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Abstract

The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult
cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along
with transcription factors. We have focused our interest on the epigenetic modulator HP1c (Heterochromatin Protein 1,
isoform c) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association
with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1c make it a good
candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference,
we describe the functional role of HP1c in mouse ESC. The analysis of HP1c deprived cells in proliferative and in various
differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We
show that HP1c deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions,
rendering the cells poised to differentiate. In addition, HP1c depletion hampers the differentiation to the endoderm as
compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1c in
ESC self-renewal and in the balance between the pluripotent and the differentiation programs.
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Introduction

Embryonic stem cells (ESC) are the pluripotent cells that give

rise to the differentiated cells of the three germ layers at the earliest

stages of development (endoderm, mesoderm and ectoderm) [1].

In mice, these cells are derived from the inner cell mass of

blastocysts and are capable of prolonged self-renewal in vitro. ESC

maintenance is supported by a conserved and restricted set of key

transcription factors, namely Oct4 [2,3], Nanog [4,5] and Sox2

[6,7].

Characterization of these cells has shown that the progression

from a pluripotent to differentiated status is correlated with

chromatin condensation [8] and enrichment in silenced chromatin

marks (see [9] for review) through heterochromatin formation. In

contrast, the chromatin in ESC is relaxed with loosely attached

architectural proteins [10] and a globally permissive transcrip-

tional state [11] characteristic of euchromatin. Recently, RNA

interference screens targeting chromatin-associated proteins have

revealed the existence of ESC regulations at the chromatin level

that contribute to their open chromatin state and that are

important for ESC properties, namely their self-renewal and their

pluripotency [12,13].

It has also been shown that epigenetic modifiers involved in the

methylation status of H3K9 contribute to ESC maintenance under

the control of the transcription factor Oct4 [14,15]. This mark is

involved in heterochromatin formation and in the permanent

silencing of specific genes in transcriptionally active euchromatic

regions when appropriate [16,17]. Notably the ESC-specific

H3K9 methyltransferase ESET is involved in pluripotency

maintenance through the repression of differentiation genes [15].

The inducible H3K9 methylation also contributes to the

epigenetic flexibility associated with the commitment to differen-

tiation, as revealed by the requirement for the euchromatin-

associated G9a H3K9 methyltransferase during early embryonic

development [18] as well as in the silencing of euchromatic loci

during ESC differentiation [19]. Methylated H3K9 marks are

poorly represented in ESC when compared with marks associated

with active genes [20,21] and it is not known whether epigenetic

regulators recognizing methylated H3K9 sustain ESC identity

with similar or distinct functions when compared with other

regulators on activation marks [12,13].

Methylated H3K9 marks are recognized by epigenetic regula-

tors in the heterochromatin proteins 1 (HP1) family, which is

conserved in a large number of species [22]. Mammals have three

HP1 variants: a, b and c. These proteins are capable of homo- or

heterodimerizing and recruiting large protein complexes that are

involved in gene regulation (see [23] for review). Despite their

structural resemblance to one another, the three isoforms have

some distinct, non-redundant functions [24] and localization

patterns. HP1c, and to a lesser extent HP1b, localizes not only to

heterochromatic sites, as does HP1a [25] but also to euchromatic

region [26] to repress gene transcription. Localization of HP1

proteins is submitted to important changes during differentiation

[27–28] which probably accounts for the chromatin organization

during ESC differentiation. However, HP1c is also associated with

the transcriptional activation of direct target genes [29–32]. This
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situation suggests that, unlike other HP1 isoforms, HP1c may

sustain gene expression in ESC. This characteristic reconciliates

repressive chromatin marks with transcriptional activity and may

provide flexibility for the rapid reprogramming that occurs during

ESC differentiation.

To test this hypothesis, we have explored the functional

consequences of HP1c deprivation on mouse ESC maintenance

and differentiation. We show in this study that HP1c regulates

ESC identity being involved in ESC self-renewal and in the

balance between pluripotency and differentiation.

Results

Embryonic stem cells with low levels of HP1c show
reduced self-renewal efficiency

The role of HP1c in ESC was examined by RNA interference

via lentiviral vectors encoding a short hairpin RNA (shRNA). Four

shRNA constructs designed against HP1c were tested in

comparison to a control construct (shCTR) with at least 4 base

pair mismatches to any known mouse gene. Among the four

shRNA constructs tested, two (shN1 and shN2) specifically

decreased the level of HP1c mRNA by more than 80% and were

used in subsequent experiments. Western blot analysis showed that

after 6 days of puromycin selection to maintain the shRNA

construct, the level of HP1c protein was dramatically decreased in

HP1c shN1 and shN2 cell lines compared to shCTR cells

(Figure 1A). The N1 and N2 shRNA did not induce any decrease

in the levels of HP1a and HP1b mRNAs, demonstrating their

specificity toward HP1c (Figure 1B).

