V. A. Bankaitis, S. Phillips, L. Yanagisawa, X. Li, S. Routt et al., Phosphatidylinositol transfer protein function in the yeast Saccharomyces cerevisiae, Adv Enzyme Regul, vol.45, pp.155-170, 2005.

G. Bianchi, F. Salamini, and P. Avato, Glossy mutants of maize. 8. Accumulation of fatty aldehydes in surface waxes of gl5 maize seedlings, Biochem Genet, vol.16, pp.1015-1021, 1978.

D. Bird, F. Beisson, A. Brigham, J. Shin, S. Greer et al., Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion, Plant J, vol.52, pp.485-498, 2007.

F. Boutrot, N. Chantret, and M. F. Gautier, Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining, BMC Genomics, vol.9, p.86, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667808

P. Broun, P. Poindexter, E. Osborne, C. Z. Jiang, and J. L. Riechmann, WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis, Proc Natl Acad Sci, vol.101, pp.4706-4711, 2004.

E. Cominelli, T. Sala, D. Calvi, G. Gusmaroli, and C. Tonelli, Overexpression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability, Plant J, vol.53, pp.53-64, 2008.

P. Costaglioli, J. Joubes, C. Garcia, M. Stef, B. Arveiler et al., Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis, Biochim Biophys Acta, vol.1734, pp.247-258, 2005.

I. Cummins, M. Landrum, P. G. Steel, and R. Edwards, Structure activity studies with xenobiotic substrates using carboxylesterases isolated from Arabidopsis thaliana, Phytochemistry, vol.68, pp.811-818, 2007.

A. J. Curwin, G. D. Fairn, and C. R. Mcmaster, Phospholipid transfer protein Sec14 is required for trafficking from endosomes and regulates distinct trans-Golgi export pathways, J Biol Chem, vol.284, pp.7364-7375, 2009.

A. Debono, T. H. Yeats, J. K. Rose, D. Bird, R. Jetter et al., Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface, Plant Cell, vol.21, pp.1230-1238, 2009.

D. Cristina, M. Sessa, G. Dolan, L. Linstead, P. Baima et al., The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development, Plant J, vol.10, pp.393-402, 1996.

S. D. Eigenbrode and K. E. Espelie, Effects of plant epicuticular lipids on insect herbivores, Annu Rev Entomol, vol.40, pp.171-194, 1995.

M. Frey, D. Spiteller, W. Boland, and A. Gierl, Transcriptional activation of Igl, the gene for indole formation in Zea mays: a structure-activity study with elicitor-active N-acyl glutamines from insects, Phytochemistry, vol.65, pp.1047-1055, 2004.

M. Frey, C. Stettner, P. W. Pare, E. A. Schmelz, J. H. Tumlinson et al., An herbivore elicitor activates the gene for indole emission in maize, Proc Natl Acad Sci, vol.97, pp.14801-14806, 2000.

P. Gamas, N. Fdec, N. Lescure, and J. Cullimore, Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development, Mol Plant Microbe Interact, vol.9, pp.233-242, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02690223

J. T. Gerdes and W. F. Tracy, Pedigree diversity within the Lancaster surecrop heterotic group of maize, Crop Sci, vol.33, pp.334-337, 1993.

B. J. Glover, Differentiation in plant epidermal cells, J Exp Bot, vol.51, pp.497-505, 2000.

J. E. Gray, G. H. Holroyd, F. M. Van-der-lee, A. R. Bahrami, P. C. Sijmons et al., The HIC signalling pathway links CO 2 perception to stomatal development, Nature, vol.408, pp.713-716, 2000.

X. Y. Guan, Q. J. Li, C. M. Shan, S. Wang, Y. B. Mao et al., The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2, Physiol Plant, vol.134, pp.174-182, 2008.

S. Guimil and C. Dunand, Cell growth and differentiation in Arabidopsis epidermal cells, J Exp Bot, vol.58, pp.3829-3840, 2007.

M. Ingouff, I. Farbos, U. Lagercrantz, V. Arnold, and S. , PaHB1 is an evolutionary conserved HD-GL2 homeobox gene expressed in the protoderm during Norway spruce embryo development, Genesis, vol.30, pp.220-230, 2001.

G. C. Ingram, C. Boisnard-lorig, C. Dumas, and P. M. Rogowsky, Expression patterns of genes encoding HD-ZipIV homeo domain proteins define specific domains in maize embryos and meristems, Plant J, vol.22, pp.401-414, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02694205

G. C. Ingram, J. L. Magnard, P. Vergne, C. Dumas, and P. M. Rogowsky, ZmOCL1, an HDGL2 family homeobox gene, is expressed in the outer cell layer throughout maize development, Plant Mol Biol, vol.40, pp.343-354, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02694626

T. Isaacson, D. K. Kosma, A. J. Matas, G. J. Buda, Y. He et al., Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss, Plant J, vol.60, pp.363-377, 2009.

