologous groups, and because the
composition of cuticular waxes is quite different be-
tween maize and Arabidopsis leaves, the major com-
pounds being C32 alcohols and aldehydes in the
former but C29 and C31 alkanes in the latter case.
The same limitations are valid for comparisons be-
tween the phenotypes of OCL1-OE plants and the
Arabidopsis wbc11mutant, which is characterized by a

significant decrease in C29 alkanes and C26 to C28
primary alcohols (Bird et al., 2007). In addition, in the
WBC11 subfamily characterized by obligatory dimer-
ization (Kusuhara and Sugiyama, 2007), the possible
formation of heterodimers between ZmWBC11a,
ZmWBC11b, and ZmWBC11c would further multiply
the hypotheses.

A defect in fatty acid reduction has been reported
in the maize double mutant gl5/gl20, blocked in the
production of primary alcohols and showing a high
accumulation of aldehydes (Bianchi et al., 1978). While
gl5 has been mapped on chromosome 4 in BIN 4.03
between markers pdi1 and umc2211, no map position
is available for the duplicate locus gl20 (http://www.
maizegdb.org). However, neither OCL1 itself nor any
of the five ZmFAR genes mapped close to gl5, leaving
the possibility that one of them represents gl20.

Transcriptional Activation Requires the OCL1 Activation
Domain and an L1 Box in ZmWBC11a

With ZmWBC11a, at least one of the 14 OCL1 target
genes seems to be directly activated by OCL1, since the
transactivation of the iWBC11a-GUS reporter construct
by OCL1 depends both on the presence of the activa-
tion domain in OCL1 and an intact L1 box in the 347-
bp fragment of ZmWBC11a driving the GUS reporter
gene. While our transactivation assays are no formal
proof of physical interaction, the hypothesis of OCL1
binding to the ZmWBC11a L1 box is further substan-
tiated by previous gel-shift assays or DNaseI foot-
prints, which established in vitro physical interaction
between HD-ZIP proteins and double-stranded oli-
gonucleotides (19–21 bp) containing an L1 box for
ATML1 (Abe et al., 2001), PDF2 (Abe et al., 2003),
and GL2 (Ohashi et al., 2003). It is also noteworthy that
the Arabidopsis AtWBC11 contained two adjacent
L1 boxes in its promoter, the shift between intron
and promoter likely being the consequence of quite
different intron/exon structures of AtWBC11 and
ZmWBC11a. Taking into account that OCL1, ATML1/
PDF2, and GL2 belong to different clades of the HD-
ZIP IV family and that Helianthus annuus homeodo-
main protein1 (HAHR1) interacts with an L1L box
(Tron et al., 2001), our data lend further evidence to the
hypothesis that the interaction between HD-ZIP pro-
teins and an L1 or L1L box is not restricted to certain
family members or to Arabidopsis but is a widespread
phenomenon in the family and across species.

The transactivation of a 2,906-bp upstream fragment
of ZmLtpII.12 depended also on the presence of the
activation domain in OCL1 but did not involve an L1
box, suggesting either the need for at least one addi-
tional regulatory protein in the signaling cascade
between OCL1 and the ZmLtpII.12 regulatory region
or OCL1 binding to alternative sites, which may be
variants of the L1 or L1L box. Preliminary results of
serial promoter deletions indicate that more than 800
bp upstream of the ATG are needed for transactivation
by OCL1 (data not shown). Further deletion analysis
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and sequence comparisons with upstream regions and
introns of the other 12 OCL1 target genes may lead to
the identification of a novel cis-element recognized by
an HD-ZIP IV protein and/or a yet unknown inter-
mediary protein.

Regulation of Cuticle Biosynthesis

Cuticular wax formation is known to be tightly
regulated in response to both developmental and
environmental cues. Several transcription factors reg-
ulating the activity of genes involved in the synthesis
of the cuticle have recently been identified. In Arabi-
dopsis, lines overexpressing WAX INDUCER1/
SHINE1 (WIN1/SHN1; Aharoni et al., 2004; Broun
et al., 2004) or the closely related AP2/EREBP family
members SHN2 or SHN3 (Aharoni et al., 2004) trigger
wax production, enhance drought tolerance, and mod-
ulate cuticular permeability. In addition, WIN1/SHN1
overexpression also increased cutin production by the
induction of cutin biosynthesis genes (Kannangara
et al., 2007). Increased cuticular wax accumulation and
enhanced drought tolerance were also observed by the
overexpression ofM. truncatulaWAX PRODUCTION1
(WXP1), belonging to a different clade of the AP2/
EREBP family, inMedicago sativa (Zhang et al., 2005) or
Arabidopsis (Zhang et al., 2007), where the paralogous
WXP2 had similar effects. The overexpression of
AtMYB41, an R2R3 MYB transcription factor, led to
an increased leaf epidermal permeability and modu-
lated the expression of genes involved in lipid and
cuticle metabolism (Cominelli et al., 2008). MYB30, a
Myb-domain transcription factor that is induced dur-
ing incompatible interactions between Arabidopsis
and several bacterial pathogens (Vailleau et al., 2002),
appears to positively regulate the accumulation of
alkanes in cuticular waxes (Raffaele et al., 2008).
A possible link between HD-ZIP IV transcription

