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ABSTRACT 

Fabre, F., Plantegenest, M., and Yuen, J. 2007. Financial benefit of using 
crop protection decision rules over systematic spraying strategies. 
Phytopathology 97:1484-1490. 

Decision rule models are considered to be one of the main cornerstones 
of the implementation of integrated pest management (IPM) programs. 
Even if the need for such programs to offer cost advantages over 
conventional strategies is a major incentive for IPM adoption, few studies 
focus on this financial dimension. In this article, a modeling approach of 
the response of a pathosystem to a disease control method and of the 
predictive performance of decision rules is used to explore how some 
basic factors act on the likelihood of adoption of decision rule models 
strategies (such as using an IPM system) over systematic strategies (such 
as systematic-spraying and never-spraying strategies). Even if the average 
cost of using the decision rule strategies is always lower than the average 

cost of systematic strategies in several different scenarios, the models 
developed here showed strong effects of different pathosystems and 
decision rules on financial benefits. The number of production situations 
where decision rules are of interest is highly correlated with their 
accuracy. However, because of the inescapable trade-offs between 
decision rule accuracy and limiting factors such as its user-friendly 
characteristics, the use of decision rules is unlikely to reduce costs to 
<70% of the costs of systemic strategies. In more general terms, this 
study provides quantitative guidelines on the financial advantage that 
decision rules can offer in plant protection as well as a better under-
standing of their potential usefulness. 

Additional keywords: control strategies, receiver operating characteristic 
(ROC) curve. 

 
When making a decision on whether or not to apply a pesticide, 

a farmer has to choose between three possible control strategies. 
These are to (i) spray prophylactically, (ii) never spray, or (iii) 
spray according to the recommendations of tactical models (1,27). 
Tactical models are designed to advise farmers of the need and, 
sometimes, timing of applying crop protection measures (37). The 
simplest tactical models are decision rules designed to provide 
farmers with binary advice: “Yes, treatment is needed” or “No, 
it’s not worth the trouble.” Such decision rules associate a risk 
indicator and a decision threshold. A risk indicator is a measure-
ment or a calculation performed to assess the risk that a pest or a 
disease will produce severe yield losses in a crop. Indicators 
range from simple sampling models (10) that estimate disease 
intensity in a field to complex forecast models that take into 
account the influence of the environment on the pathogen and 
predict the likelihood of future disease development (16,20). 
Complex indicators may be composed of several rules or calcula-
tions that have been referred to as risk algorithms (39). Whatever 
these levels of complexity, the necessity to apply a treatment is 
evaluated by comparing the value of the indicator assessed in a 
given field (I) to a decision threshold (Is), and a treatment is 
recommended if the indicator value exceeds the decision threshold 
(I > Is). For a given indicator I, various decision rules can be 
defined according to the value of Is selected. However, a single 
rule usually will best fit the management goals of the decision 
maker (34). 

Tactical models are considered to be one of the main corner-
stones of the implementation of integrated pest management 
(IPM) programs. Accordingly, many research projects are aimed 
at development of such systems. However, until now, there has 
been a low level of adoption of tactical models by farmers (15, 
22,37). Incentives for IPM adoption are very diverse. Although 
environmental issues were a driving force behind the development 
of IPM, they apparently act as a minor incentive with regard to 
pest control decisions by farmers (14). On the other hand, the 
need for IPM programs to offer cost advantages over conventional 
strategies is often cited as a major incentive for IPM adoption 
(38). Accordingly, one can suppose that the likelihood of adoption 
of tactical models by farmers is highly correlated with the finan-
cial advantage that this strategy can offer over conventional crop 
protection strategies. Although the financial dimension of disease 
management probably is quite important to those who decide 
whether to use IPM, it often is not considered by those that 
develop the models (13). 