In the presence of puromycin, shHP1c ESC could be

maintained in culture and showed no evidence of morphological

change (not shown). However, both lines grew more slowly than

did control ES cells. To quantify this proliferative defect, cells were

plated at low density and counted daily. The growth curves

obtained (Figure 1C) demonstrated that the cell growth was

reproducibly reduced in both shHP1c cell lines compared to

control ESC. This observation was confirmed by a proliferation

assay that measured BrdU (BromodeoxyUridine) incorporation in

newly synthesized DNA during a unique cell cycle and which

showed around 20% decrease in DNA synthesis in the shHP1c cell

lines compared to the shCTR line (Figure 1D).

To explore the underlying cause of this proliferation defect, we

investigated cell death by measuring the incorporation of the

nucleic acid intercalating agent propidium iodide (PI) which is

actively excluded from viable cells and retained in membrane-

permeant dead cells. To detect early cell death events, annexin V

labeling was used to detect the translocation of this phosphatidyl-

serine protein from the inner to the outer leaflet of the plasma

membrane occurring only in apoptosing cells [33]. The mean

percentage of total dead cells was quite similar in shHP1c cells and

in shCTR cells (CTR : 662%, N1: 762%, N2 = 762%,

measured from three independent experiments), and therefore

could not explain the cell number decrease specifically observed

upon HP1c knockdown. Another explanation for the lower growth

of cell population could be cell cycle arrest. We performed cell

cycle analyses using propidium iodide and BrdU to label

proliferating cells (Figure 1E). The cell cycle distribution of the

cells was not affected by HP1c repression.

Altogether, these results demonstrate that the down regulation

of HP1c in mESC leads to a decrease in cell growth that is not the

consequence of blockage in the cell cycle or of an increase in cell

death. It thus appears that the cell growth decrease observed in

HP1c depleted cells is due to an overall slowing down of the cell

cycle. To better understand the mechanisms of the proliferation

defect in shHP1c cells, a microarray analysis of their transcripts

was undertaken and compared with those in control cells. As

shown in Table 1, 34 genes were differentially regulated between

the two cell lines with a fold change higher than 2.2. Very

strikingly, 6 of the 18 genes with a known function are associated

with the positive regulation of cell growth. All of these 6 genes

were down regulated (variations confirmed by RT-qPCR, Table

S1), while one gene associated with the repression of cell

proliferation was induced. Hence, these results show that HP1c
is involved in the regulation of ESC self-renewal most probably

through the direct or indirect control of cell growth-associated

genes.

The knock-down of HP1c increases the propensity of ESC
to differentiate

Because the slowing down of proliferation and the commitment

to differentiation are known to be correlated in ESC, we wondered

whether this balance was disrupted in HP1c knockdown cells.

Accordingly we explored the expression level of differentiation

associated genes by RT-qPCR. The results from three indepen-

dent RT-qPCR experiments indicate that shHP1c cells sporadi-

cally expressed differentiation markers in proliferative conditions

(Figure 2A). The two shHP1c cell lines did not always exhibit the

same levels of a given transcript and distinct degrees of variation

were observed between the experiments in all cell lines. However,

when considering all the markers of a specific germ layer, a

reproducible tendency toward the induction of neuroectoderm

differentiation markers (Fgf5, Nestin, and Sox1) was observed in

shHP1c cells. The inductions of some mesoderm markers were

detected but with very low intensity and with a strong variability.

On the contrary the basal level endoderm markers (Foxa2, Gata4,

Gata6) seemed rather lowered. These results suggest that shHP1c
cells are poised to differentiate, though they have not yet

specifically done so. Indeed, the expression of the pluripotency

genes was maintained. As shown in Figure 2B, the mRNA

expression levels of Oct4, Nanog and Sox2 were similar in both

shHP1c cells and control cells, indicating that the decrease in

HP1c expression did not affect the genes controlling ESC

maintenance or pluripotency at the population level. The

microarray analysis confirmed that the decrease in HP1c protein

does not affect the expression level of 13 other genes reported to be

associated with pluripotency [34] (Figure 2C). Moreover, we

quantified the presence of the pluripotent stem cell antigen SSEA1

(Stage-Specific Embryonic Antigen-1) by flow cytometry. The

proportion of SSEA1-positive cells was similar (around 80% of the

whole population) in control and in shHP1c cells (Figure 2D).

Altogether this data indicate that the same proportions of cells

harboring pluripotency markers could be found in CTR, N1 and

N2 populations.

The increased expression of differentiation markers in HP1c
knockdown cells could reflect an increased background of gene

expression in all cells, or alternatively an increase in the number of

cells expressing basal levels of these markers. To distinguish

between these two hypotheses ES cells were stably transfected with

a construct where GFP expression was placed under the control of

the promoter of the mesodermal marker brachyury [35].