factors and cuticle biosynthesis has previously been
suggested based on coordinated up-regulation of HD-
ZIP IV genes and genes involved in cuticle biosynthe-
sis in the epidermal layer of Arabidopsis (Suh et al.,
2005) and maize (Nakazono et al., 2003). While no
cuticle defect has been described in any of the 16 HD-
ZIP IV mutants in Arabidopsis, a point mutation in a
tomatoHD-ZIP IV gene was very recently identified as
the likely cause for cutin defects of the tomato fruit in
the cd2 mutant (Isaacson et al., 2009). Phylogenetic
analyses show that OCL1 falls in the same clade as
CD2 and forms an orthologous group with ANL2,
HDG1, HDG7, and HDG6/FLOWERING WAGENIN-
GEN from Arabidopsis.
Our data on the regulation of lipid-related genes by

OCL1 and alterations of the cuticle in OCL1-OE plants
reinforce the hypothesis that, in addition to the above-
cited members of the AP2/EREBP and MYB families,
transcription factors of the HD-ZIP IV family contrib-
ute to the transcriptional regulation of cuticle biosyn-
thesis. The presence of the START domain, which is
involved in lipid binding and transport in animals

(Ponting and Aravind, 1999), opens the way to the
very speculative hypothesis that the activation of lipid
or cuticle biosynthetic pathways by HD-ZIP IV pro-
teins may depend on the sensing of regulatory lipids
or metabolic intermediates via the START domain.

MATERIALS AND METHODS

Plant Material and Growth Conditions

The maize (Zea mays) inbred line A188 (Gerdes and Tracy, 1993) and

transgenic A188 plants overexpressing OCL1 were grown in a greenhouse

fulfilling French S2 safety standards for the culture of transgenic plants with a

16-h illumination period (100 W m22) at 24�C/19�C (day/night) and without

control of the relative humidity. Seeds were germinated in 0.2 L of Favorit MP

Godets substrate (Eriterre) and were transferred at 21 DAS to 10 L of Favorit

Argile TM substrate (Eriterre) supplemented with 4 g L21 Osmocote Exact

hi-end 15+9+12 fertilizer (Scotts). All plants were propagated by hand pol-

lination.

T-DNA Construct and Plant Transformation

The plasmid used for the production of OCL1-OE and OCL1-RNAi plants

contained the backbone of vector pSB11 (Ishida et al., 1996) and a Basta

resistance cassette. For theOCL1-OE construct, theOCL1 coding sequence was

amplified with primers A10-6HIS5# and A10-6HIS3# and placed under the

control of the CsVMV promoter. For the OCL1-RNAi construct, the inverted

350-bp OCL1 fragments (amplified with primers OCL1-RNAi-5# and OCL1-

RNAi-3#) were separated by the rice (Oryza sativa) Tubulin intron and placed

under the control of a rice Actin promoter followed by a rice Actin intron.

Primer sequences are given in Supplemental Table S4.

Agrobacterium tumefaciens-mediated transformation of maize inbred line

A188 was based on a published protocol (Ishida et al., 2007). Among the six

independent transformation events, the two with strongest OCL1 expression

(K2 and K3) were used in this study.

Microarray Analysis

The Genoplante maize microarray contained 58,752 oligonucleotides of 70

bases spotted on glass slides. The subtending unigene set had been estab-

lished by clustering the Genoplante maize EST data (http://urgi.versailles.

inra.fr/data/gnpSeq/genoplante_data.php) with all publicly available EST

data. Hybridization was carried out as described (Zeidler et al., 2004).

Experiments were done in biological triplicate with in vitro-amplified total

RNA of 18-DASmaize seedlings fromwild-type andOCL1-OE plants. While a

dye swap of the Cy5- or Cy3-labeled probes was performed, only the Cy5 data

were exploited. Quantile normalization of the raw data was carried out using

Spotfire software. The criteria for the inclusion of a gene in the list of

differentially expressed genes were a logR . 2 or , 22 and P , 0.01.

qRT-PCR

Approximately 100 mg of fresh tissue was quick frozen in liquid nitro-

gen and ground to powder with mortar and pestle. Total RNAwas extracted

with 1 mL of TRIzol reagent according to the instructions of the supplier

(Invitrogen). After ethanol precipitation, the RNAwas resuspended in 30 mL

of RNase-free water and treated with RNase-free DNase. The DNase was

inactivated according to the instructions of the supplier (Ambion). Approx-

imately 5 mg of total RNA were reverse transcribed using random hexamers

(Amersham Biosciences) and reverse transcriptase without RNaseH activity

(Fermentas) in a final volume of 20 mL. A total of 2.5 3 105 copies of

GeneAmplimer pAW109 RNA (Applied Biosystems) were added to the RT

reaction.