The profitability of any crop protection strategy depends on (i) 
the prevalence of the pest or disease considered; (ii) the potential 
yield losses associated to this pest or disease; (iii) the cost and 
efficiency of the protection measure; and (iv), in the case of 
tactical models, on their accuracy (i.e., their predictive perform-
ance). In this article, using a modeling approach based on cost-
benefit and receiver operating characteristic (ROC) curve theories, 
we will explore how these four factors act on the likelihood of 
adoption of decision rule models, one important category of 
tactical models. The focus, in particular, is to estimate what finan-
cial advantage can be reached given the level of accuracy that can 
be achieved given the type of data that is usually available 
combined with user-friendly decision rules. 
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THEORY AND APPROCHES 

The first part of this section is devoted to modeling the average 
cost of systematic spraying strategies and the average cost of 
spraying strategies based on decision rules as a function of some 
basic pathosystem characteristics and decision rule accuracy. 
Then, methods for estimating the financial benefit of decision 
rules are derived. 

Modeling the average cost of systematic strategies. Charac-
terization of the financial response of a pathosystem to a treat-
ment. Let Ctrt be the average cost of the treatment against a par-
ticular pest or disease. Let T be a binary random variable: T = T+ 
for the fields, termed hereafter cases, where the cost of the yield 
losses due to the considered pest or disease is greater (or equal) to 
Ctrt (i.e., fields where a treatment is justified in purely cost terms) 
and T = T– for the fields, termed hereafter controls, where the 
costs of the yield losses due to the considered pest or disease are 
lower than Ctrt (i.e., fields where a treatment is not justified). The 
average cost of the yield losses due to the considered pest or dis-
ease for the cases and the controls are Cmax and Cmin, respec-
tively. It is assumed that 0 < Cmin < Cmax. Moreover, the propor-
tion of cases in the sample of fields, termed prevalence (Prev), is 
the a priori probability that a treatment is required. 

Finally, we define two new variables: (i) α, the extent of the 
potential yield loss defined such that α = Cmax/Cmin, and (ii) β, 
the relative cost of the protection measure defined as the ratio 
between (Ctrt – Cmin) and (Cmax – Cmin). Thus,  
Ctrt = Cmin × [1 + β × (α – 1)], with 0 < β < 1 (Fig. 1). Large 
values of α characterize pathosystems with high potential yield 
loss due to the pest or disease of interest. Large values of β 
characterize control measures expensive compared with yield loss 
difference between the cases and the controls. From the previous 
considerations, in this study, the financial response of a patho-
system to a treatment is modeled with four variables: Prev, Cmin, 
α, and β. 

Average cost of systematic strategies. The average cost result-
ing from the use of the systematic-spraying strategy is CSS = Ctrt. 
From the previous notation, it can be derived that  

CSS(Cmin, α, β) = Cmin × [1 + β × (α – 1)] 

Similarly, the average cost resulting from the use of the never-
spray strategy is CNS = Prev × Cmax + (1 – Prev) × Cmin. From 
the previous notation, we derive  

CNS(Cmin, α, Prev) = Cmin × [Prev × (α – 1) + 1] 

By solving the inequality CSS(Cmin, α, β) > CNS(Cmin,α,  
Prev), we can see that the best systematic strategy is the syste-
matic-spraying strategy if Prev > β and the never-spray strategy if 
not. 

Modeling the average cost of decision rule strategy. Charac-
terization of the accuracy of decision rules. The financial interest 
of spraying according to a decision rule depends on its degree of 
accuracy. The accuracy of decision rules used to distinguish 
between binary events (e.g., T+ or T–) can be assessed inde-
pendently of the prevalence of the cases (Prev) in terms of their 
sensitivity (Se) and specificity (Sp) (11,12,24,28,40). Se, defined 
as p(I > Is|T+), is the probability of true positive decisions. 
Similarly, Sp, defined as Sp = p(I ≤ Is|T–), corresponds to the 
probability of true negative decisions. For most indicators, Se and 
Sp are linked by a function f such that Se = f (1 – Sp), where f is 
monotonous, convex, and always joins the points 0,0 and 1,1. 
This function, named the ROC curve, is a plot of Se against (1 – 
Sp) for all the possible values of the decision threshold Is 
(24,25,28). ROC curve analysis has become quite common in 
crop protection (1,12,21,36,40). 