T. Ishida, T. Kurata, K. Okada, and T. Wada, A genetic regulatory network in the development of trichomes and root hairs, Annu Rev Plant Biol, vol.59, pp.365-386, 2008.

Y. Ishida, Y. Hiei, and T. Komari, Agrobacterium-mediated transformation of maize, Nat Protoc, vol.2, pp.1614-1621, 2007.

Y. Ishida, H. Saito, S. Ohta, Y. Hiei, T. Komari et al., High efficiency transformation of maize (Zea mays L) mediated by Agrobacterium tumefaciens, Nat Biotechnol, vol.14, pp.745-750, 1996.

M. Ito, N. Sentoku, A. Nishimura, S. K. Hong, Y. Sato et al., Position dependent expression of GL2-type homeobox gene, Roc1: significance for protoderm differentiation and radial pattern formation in early rice embryogenesis, Plant J, vol.29, pp.497-507, 2002.

R. A. Jefferson, S. M. Burgess, and D. Hirsh, Beta-glucuronidase from Escherichia coli as a gene-fusion marker, Proc Natl Acad Sci, vol.83, pp.8447-8451, 1986.

C. E. Jeffree, The fine structure of the plant cuticle, Biology of the Plant Cuticle, vol.23, pp.11-110, 2006.

M. A. Jenks, S. D. Eigenbrode, and B. Lemieux, Cuticular waxes of Arabidopsis, The Arabidopsis Book, vol.34, pp.1-22, 2002.

J. C. Kader, Lipid-transfer proteins in plants, Annu Rev Plant Physiol Plant Mol Biol, vol.47, pp.627-654, 1996.

R. Kannangara, C. Branigan, Y. Liu, T. Penfield, V. Rao et al., The transcription factor WIN1/ SHN1 regulates cutin biosynthesis in Arabidopsis thaliana, Plant Cell, vol.19, pp.1278-1294, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667180

A. S. Khaled, V. Vernoud, G. C. Ingram, P. Perez, X. Sarda et al., Engrailed-ZmOCL1 fusions cause a transient reduction of kernel size in maize, Plant Mol Biol, vol.58, pp.123-139, 2005.

T. H. Kim, J. H. Park, M. C. Kim, and S. H. Cho, Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene, J Plant Physiol, vol.165, pp.345-349, 2008.

H. Kubo, A. J. Peeters, M. G. Aarts, A. Pereira, and M. Koornneef, ANTHO-CYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis, Plant Cell, vol.11, pp.1217-1226, 1999.

L. Kunst and A. L. Samuels, Biosynthesis and secretion of plant cuticular wax, Prog Lipid Res, vol.42, pp.51-80, 2003.

H. Kusuhara and Y. Sugiyama, ATP-binding cassette, subfamily G (ABCG family), Pflugers Arch, vol.453, pp.735-744, 2007.

S. B. Lee, Y. S. Go, H. J. Bae, J. H. Park, S. H. Cho et al., Disruption of glycosylphosphatidylinositolanchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola, Plant Physiol, vol.150, pp.42-54, 2009.

P. Lu, R. Porat, J. A. Nadeau, O. Neill, and S. D. , Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes, Plant Cell, vol.8, pp.2155-2168, 1996.

A. M. Maldonado, P. Doerner, R. A. Dixon, C. J. Lamb, and R. K. Cameron, A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis, Nature, vol.419, pp.399-403, 2002.

D. Manor and S. Morley, The alpha-tocopherol transfer protein, Vitam Horm, vol.76, pp.45-65, 2007.

S. D. Marshall, J. J. Putterill, K. M. Plummer, and R. D. Newcomb, The carboxylesterase gene family from Arabidopsis thaliana, J Mol Evol, vol.57, pp.487-500, 2003.

J. Messing and H. K. Dooner, Organization and variability of the maize genome, Curr Opin Plant Biol, vol.9, pp.157-163, 2006.

A. Molina and F. Garcia-olmedo, Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2, Plant J, vol.12, pp.669-675, 1997.

K. Mukherjee and T. R. Burglin, MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper III proteins, Plant Physiol, vol.140, pp.1142-1150, 2006.

J. A. Nadeau, Stomatal development: new signals and fate determinants, Curr Opin Plant Biol, vol.12, pp.29-35, 2009.

M. Nakamura, H. Katsumata, M. Abe, N. Yabe, Y. Komeda et al.,

T. Takahashi, Characterization of the class IV homeodomainleucine zipper gene family in Arabidopsis, Plant Physiol, vol.141, pp.1363-1375, 2006.