The cDNAwas diluted 50 times, and 2 mL was used in a volume of 20 mL

containing 10 mL of Platinum SYBR Green qPCR SuperMix UDG according to

the instructions of the supplier (Invitrogen) to carry out qPCR on a DNA

Engine Opticon 2 (Bio-Rad). Dilution series (2nwith n = 0–7) of a mixture of all

cDNAs within a comparison were used to fix the threshold cycle (CT). Gene

expression levels relative to the 18S rRNA reference gene were calculated by
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the DDCT method (Schmittgen and Livak, 2008). The primers used are listed in

Supplemental Table S4.

Sequence Analysis

The cDNA sequences corresponding to the 70mers present on the micro-

array were established by BLASTN individual EST sequences or full-length

cDNA sequences at the National Center for Biotechnology Information (NCBI;

http://www.ncbi.nlm.nih.gov/BLAST/). Consensus sequences were ob-

tained using VectorNTI ContigExpress software (Invitrogen) and regularly

updated. Genomic sequences were obtained by BLASTN of the cDNA

sequence against the high-throughput genomic sequences database at NCBI.

Deduced amino acid sequences were annotated by BLASTP against the

Arabidopsis (Arabidopsis thaliana) genome at NCBI and screened for known,

conserved domains using the CDS database.

Wax Composition Analysis

Maize leaf 4 sheath and blade were isolated, and their surfaces were

measured by image analysis of a scan (leaf sheath was considered a cylinder

for determining total surface). Cuticular waxes were extracted by immersing

tissues for 30 s in 20 mL of chloroform containing 20 mg of docosane as the

internal standard. Extracts were dried under a gentle stream of nitrogen,

dissolved into 150 mL of BSTFA-TMCS [for N,O-bis(trimethylsilyl)trifluo-

roacetamide):trimethylchlorosilane (99:1)], and derivatized at 85�C for 1 h.

Surplus BSTFA-TMCS was evaporated under nitrogen, and samples were

dissolved in 200 mL of hexane for analysis using an Agilent 6850 gas chro-

matograph and helium as the carrier gas (1.5 mL min21). The gas chromato-

graph was programmed with an initial temperature of 80�C for 1 min and

increased at 15�C min21 to 260�C, held for 10 min at 200�C, increased again at

5�C min21 to 320�C, and held for 15 min at 320�C. Qualitative analyses were

performed using an HP-5MS column (30 m 3 0.25 mm 3 0.25 mm) and an

Agilent 5975 mass spectrometric detector (70 eV, mass-to-charge ratio of

50–750). Quantitative analyses were performed using anHP-1 column (30m3
0.32 mm3 0.25 mm) and a flame ionization detector. Quantification was based

on peak areas and the internal standard docosane.

Laser-Capture Microdissection and RT-PCR

From the region of maximumwidth of fully expanded leaf 4, 1-cm2 sections

were fixed in acetone and paraffin embedded as described (Ohtsu et al., 2007).

Epidermal and mesophyll subepidermal cells were microdissected from 10-

mm sections using the Arcturus XT infrared laser-capture microdissection

system with the following settings for epidermal/mesophyll cells, respec-

tively: laser spot size, 10/20 mm; laser pulse duration, 20/30 ms; and laser

power, 50/70 mW. About 5,000 epidermal cells (predominantly adaxial) and

2,000 mesophyll cells were collected and RNA extracted with the PicoPure

RNA isolation kit (Arcturus). RNA samples were treated with DNase I

(Qiagen) and amplified (two rounds) with the TargetAmpTM 2-Round aRNA

Amplification kit 2.0 (Epicentre Biotechnologies). RT and PCR were carried

out as described above, including a control experiment without reverse

transcriptase. Primer sequences are given in Supplemental Table S4.

Transactivation Tests

The promoter regions of ZmLtpII.12 and the first intron of ZmWBC11awere

amplified using specific primer pairs (Supplemental Table S4). After cloning

into pCRII-Blunt-Topo (Invitrogen) and sequencing, they were fused with the

GUS reporter gene, the endogenous ATG (ZmLtpII.12), or an in-frame ATG in

exon 2 (ZmWBC11a), becoming the start codon of the GUS. Plasmid DNA

prepared with the PureLink HiPure Plasmid Filter Midiprep kit (Invitrogen)

was used in transient transformation of 15-DAP maize kernels by particle

bombardment.

The 15-DAP maize kernels were surface sterilized by pulverization of

Pursept-A (Poly-Labo). The pericarp was removed in a rectangular window

on the adaxial side, exposing the embryo and part of the endosperm. The

kernels were plasmolyzed for 4 h on Murashige and Skoog medium (4.3 g L21

MSM0221 [Duchefa], 30 g L21 Suc, 0.2 g L21 Asn, 36.4 g L21 sorbitol, 36.4 g L21

mannitol, 1 mg L21 2,4-dichlorophenoxyacetic acid, and 3 g L21 Gelrite, pH

5.6) prior to bombardment.