When the distribution of the value of an indicator (I) in the 
cases and the controls are Gaussian (or can be transformed to 
Gaussian ones by a monotonic transformation) (25), the model of 

Lloyd (19) can be used to describe the ROC curve of an indicator 
(I ): 

( )[ ][ ] μ
−μ−Δ −−1×+=

1
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where µ is a parameter describing the asymmetry of the curve on 
the minor axis and Δ a shift parameter. 

In Lloyd’s model, the parameter Δ is closely related to the area 
under the ROC curve (AUC) of the indicator (Fig. 2). The AUC is 
a standardized measure of the overall accuracy of indicators: the 
closer to 1 the AUC of an indicator is, the better this indicator is 
(12,32,33). An indicator characterized by a ROC curve that comes 
near to the 0,1 point (where sensitivity and specificity are both 
equal to 1) is a near-perfect indicator. The opposite of this is an 
ROC curve of an indicator that is unable to discriminate fields 
where a treatment is needed from those where it is unnecessary. 
This would be a straight line joining the 0,0 point to the 1,1 point 
(the “no discrimination” line), and the AUC would be 0.5. 

Average cost of the optimal decision rule strategy. The average 
cost resulting from the use of a decision rule strategy (CDR) of 
given sensitivity (Se) and specificity (Sp) is  

CDR = Prev × [Ctrt × Se + Cmax × (1 – Se)] + 
(1 – Prev) × [Cmin × Sp + Ctrt × (1 – Sp)] 

Basically, CDR is calculated from a sum of the average costs 
(Cmin, Cmax, and Ctrt) weighted by the probability of the four 
possible combinations of the true need to spray and the decision 
to spray or not spray. The true need to spray is based on the value 
of T (T+ or T–), and the decision to spray is a based on Prev, Se, 
and Sp (39). From this weighted sum, and estimating the ROC 
curve using the model of Lloyd, we can obtain 
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Thus, we can describe the cost of using a decision rule given a 
pathosystem (i.e., a set of values for Prev, Cmin, α and β) and an 
indicator (i.e., a set of values for Δ and µ). Several different 
decision rules can be chosen based on the value of the decision 
threshold Is, but a single one, the optimal decision rule, will 
minimize CDR. This optimal decision rule is such that 
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where dSe/d(1 – Sp) is the slope of the ROC curve of the indicator 
I (13,24). The average cost resulting from the use of the optimal 
decision rule strategy will be denoted CDRopt. 

Average cost of perfect strategy. A perfect strategy always 
recommends a treatment when necessary and never when it is not 
needed (both sensitivity and specificity are equal to 1). Its average 

Fig. 1. Cost line representing the financial response of a pathosystem to a 
treatment in absolute and relative amounts and showing derivation of α and β.
The average cost of the yield losses due to the considered pest or disease for 
fields where a treatment is not required is Cmin and for fields where a 
treatment is necessary is Cmax. Parameter α is a measure of the extent of the 
potential yield loss caused by the pest or disease, where α = Cmin/Cmax with 
Cmin > 0. The difference between Cmax and Cmin is the loss range (LR). Ctrt
is the average cost of the treatment. The net treatment costs (NTC) is the 
difference between Ctrt and Cmin, and β is the ratio of NTC and LR (0 < β < 1). 
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costs is CP = Prev × Ctrt + (1 – Prev) × Cmin. Using our previous 
notation, it can be written as  

CP(Cmin, α, β, Prev) = Cmin × [1 + Prev × β × (α – 1)] 

This strategy was considered mainly for research purposes in 
order to study the potential interest of improving indicators. 