M. Nakazono, F. Qiu, L. A. Borsuk, and P. S. Schnable, Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize, Plant Cell, vol.15, pp.583-596, 2003.

C. Nawrath, The biopolymers cutin and suberin, The Arabidopsis Book, vol.34, pp.1-14, 2002.

Y. Ohashi, A. Oka, R. Rodrigues-pousada, M. Possenti, I. Ruberti et al., Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation, Science, vol.300, pp.1427-1430, 2003.

K. Ohtsu, M. B. Smith, S. J. Emrich, L. A. Borsuk, R. Zhou et al., Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.), Plant J, vol.52, pp.391-404, 2007.

E. Pennisi, Corn genomics pops wide open, Science, vol.319, p.1333, 2008.

J. A. Pighin, H. Zheng, L. J. Balakshin, I. P. Goodman, T. L. Western et al., Plant cuticular lipid export requires an ABC transporter, Science, vol.306, pp.702-704, 2004.

C. P. Ponting and L. Aravind, START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins, Trends Biochem Sci, vol.24, pp.130-132, 1999.

S. Raffaele, F. Vailleau, A. Leger, J. Joubes, O. Miersch et al., A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis, Plant Cell, vol.20, pp.752-767, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00347382

W. G. Rerie, K. A. Feldmann, and M. D. Marks, The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis, Genes Dev, vol.8, pp.1388-1399, 1994.

M. Riederer, Introduction: biology of the plant cuticle, Biology of the Plant Cuticle, vol.23, pp.1-10, 2006.

O. Rowland, H. Zheng, S. R. Hepworth, P. Lam, R. Jetter et al., CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis, Plant Physiol, vol.142, pp.866-877, 2006.

L. Samuels, L. Kunst, and R. Jetter, Sealing plant surfaces: cuticular wax formation by epidermal cells, Annu Rev Plant Biol, vol.59, pp.683-707, 2008.

J. C. Sanford, F. D. Smith, and J. A. Russell, Optimizing the biolistic process for different biological applications, Methods Enzymol, vol.217, pp.483-509, 1993.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat Protoc, vol.3, pp.1101-1108, 2008.

M. A. Schuler and D. Werck-reichhart, Functional genomics of P450s, Annu Rev Plant Biol, vol.54, pp.629-667, 2003.

B. Shen, K. W. Sinkevicius, D. A. Selinger, and M. C. Tarczynski, The homeobox gene GLABRA2 affects seed oil content in Arabidopsis, Plant Mol Biol, vol.60, pp.377-387, 2006.

L. E. Sieburth and E. M. Meyerowitz, Molecular dissection of the AGA-MOUS control region shows that cis elements for spatial regulation are located intragenically, Plant Cell, vol.9, pp.355-365, 1997.

I. D. Small and N. Peeters, The PPR motif: a TPR-related motif prevalent in plant organellar proteins, Trends Biochem Sci, vol.25, pp.46-47, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02692488

M. C. Suh, A. L. Samuels, R. Jetter, L. Kunst, M. Pollard et al., Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis, Plant Physiol, vol.139, pp.1649-1665, 2005.

R. Tominaga-wada, M. Iwata, J. Sugiyama, T. Kotake, T. Ishida et al., The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots, Plant J, vol.60, pp.564-574, 2009.

A. E. Tron, C. W. Bertoncini, C. M. Palena, R. L. Chan, and D. H. Gonzalez, Combinatorial interactions of two amino acids with a single base pair define target site specificity in plant dimeric homeodomain proteins, Nucleic Acids Res, vol.29, pp.4866-4872, 2001.

F. Vailleau, X. Daniel, M. Tronchet, J. L. Montillet, C. Triantaphylides et al., A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack, Proc Natl Acad Sci, vol.99, pp.10179-10184, 2002.

S. Velamakanni, S. L. Wei, T. Janvilisri, and H. W. Van-veen, ABCG transporters: structure, substrate specificities and physiological roles. A brief overview, J Bioenerg Biomembr, vol.39, pp.465-471, 2007.

V. Vernoud, G. Laigle, F. Rozier, R. B. Meeley, P. Perez et al., The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize, Plant J, vol.59, pp.883-894, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00521471

M. Zeidler, Q. Zhou, X. Sarda, C. P. Yau, and N. H. Chua, The nuclear localization signal and the C-terminal region of FHY1 are required for transmission of phytochrome A signals, Plant J, vol.40, pp.355-365, 2004.

J. Y. Zhang, C. D. Broeckling, E. B. Blancaflor, M. K. Sledge, L. W. Sumner et al., Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa), Plant J, vol.42, pp.689-707, 2005.

J. Y. Zhang, C. D. Broeckling, L. W. Sumner, and Z. Y. Wang, Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance, Plant Mol Biol, vol.64, pp.265-278, 2007.