Conditioned samples were transformed using a particle-inflow gun PDS-

1000/He Biolistic Particle Delivery System (Bio-Rad). For each type of sample,

the parameters were optimized according to Sanford et al. (1993). In the

standard protocol, gold particles of 1 mm diameter (Bio-Rad) coated with 5 mg

of plasmid DNA were propelled by helium gas under pressure (7,500 kPa)

toward the samples, which were placed at 6 cm below the gun orifice. A

partial vacuum (90 kPa) increased the speed of the particles. A 20-mm nylon

mesh placed 3 cm above the targets protected the samples from the gas blast

and dispersed the particles evenly onto them. The GUS assays were per-

formed 48 h after transformation.

GUS Assays

Transiently transformed kernels were incubated in 5-bromo-4-chloro-3-

indolyl-b-D-GlcUA for 24 h at 37�C according to Jefferson et al. (1986). Proteins

were extracted with 500 mL of buffer (50 mM phosphate buffer, 10 mM EDTA,

0.1% sodium lauryl sarcosine, 0.1% Triton X-100, and 10 mM b-mercaptoeth-

anol). The supernatant was used for quantification of GUS activity. Protein

extracts were incubated with 2 mM 4-methylumbelliferyl b-D-glucuronide at

37�C during 2 h. The fluorescent product 4-methylumbelliferone (MU) was

measured with a Fluoroskan II (Labsystems). Reference samples with known

quantities of MUwere used to determine the quantity of MU produced, which

was expressed in mmol MU mg21 protein min21.
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Fig. S1: Phylogenetic tree of maize and Arabidopsis thaliana WBC genes
Maximum likelihood phylogenetic trees were generated using all WBC amino acid sequences 
available in the Arabidopsis thaliana and maize genomes. Amino acid sequences were aligned by 
ClustalW. Conserved blocks were selected manually with the Seaview program (http://pbil.univ-
lyon1.fr/software/seaview.html) and phylogenetic trees were generated from these selected aligned 
blocks using Treefinder software (www.treefinder.de) with the substitution model WAG_optimumG4 
and 1000 bootstraps replicates. Percentage values on each branch represent the corresponding 
bootstrap probability. 
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Fig. S2: Comparison of cuticle structure in wild-type and OCL1-OE leaves
Transverse sections of juvenile leaves (leaf #4) of wild-type (A and C) or OCL1-OE (B and D) were
stained with auramine O (A and B) or observed in a transmission electron microscope (C and D).
Epicuticular wax crystals of wildtype (E and G) or OCL1-OE (F and H) leaf #4 were observed in a
scanning electron microscope (E to H). cu, cuticle; ep, epidermal cell; gc, ground cell; st, stomata. Scale
bars, 20 µm in A and B; 100 nm in C and D; 30 µm in E and F; 2 µm in G and H.
Auramine O staining was adapted from two published protocols (Heslop-Harrison, 1997, Ann Bot
41:913-922; Lequeu et al., 2003, Plant J 36:155-164). Maize leaf samples were infiltrated under vacuum
in 2% glutaraldehyde, 2% para-formaldehyde and 0.3% Tween20 for two times 10 min. Fixation was
pursued overnight at 4°C in fresh fixative. Samples were dehydrated in an ethanol series and embedded
in Technovit 7100 resin (Hereaus Kulzer) according to the manufacturer’s instructions. Transverse
sections of 4 µm were collected on glass slides and stained for 10 min in 0.01% Auramine O in 50 mM
Tris pH 7.2 (Sigma).
Tissue preparation for TEM analysis was done according to Ma et al. (2008, Planta, 227:527-538),
except that samples were embedded in hard LV Agar resin (Agar Scientific, Saclay, France). Ultrathin
sections of 60-80 nm were cut on a Leica RMC MTXL ultramicrotome with a diamond knife and lifted
onto 300-mesh copper grids. Grids were stained in 2% uranyl-acetate and lead-citrate and observed on a
Hitachi H-800 transmission electronic microscope.
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Fig. S3: Phylogenic tree of maize and Arabidopsis thaliana FAR proteins
Maximum likelihood phylogenetic trees were generated using all FAR amino acid sequences available 
in the Arabidopsis thaliana and maize genomes. Amino acid sequences were aligned by ClustalW. 
Conserved blocks were selected manually with the Seaview program (http://pbil.univ-
lyon1.fr/software/seaview.html) and phylogenetic trees were generated from these selected aligned 
blocks using Treefinder software (www.treefinder.de) with the substitution model WAG_optimumG4 
and 1000 bootstraps replicates. Percentage values on each branch represent the corresponding 
bootstrap probability. 



Table S1: Relative expression levels of confirmed OCL1 target genes in 18 DAS plantlets 

Oligo ID1 or 
gene name 

Trend in 
OCL1-

OE 

Mean2 
OCL1-

OE 

SD3 
OCL1-

OE 

Mean2 
WT 

SD3 
WT 

P-value 
Student 

test 

Ratio 
OCL1-OE / 

WT 
OCL1 Up 21.18 3.75 0.89 0.12 0.00036 23.80 

MZ00005958 Down 0.15 0.02 0.85 0.16 0.000794 0.18 
MZ00014373 Down 0.11 0.01 1.19 0.30 0.001651 0.10 
MZ00018561 Down 0.29 0.13 0.77 0.21 0.01355 0.38 
MZ00022171 Up 27.07 7.22 1.30 0.98 0.001795 20.88 
MZ00024305 
ZmLtpII.12 Up 4.58 0.21 1.06 0.23 0.00002 4.34 