Financial advantage provided by the decision rule strategy. 
Cost reduction. The financial advantage of using a decision rule 
strategy is assessed as the cost reduction (CR), which is the ratio 
of the costs from using an optimal decision rule compared with 
the costs of using the better systematic strategy. CR is defined as 
follows: 
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Notice that, as Cmin can be factorized in each numerator and de-
nominator, CR doesn’t depend on Cmin. 

Overall cost reduction. We defined the overall cost reduction 
(OCR) as 

evPrdevPrCROCR ×μΔβα−=μΔβα ∫
1

0

),,,,(1),,,(  

OCR is a measure of the financial interest of using a DR strategy 
for all possible value of Prev. On a graph representing CR as a 
function of Prev (Fig. 3), OCR is the area above this curve and the 
line CR = 1. 

Numerical simulations. A set of functions were developed 
using the statistical package R to numerically explore the effects 
of the five parameters Prev, α, β, µ, and Δ on the value of CR and 
OCR. Based on bibliographic data, ranges of variation reflecting a 
wide diversity of pathosystem or decision rules were used to 

 

Fig. 3. Cost reduction (CR) resulting from the use of a decision rule strategy over the better systematic strategy as a function of disease prevalence (Prev) for five 
indicators of increasing overall accuracy (AUC = - - - - 0.6, - - - - 0.7, – – – – 0.8, ––––– 0.9, and ––––– 1). Values of CR are illustrated for three levels of potential 
yield loss (α = 5, 15, and 25) and of the relative cost of the treatment (β = 0.2, 0.5, and 0.8). 

 

Fig. 2. Receiver operating characteristic (ROC) curves fitted with the model of
Lloyd for five values of the shift parameter Δ corresponding to five values of
the area under the ROC curve (AUC): AUC = 0.6 (Δ = 0.61), AUC = 0.7 (Δ = 
1.26), AUC = 0.8 (Δ = 2.05), AUC = 0.9 (Δ = 3.19). and AUC = 0.95 (Δ = 
4.19). The asymmetry parameter (µ) is set to 1. 
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assign to each factor. CR was assessed for all possible values of 
the parameters in their ranges with a 5.10–3 step. For AUC = 1, 
calculations were done by substituting CDRopt with CP in the 
expression of CR. 

RESULTS 

Assignment of range of variation to the parameters studied. 
In our modeling framework, the CR provided by a decision rule 
strategy over the best systematic strategy depends on five param-
eters. Three parameters characterize a pathosystem: (i) α, the 
extent of the potential yield loss; (ii) β, the relative cost of the 
treatment, and (iii) Prev, the prevalence of the major yield loss 
situations. Some studies (1,6,17,18,21) reporting long-term data 
sets from which these parameters can be estimated were used to 
assign a range of variation to α between 1 and 25. This range en-
compasses several pathosystems and production situations (Table 
1). For β and Prev, ranges of variation between 0 and 1 encom-
passing all possible values of relative treatment cost were defined. 

In the model of Lloyd, two parameters characterize the overall 
accuracy (AUC) of an indicator: (i) µ, an asymmetry parameter 
and (ii) Δ, a shift parameter. A preliminary analysis indicates that 
CR is only slightly sensitive to µ (not shown). This parameter then 
was set to 1 (i.e., only indicators with ROC curve symmetrical on 
the minor axis were considered—this arises when the variance of 
the distribution of the indicator values of the cases and the con-
trols are equal). The range of variation of Δ was defined in order 
to obtain AUC ranging from 0.55 to 1 (0.301 ≤ Δ ≤ 6.277). This 
range encompasses the AUC of most crop protection decision 
rules. Bibliographic data on several pathosystems (Barley yellow 
dwarf virus on barley [5], fire blight on apple and pear [3], 
Sclerotinia stem rot on oilseed rape [21,40], and apple scab on 
apple [36]) indicate that AUC values of crop protection decision 
rules range from 0.6 to 0.9 and rarely exceed this value. This is 
mainly because modelers have to face many uncertainties when 
modeling a biological system (e.g., processes involved and avail-
ability of necessary microclimatic data) and also often try to 
develop user-friendly models. 

The average cost of the optimal decision rule strategy was always 
lower (or at least equal) to those of systematic strategies (either the 
systematic spraying strategy or the never spray strategy). How-
ever CR provided by optimal decision rule strategies were strongly 
affected by variation in pathosystem and decision rules parameters. 

Effect of disease prevalence (Prev). As expected, CR de-
pended strongly on the prevalence of major yield loss (Prev). 
When a pest was rare (i.e., (1 – Prev)/Prev is large), the optimal 
decision threshold Is is shifted to the lower left part of the ROC 
curve where the slope is large. The selected decision rule will 
consequently have a high specificity (Sp) and a low sensitivity 
(Se) (Fig. 2). Only decision rules with a very good level of 
accuracy (both high Se and Sp) significantly reduce the average 
cost of decision rule strategy (CDR) compared with the average 
cost of the never-spray strategy (CNS). The same phenomena arose 
for the average cost of decision rules strategy developed for very 

common pests or diseases when compared with the average cost 
of a systematic-spraying strategy. 

Effect of the extent of the potential yield loss (α). For given 
relative cost of treatment (β) and overall indicator accuracy 
(AUC), both CR (Fig. 3) and OCR (Fig. 4) increased with the 
extent of the potential yield loss (α). This relationship was not 
linear: OCR was much more sensitive to α for values <10 com-
pared with higher ones (Fig. 4B). 

Effect of the relative cost of a treatment (β). The relative cost 
of a treatment (β) determines the value of disease prevalence 
(Prev) maximizing CR (Fig. 3). The OCR strongly depended on β. 
Values of β ranging from 0.1 to 0.6 lead to higher OCRs (Fig. 5). 
Outside of this range, only highly accurate indicators provided 

TABLE 1. Range of variation of Ctrt, Cmin, Cmax, α, and β in some pathosystemsa 

 Costs (kg/ha)    

Crop, pest Ctrt Cmin Cmax α β Reference 

Oilseed rape, Sclerotinia stem rot 155 (triazole) 21 421 20 0.33 21 
 218 (dicarboximide) 55 512 9.3 0.36 … 
Sunflower, Phoma 200 119 502 4.2 0.21 2 
Barley, Barley yellow dwarf virus 500 (pyrethroids) 122 2,120 17 0.19 6 
Oat, frit fly 200 (pyrethroids) 50 700 14 0.23 18 
Wheat, grain aphid 300 (pyrethroids) 153 574 3.8 0.35 17 

a All costs (Ctrt = average treatment cost, Cmin = average cost of yield losses in the controls, and Cmax = average cost of yield losses in the cases) are expressed 
in kg/ha of yield losses. The extent of the potential yield loss (α) is defined as Cmax/Cmin and the relative cost of the treatment (β) is defined as (Ctrt –
Cmin)/(Cmax – Cmin). 

 

Fig. 4. Effects of the overall indicators accuracy (area under the receiver 
operating characteristic curve [AUC]) and the extent of the potential yield loss
caused by the considered pest or disease (α) on the overall cost reduction 
(OCR) for three values of β (0.2, 0.5, and 0.8). A, OCR as a function of AUC
(x axis) and α (y axis). B, OCR as a function of α for five levels of AUC.
AUC = - - - - 0.6, - - - - 0.7, – – – – 0.8, ––––– 0.9, and ––––– 1. 
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substantial financial interest when compared with the best sys-
tematic strategy. Accordingly, for a given pathosystem, a single 
value of β maximized the financial interest of using a decision 
rule strategy (Fig. 5B). 