MZ00024414 Down 0.08 0.02 0.94 0.06 0.000011 0.09 
MZ00028617 Down 0.03 0.01 0.89 0.09 0.000046 0.04 
MZ00029574 Up 6.64 0.36 0.90 0.15 0.000007 7.35 
MZ00030315 Up 13.42 1.25 0.99 0.15 0.000035 13.51 
MZ00031783 
ZmWBC11a Up 6.43 0.14 0.93 0.24 0.000002 6.94 

MZ00031955 Up 8.59 0.72 1.21 0.34 0.000044 7.08 
ZmFAR1 Up 2.32 0.51 0.83 0.23 0.007236 2.78 

ZmWBC11b Up 2.76 0.41 1.02 0.18 0.001268 2.69 
ZmWBC11c Up 2.12 0.11 1.03 0.03 0.000041 2.06 

1 Identification number of the corresponding oligonucleotide deposited on the micro-array 
2 Mean of a biological triplicate and technical replicate; the relative expression values were 

reported to one of the WT samples 
3 Standard deviation calculated on biological triplicate 

 



Table S2: Expression of 11 OCL target genes in maize organs and during kernel development as determined by qRT-PCR1 

Oligo ID2 or 
gene name 

juvenile 
leaf 

blade 

juvenile 
leaf 

sheath 

adult 
leaf 

blade 

adult 
leaf 

sheath 

root 
7 DAS 

root 
30 

DAS 

aerial 
parts 
seed-
ling 

imma-
ture 
ear 

mature 
ear 

imma-
ture 

tassel 

mature 
tassel silk stem 

kernel 
12 

DAP 
pollen shoot 

apex 

imma-
ture 

ovule 

mature 
ovule 

01 
DAP 

03 
DAP 

05 
DAP 

07 
DAP 

09 
DAP 

12 
DAP 

15 
DAP 

20 
DAP 

30 
DAP 

35 
DAP 

50 
DAP 

70 
DAP 

MZ00028491 
(OCL1) 2.00 0.92 1.62 0.47 1.25 0.80 3.68 11.04 6.12 6.68 0.91 4.27 0.06 0.57 0.00 7.46 2.39 3.13 2.12 2.17 1.24 2.30 1.80 1.58 0.09 0.13 1.04 0.57 0.69 0.81 

MZ00005958 49.46 4.16 0.61 0.05 0.33 5.40 22.44 0.10 1.33 0.13 21.31 3.56 0.41 0.19 0.06 0.64 0.73 0.76 1.20 0.69 0.23 13.07 1.87 0.54 0.00 0.54 2.84 3.38 0.60 0.23 

MZ00014373 7.66 3.96 8.49 3.26 5.03 0.39 3.83 0.02 1.08 0.03 1.39 0.00 4.73 0.00 0.00 0.04 14.61 8.16 2.26 0.73 1.03 7.18 1.20 0.28 0.02 0.05 1.13 1.94 2.40 0.40 

MZ00018561 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 1.77 0.61 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MZ00022171 0.59 0.23 0.21 0.27 0.89 1.14 9.03 0.69 7.31 0.43 0.50 4.70 0.20 80.12 0.14 1.23 0.25 0.64 0.49 0.31 0.23 1.90 3.11 5.12 1.75 3.80 1.89 2.47 0.52 0.36 

MZ00024305 
(ZmLtpII.12) 3.73 24.58 0.33 49.51 2.03 0.05 9.58 0.02 0.86 1.24 184.14 0.09 0.22 5.28 0.09 0.02 0.70 1.26 0.81 3.38 41.42 25.58 3.57 4.10 0.67 0.08 0.18 0.18 0.08 0.19 

MZ00024414 4.48 0.08 6.37 0.06 3.74 0.63 34.83 2.27 0.27 1.15 0.96 0.06 0.00 2.86 0.00 0.85 0.00 0.69 0.39 0.01 0.98 9.47 143.85 172.26 9.44 3.77 0.31 6.84 0.00 0.00 

MZ00028617 10.54 12.15 81.70 61.28 0.02 0.18 0.04 0.55 1.75 0.78 0.08 0.27 8.68 0.21 0.00 0.45 0.51 0.48 0.28 0.62 0.10 1.11 1.09 4.08 0.43 0.50 7.35 7.80 3.12 1.23 

MZ00029574 0.31 15.48 0.25 0.99 0.38 0.54 10.57 0.64 0.36 0.18 48.73 0.53 0.50 0.12 19.79 0.32 0.00 0.00 0.29 0.04 0.97 11.90 0.60 0.00 0.00 0.00 4.99 2.71 0.00 0.00 

MZ00030315 68.70 5.02 23.14 4.86 1.67 1.34 0.24 0.01 0.07 0.67 8.77 0.30 2.97 0.29 0.07 0.00 0.00 0.00 0.00 0.00 0.00 11.92 2.56 0.66 0.47 0.46 3.62 0.70 0.24 0.38 