Effect of overall indicator accuracy (AUC). The nine plots of 
Figure 3 explored a large diversity of pathosystems. It is interest-
ing to note that, for all the AUC in the range of accuracy of most 
crop protection decision rules (range of 0.6 to 0.9) and all patho-
systems illustrated, CR is rarely <0.7, which corresponds to an 
average cost saving of 30%. Figure 3 also clearly illustrates that, 
when Prev departs from the value of β that minimized CR, CR 
increased more or less rapidly according to the overall indicator 
accuracy (AUC). When comparing CR obtained with indicators in 
the AUC range (0.6 to 0.9) with CR obtained with a perfect 
indicator (Fig. 3) (AUC = 1), it appears that CR does not depend 
linearly on AUC: improvements in CR are increasingly more 
important when AUC tends toward 1. 

DISCUSSION 

Effect of disease prevalence (Prev). In the plant protection 
context, Prev reflects the production situation of a field (i.e., the 
set of physical, biological, and socioeconomic factors that deter-
mine agricultural production) (4,26,30). As was expected, CR was 
very sensitive to Prev. For rare pests or common pests, the 
optimum decision threshold is shifted to the ends of the ROC 
curve. Thus, decision rules with very good accuracy (in terms of 

both specificity and sensitivity) are required to offer any benefits 
over the no-treatment strategy (for rare pests) or the always-treat 
strategy (for common pests). The financial interest of using a 
decision rule strategy is high only for intermediate levels of 
prevalence of the pest or disease. CR is minimal (and so the 
financial motivation for using the decision rule strategy is maxi-
mal) when Prev = β (Fig. 3). These conclusions are in agreement 
with those of Murthaugh (28) and Yuen and Hughes (39), who 
analyzed the role of Prev on the usefulness of rule-based systems 
from the point of view of their predictive values. 

Effect of the extent of the potential yield loss (α). The non-
linear relationship between OCR and α implies a sensitivity to the 
extent of the potential yield loss caused by the pathosystem. Al-
though it might be obvious that a DR strategy would be more 
interesting for a moderately destructive pathogen compared with a 
less destructive one, it is not clear that the gain from going from a 
moderately destructive pathogen to a more destructive one would 
be so modest. 

Effect of the relative cost of a treatment (β). In our model, β 
is a measure of Ctrt. Ctrt usually includes direct costs such as 
pesticide, labor, and tractor wheel costs. However, one also could 
be interested in including indirect costs such as the environmental 
cost of the treatment (9,29). The dependency of OCR on β and the 
existence of a value of β that would optimize the financial interest 
in using decision rules makes this a possible way to affect the adop-
tion of tactical models. This is because β, unlike Prev and α, can 
be more easily adjusted by policy makers through pesticide taxes. 

Effect of overall indicator accuracy (AUC). As one might ex-
pect, better predictors (i.e., those with high values of AUC) gave 
better values for CR compared with poorer predictors, and indi-
cators with modest accuracy are interesting only in a small range 
of Prev (i.e., in a small number of production situations). The per-
formance of the indicator also affected the range of Prev values 
where it would be effective, and high-quality indicators can sig-
nificantly improve the financial advantage of using CR over a 
wide range of Prev (i.e., in a large number of production situa-
tions). An increase of the accuracy of the predictor beyond a value 
of AUC = 0.9 would further increase the prevalence range where 
it might be effective; however, this could be difficult (if not 
impossible) to achieve in practice. 

The FAO suggests, as a rule of thumb, that adoption of an inno-
vation is unlikely unless it offers at least a 2:1 financial advantage 
over existing practices, corresponding to a value of CR of 0.5. 
Even if this view may be a little pessimistic (23), our calculations 
indicate that such a CR is never reached even with the highest 
quality indicator (AUC = 0.9). This may be a possible explanation 
for the low rate of adoption of decision rule by farmers. Hope-
fully, future progress in plant disease epidemiology will lead to 
more accurate decision rules. If this is the case, then decision rule 
strategies will be more widely adopted because both their finan-
cial advantage and the range of production situations where they 
are of interest will increase. However, because of the inescapable 
trade-offs between the accuracy of decision rules and their user-
friendly characteristics, it is important to keep in mind that even 
the most accurate decision rule will not be used if it requires too 
much effort on the part of the user (7). Noise limitations in terms 
of the biological system and the availability of data also will limit 
the quality of indicators. Accordingly, this result suggests that 
decision rules should be marketed to farmers by focussing on the 
cost savings and not by promoting large benefits over an existing 
practice. 

The analyses done throughout this article are based on two 
premises. First, the potential usefulness of decision rules is 
compared against the better of the systematic strategies. This is 
because our main concern is not to investigate how decision rules 
can lead to reduced use of pesticides but rather how decision rules 
can lead to better targeted use of pesticides. Although the imple-
mentation of decision rules is often motivated by the reduction of 

 

Fig. 5. Effects of the overall indicators accuracy (area under the receiver
operating characteristic curve [AUC]) and the relative cost of the treatment (β) 
on the overall cost reduction (OCR) for three values of α (5, 15, and 25). A, 
OCR as a function of AUC (x axis) and β (y axis). B, OCR as a function of β
for five levels of AUC. AUC = - - - - 0.6, - - - - 0.7, – – – – 0.8, ––––– 0.9, and 
––––– 1. 
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the number of unnecessary treatments, there is also the opposite 
situation (referred as the management of moderately destructive 
pathogens in extensive crops) (31), where farmers tend not to 
spray at all and, consequently, where crops are not protected even 
in the case of major yield losses. Here, we consider that both 
situations are obviously undesirable. Second, it is assumed that 
farmers judge the performance of control strategies only on the 
basis of the relative average CR. This is true under the risk-neutral 
framework. Emphasis in this article has been placed on this situa-
tion because it provides a reference to interpret the level of profit-
ability of control strategies (34). However, many decision makers 
are not strictly risk neutral (27). For example, in the case of de-
structive pathogens in intensive crops (greenhouse crops, for ex-
ample), many farmers choose their control strategy by consider-
ing the absolute value of the crop rather than relative costs (31). 
Economists have used utility functions to take into account both 
the financial and psychological aspects of decision making; this 
general concept describes in what sense a decision maker will 
consider that a decision is optimal (35). The farmer’s main con-
cern often is not only to minimize the average cost of their control 
strategy (the profitability component of the utility function) but 
also to avoid extremely large variation (the risk component). In 
this case, their objective then is to maximize some function of the 
mean and the variance of the expected cost such as the income-
variance criterion (8). The financial interest of using a decision 
rule strategy will deviate more or less from our results depending 
on the priority given to the profitability component relative to the 
risk component. Application of subjective criteria is outside the 
scope of this study. However, in general, the more farmers tend to 
favor the risk component (in being either risk adverse or risk 
prone), the more they will favor the financial interest of sys-
tematic strategies. Finally, in this work, it is assumed that using 
the decision rule strategy induces no overhead costs. When this is 
not the case (for example, scouting for insects in the field is time 
consuming, decision rule recommendation are sometimes de-
livered only by subscription, and so on), the financial interest of 
using a decision rule will be lower than expected here. 

The main interest of this work is to provide quantitative guide-
lines on the financial advantage that decision rules can offer in 
plant protection and, more generally, a better understanding of 
their potential usefulness. As noticed by Yuen and Hughes (39), 
knowing the potential performance of decision rules is crucial be-
cause it will enable targeting of areas (i.e., production situations) 
where there is a chance that it might be used. The methodology 
proposed here constitutes a general framework where one can a 
priori assess the potential interest of investing money and time to 
implement new decision rules or to improve existing ones. It 
mainly requires one to characterize the response of a pathosystem 
to the considered control method through some basic parameters 
(e.g., Cmin, Cmax, Ctrt, and Prev). This can be done simply from 
a set of yield measurements obtained on treated and untreated 
fields plots. Such data can be collected from pesticide efficacy 
trials commonly carried out by extension services and research 
institutes. Even if this study focuses particularly on the control of 
pathogens (pests) solely with the use of pesticides, both method-
ology and main conclusions can be easily extended to other 
control methods (e.g., biological control or resistant cultivars) 
where binary decisions are involved. 
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