MZ00031783 
(ZmWBC11a) 3.11 6.58 1.42 1.54 0.07 0.12 3.12 0.66 20.01 0.76 32.84 54.47 0.11 0.60 0.00 0.38 1.11 1.95 1.00 0.67 0.70 4.02 4.65 4.03 0.39 0.34 1.41 0.64 0.70 0.16 

MZ00031955 0.44 0.98 0.44 0.50 0.00 0.00 3.16 2.39 4.14 2.85 1.42 10.88 0.21 0.12 0.00 0.31 0.93 1.60 1.00 0.35 0.73 2.58 2.39 1.61 0.34 0.40 0.76 2.77 2.69 0.34 

1 Relative expression levels normalised with the 18S RNA gene as described in materials and methods (means of a technical replicate) 
2 Identification number of the corresponding oligonucleotide deposited on the micro-array 



Table S3: Composition of cuticular waxes on juveniles leaves of OCL1 -OE and OCL1 -RNAi plants and their wildtype siblings

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
C25 0,018 0,005 0,025 0,005 ** 0,016 0,003 0,025 0,007 ** 0,025 0,007 0,026 0,005 0,036 0,019 0,025 0,006 0,029 0,005 0,021 0,004
C27 0,034 0,018 0,043 0,020 0,025 0,009 0,035 0,012 0,045 0,016 0,044 0,009 0,055 0,020 0,047 0,017 0,063 0,009 0,048 0,005
C29 0,059 0,024 0,072 0,025 0,052 0,009 0,055 0,009 0,055 0,012 0,055 0,013 0,058 0,012 0,066 0,008 0,066 0,008 0,060 0,006
C31 0,150 0,014 0,151 0,030 0,156 0,013 0,146 0,021 0,159 0,028 0,169 0,037 0,187 0,036 0,217 0,037 0,207 0,033 0,216 0,017
C33 0,083 0,013 0,089 0,011 0,092 0,012 0,095 0,016 0,087 0,018 0,085 0,017 0,132 0,030 0,146 0,028 0,161 0,051 0,155 0,012
C24 0,030 0,007 0,048 0,009 ** 0,036 0,008 0,054 0,012 ** 0,039 0,010 0,036 0,012 0,037 0,012 0,023 0,006 0,018 0,005 0,017 0,003
C26 0,027 0,011 0,058 0,010 ** 0,027 0,007 0,041 0,010 ** 0,020 0,005 0,018 0,006 0,015 0,004 0,014 0,007 0,011 0,003 0,008 0,002
C28 0,025 0,008 0,043 0,004 ** 0,022 0,007 0,040 0,008 ** 0,042 0,009 0,041 0,013 0,029 0,011 0,038 0,009 0,034 0,009 0,027 0,006
C30 0,171 0,025 0,207 0,015 ** 0,189 0,019 0,198 0,039 0,148 0,029 0,143 0,032 0,100 0,021 0,106 0,018 0,061 0,014 0,077 0,007 *
C32 5,368 0,523 4,887 0,517 5,574 0,510 4,837 1,048 4,316 0,771 3,934 0,926 4,091 0,326 3,758 0,574 3,219 0,436 3,578 0,368
C40 0,040 0,006 0,033 0,010 0,038 0,012 0,041 0,009 ** 0,040 0,010 0,037 0,012 0,037 0,007 0,035 0,009 0,054 0,016 0,034 0,010 *
C42 0,047 0,010 0,035 0,013 0,046 0,013 0,036 0,010 0,040 0,011 0,033 0,012 0,038 0,015 0,024 0,006 * 0,056 0,028 0,031 0,013
C44 0,055 0,010 0,041 0,016 0,054 0,016 0,037 0,011 0,043 0,010 0,028 0,012 * 0,032 0,008 0,020 0,007 * 0,029 0,010 0,019 0,006
C46 0,032 0,006 0,022 0,008 ** 0,030 0,009 0,015 0,005 ** 0,019 0,005 0,009 0,005 ** 0,011 0,003 0,004 0,003 ** 0,007 0,001 0,004 0,001 **
C48 0,023 0,005 0,014 0,004 ** 0,024 0,007 0,012 0,004 ** 0,012 0,003 0,006 0,003 ** 0,007 0,001 0,002 0,002 ** 0,004 0,001 0,002 0,001 *
C28 0,018 0,004 0,028 0,003 ** 0,018 0,003 0,021 0,004 0,014 0,003 0,014 0,003 0,013 0,003 0,013 0,001 0,011 0,002 0,010 0,001
C30 0,138 0,036 0,178 0,022 ** 0,146 0,019 0,158 0,029 0,151 0,036 0,159 0,034 0,139 0,034 0,163 0,020 0,165 0,022 0,147 0,013
C32 1,852 0,180 1,691 0,303 1,853 0,170 1,772 0,386 1,843 0,523 1,975 0,339 1,888 0,261 1,830 0,228 1,701 0,394 1,712 0,177

8,329 0,665 7,782 0,764 8,557 0,717 7,735 1,578 8,440 1,710 8,141 1,641 8,561 0,635 8,183 0,852 7,519 0,990 7,574 0,625

1 * indicates p-value < 0.05; ** indicates p-value < 0.01 in Student's t-test

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
C25 0,084 0,022 0,102 0,032 0,064 0,027 0,083 0,042 0,024 0,005 0,023 0,004 0,031 0,00646 0,03526 0,01175 0,023 0,00388 0,026614 0,008817
C27 0,119 0,033 0,175 0,071 * 0,086 0,026 0,124 0,052 0,040 0,004 0,039 0,012 0,048 0,01342 0,05532 0,0249 0,042 0,01043 0,043905 0,025384
C29 0,143 0,047 0,170 0,053 0,117 0,048 0,134 0,040 0,057 0,011 0,054 0,009 0,062 0,01055 0,09425 0,04327 0,059 0,00691 0,060602 0,014247
C31 0,169 0,027 0,171 0,041 0,169 0,047 0,142 0,016 0,052 0,014 0,050 0,006 0,055 0,01601 0,08963 0,05605 0,065 0,00905 0,056853 0,015038
C33 0,105 0,012 0,128 0,029 * 0,102 0,032 0,131 0,026 0,016 0,003 0,017 0,002 0,019 0,00508 0,04981 0,06229 0,020 0,00586 0,018926 0,004923
C24 0,046 0,031 0,064 0,033 0,061 0,025 0,081 0,040 0,026 0,005 0,028 0,009 0,037 0,01604 0,02799 0,00815 0,021 0,00913 0,019931 0,006887
C26 0,027 0,005 0,043 0,020 * 0,023 0,013 0,029 0,014 0,016 0,005 0,014 0,003 0,023 0,00683 0,03031 0,02604 0,014 0,00155 0,017538 0,008659
C28 0,075 0,019 0,066 0,038 0,062 0,023 0,059 0,012 0,009 0,002 0,007 0,002 0,015 0,00409 0,02713 0,02729 0,009 0,00144 0,010062 0,003664
C30 0,073 0,019 0,084 0,022 0,065 0,018 0,084 0,026 0,076 0,011 0,072 0,010 0,089 0,02314 0,1057 0,01917 0,081 0,0124 0,077448 0,012558
C32 1,498 0,232 1,773 0,278 * 1,441 0,319 1,927 0,511 * 0,021 0,003 0,022 0,002 0,031 0,00707 0,03454 0,01428 0,024 0,0037 0,026135 0,004229
C40 0,047 0,017 0,073 0,034 * 0,045 0,026 0,053 0,026 0,049 0,005 0,053 0,006 0,062 0,01282 0,08363 0,054 0,057 0,00748 0,055301 0,010
C42 0,081 0,010 0,078 0,031 0,043 0,013 0,071 0,050 0,065 0,011 0,072 0,015 0,089 0,02317 0,12536 0,093 0,077 0,0168 0,073406 0,016
C44 0,046 0,007 0,095 0,040 ** 0,042 0,011 0,117 0,057 ** 0,062 0,021 0,067 0,018 0,078 0,01725 0,11279 0,09121 0,070 0,01898 0,067383 0,01539
C46 0,033 0,008 0,081 0,027 ** 0,032 0,007 0,091 0,038 ** 0,025 0,010 0,024 0,006 0,029 0,00742 0,0406 0,02987 0,025 0,00713 0,023572 0,006306
C48 0,026 0,007 0,070 0,022 ** 0,023 0,004 0,083 0,034 ** 0,007 0,001 0,004 0,001 0,008 0,0022 0,02023 0,02706 0,007 0,00164 0,007877 0,003214
C28 0,020 0,003 0,024 0,011 0,017 0,008 0,022 0,008 0,032 0,009 0,030 0,004 ** 0,031 0,01074 0,04887 0,03335 0,042 0,00715 0,037184 0,009615
C30 0,176 0,046 0,181 0,052 0,163 0,052 0,173 0,041 0,035 0,010 0,035 0,008 0,036 0,01483 0,04831 0,01903 0,059 0,01327 0,055608 0,021681
C32 1,694 0,351 1,320 0,241 * 1,825 0,381 1,214 0,262 ** 0,022 0,008 0,023 0,005 0,022 0,00637 0,0467 0,04487 0,049 0,0526 0,028879 0,006789

4,598 0,662 4,988 0,749 4,515 0,839 4,746 0,973 5,830 0,940 6,045 0,509 6,759 0,95547 7,46269 1,26948 7,204 0,96979 6,778214 0,905827

1 * indicates p-value < 0.05; ** indicates p-value < 0.01 in Student's t-test
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Table S4: Primers used in this study 

Oligo ID1 or 
gene name Primer sequence (5' to 3') Primer name Use 

OCL1 
MZ00028491 

GCCTGTGGGCTATGTATCCG OCL1sp-1298F Expression 
OCL1-OE/WT GTGGCCTTAGCAATCATGCAC OCL1sp-1432R 

ATGCAGCTCGTCATGAACG OCL1-2370F RT-PCR on 
LCM samples CAGAATATGAGGTTGTTCACGG OCL1-2581R 

MZ00005958 TGGTAGCGCAATGGTGAGACA OCL1_down17-328F Expression 
OCL1-OE/WT CGTGCTTGCTAACACAGCCTATAT OCL1_down17-478R 

MZ00014373 CATATGCTCATGACCAGTCCGT OCL1_down3-145F Expression 
OCL1-OE/WT CGCGCTTCCAAACATCCTT OCL1_down3-515R 

MZ00018561 GTTAACGAGTGCGGCAAGCAT OCL1_down21-442F Expression 
OCL1-OE/WT GCGTGTATAACTTTGACCGCGTAT OCL1_down21-606R 

MZ00022171 

AAATTCGGCACACACTCGACTC OCL1_UP5-9F Expression 
OCL1-OE/WT AAGATCGTCCGGAAAGTGGAGG OCL1_UP5-301R 

ATCAGTAGCAGCAGCATCTT UP5-F2 RT-PCR on 
LCM samples CATCAAGCACATACACGACT UP5-R2 

ZmLtpII.12 
MZ00024305 

CCTCGTGGTGTGGATGAATAA UP2-3232F couple n°6 Expression 
OCL1-OE/WT CATGACACAACCGCTCTTGGTAA UP2-3484R couple n°6 

MZ00024414 

GCTCTGTCGTCTTCAAATCCGC OCL1_down9-173F Expression 
OCL1-OE/WT ACATAGTTGGTGTTCCCCTCGG OCL1_down9-373R 

ACTGCAAGGGTGGATGGATG Down9-F1 RT-PCR on 
LCM samples GGTGACAATGGTGAAGCCAT Down9-R1 

MZ00028617 AAGCGGTTCAGAAGTCGGTTG OCL1_down12-238F Expression 
OCL1-OE/WT TTCGGCACCTGATCGATACAC OCL1_down12-407R 

MZ00029574 CTGCGCAGATATAGCACTTCTTCAC OCL1_UP6-25F Expression 
OCL1-OE/WT AAGGCCTCTGGTTCCGACTAGA OCL1_UP6-231R 

MZ00030315 CCGCTCACGCTCTACATTGTT OCL1_UP1-144F Expression 
OCL1-OE/WT AAGTTCTGCCGTCACATTGGC OCL1_UP1-364R 

ZmWBC11a 
MZ00031783 

TCCATACCTGTCCGTCGTTTCC OCL1_UP3-264F Expression 
OCL1-OE/WT TTGAGCATCATGACACCCTGC OCL1_UP3-479R 

TGATGCTGGTGTACAGGATG UP3-F1 RT-PCR on 
LCM samples TTGTGGTCGGTTGTCTATCC UP3-R1 

MZ00031955 

GAAGTTTCTCGTTGTCTTCG OCL1_UP4-252F Expression 
OCL1-OE/WT GTGTACAACGACAGTTCGGA OCL1_UP4-467R 

ATAATGGCGAGGCCACCTCTT UP4-F1 RT-PCR on 
LCM samples GTGGCTCAGAGCATATACAG UP4-R1 

ZmFAR1 TACCTGTTCTATGGATCGACCG ZmCER4-1945F Expression 
OCL1-OE/WT GCCACCTAACACAGCATACACTC ZmCER4-2095R 

ZmWBC11b ACGCTGGTGAACTCGTACAAAG ZmWBC11b3520F Expression 
OCL1-OE/WT AGGAAACTTGCCTGCCATTC ZmWBC11b3635R 

ZmWBC11c CTTGTGGAAGTACCCGACGTAC ZmWBC11c6812F Expression 
OCL1-OE/WT GCCCCTTTCCTAACACACCAT ZmWBC11c6924R 

ZmWBC11d ACATCGCGAGGAAGAGGAT ZmWBC11d2240F Expression 
OCL1-OE/WT CAATATAACACCAAGAGCCGG ZmWBC11d2423R 

ZmWBC11e GCCGATGCGCAACCCG ZmWBC11e3803F Expression 
OCL1-OE/WT CATCGCTTCCGACGTCGTC ZmWBC11e3953R 

    

OCL1-6His 

GCTCCCGGGATGAGCTTCGGGAGCCTAT
TCGAC 

A10-6HIS5' 
OCL1–OE 
construct GCTCCCGGGTCAATGGTGATGGTGATGA

TGAGCGTC 
A10-6HIS3' 

OCL1 GCACCTGTGCATCGAGAATGCGC OCL1-RNAi-5' OCL1-RNAi 
construct CTAGTTCATCCATGGCGCTGATC OCL1-RNAi-3' 

    LtpII.12 
promoter 

TTTCACCCGGGAGACTGCGTG OCL1_UP2-promF 
Trans-activation CTCGCCATGGGCACTAACTAGCTT OCL1_UP2-ATG-R 

ZmWBC11a 
intron 

CGGGCACTCGAGTAGTGTATAGTCA UP3gXho-62F 
Trans-activation GTTTTATCCATGGCGGGTCCTAA UP3gNco-427R 

1 Identification number of the corresponding oligonucleotide deposited on the micro-array 
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