Engineered ES cells were subsequently transfected with shRNA

CTR, N1 or N2. The knock-down of HP1c strongly increased the

percent of brachyury GFP cells (Figure 3A) but the mean

fluorescence intensity was not affected (Figure 3B). These

observations confirm that mesoderm markers were also induced

despite the low and sporadic increase of brachyury transcripts

(Figure 2A) in the whole ES cells population. Altogether qPCR

analysis and the reporter assay indicate that lowering the level of

Role of HP1c in Embryonic Stem Cells
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HP1c increased the number of ES cells that are prone to

differentiate toward the neurectoderm and the mesoderm.

The maintenance of mouse ESC is sustained by the LIF

cytokine in the culture medium [36]. To quantify this increased

propensity to differentiate we performed a colony-forming assay

with decreasing LIF concentrations (Figure 4). After 5 days of

culture, the differentiation status of colonies was analyzed by

alkaline phosphatase (AP) staining, which specifically marks

pluripotent cells. The colonies were scored as undifferentiated,

mixed or differentiated. The answers to LIF privation were dose-

dependent but more pronounced in shHP1c cell lines. Specifically,

we noticed that seeding the cells in culture medium supplemented

with only 10 U.mL21 of LIF induced the formation of a

significantly increased number of mixed colonies by shRNA-

treated ESC compared to control cells. Indeed, in this condition

the vast majority of colonies formed by N1 and N2 cells were

mixed or differentiated (respectively 83% and 81%), as compared

to less than 40% for CTR colonies. The same effect was also seen

in the presence of 1 U.mL21 with no undifferentiated and more

differentiated colonies that were scored in N1 and N2 than in

CTR cells.

Taken together these results show that low levels of HP1c
increase the propensity of ESC to differentiate but do not induce

their spontaneous progression toward differentiation. They rather

induce ESC to enter a metastable state more sensitive to

differentiating conditions.

Low levels of HP1c increase ESC differentiation efficiency
but restrict the differentiation pattern

The above data suggest that HP1c may be involved in the very

early steps of differentiation, during the commitment process. An

early time point of differentiation was therefore analyzed for gene

expression in embryoid bodies (EB) formed over a 36 h period by

shCTR and shN2 cells. At this time point, Oct4 and Sox2 were

Figure 1. HP1c knockdown ESC exhibit an altered proliferation rate. A. Two different shRNA directed against HP1c (shN1 and shN2) were
compared to a control shRNA (shCTR). Knockdown efficiency was measured by western blot using an anti-HP1c antibody and compared to the basal
level expressed in untransduced ESC and in shCTR cells. Beta-tubulin was used as a protein loading control. B. mRNA levels of the three HP1 isoforms
HP1a, b and c were measured by RT-qPCR. Values are represented relative to the ones obtained from shCTR-transduced cells. C. Growth curves for
the shCTR, shN1 and shN2 cell lines representing the number of cells obtained after 1, 2, 3 or 4 days of culture. D. Proliferation measured by BrdU
incorporation. BrdU was added to exponentially proliferating cells during the last 8 hours of culture. Results are represented relative to the value
obtained in the shCTR cell line. Results are the means of three independent experiments. ** p,0,002 by t test. E. Cell cycle analysis using propidium
iodide (PI) and BrdU incorporation. All values are means +/2 SD from three independent experiments.
doi:10.1371/journal.pone.0015507.g001

Role of HP1c in Embryonic Stem Cells

PLoS ONE | www.plosone.org 3 November 2010 | Volume 5 | Issue 11 | e15507



still expressed but the other core pluripotency transcription factor,

Nanog, was already repressed (Figure 5A). Associated with the

repression of Rex1, this indicates that the cells were committed to

differentiation but that the differentiation was not fully achieved.

Differentiation markers (list generated by an automatic analysis of

the bibliography and displayed as supplementary material File S1)

were selected for analysis and clustered based on gene expression

(Figure 5B).

During differentiation the genes were either down- or

upregulated (Figure 5B, groups I and II, respectively). The genes

whose expression changed during differentiation globally displayed

the same regulation in control cells and in HP1c knockdown cells

but with a notably higher amplitude (Figure 5B, clusters a and c).

A restricted number of genes showed either impaired variation

when compared with control cells (clusters b and d) or variation

restricted to cells with low levels of HP1c (Figure 5B, cluster e), but

Table 1. Genes misregulated following HP1c knock-down in proliferating ESC.

Gene symbole Gene Namea
Fold
change Fonctionb

Mep1b Meprin 1 beta 5.3 Tissue repair ; Cell migration; Modulation of the immune system

Frmd4b FERM domain containing 4B 5.2 Unknown

Aass Aminoadipate-semialdehyde synthase 4.4 Lysine degradation pathway

Hspb7 Heat shock protein family, member 7 4.2 Unknown

AI662270 Expressed sequence AI662270 3.9 Unknown

Fv1 Friend virus susceptibility 1 3.6 Inhibition retroviral infection

Mthfd2l Methylenetetrahydrofolate dehydrogenase
2- like

3.5 Unknown

Clca4 Chloride channel calcium activated 4 3.3 Chloride transport

* Ifitm3 Interferon induced transmembrane protein 3 3.1 Repression of cell proliferation; Cell adhesion

2310043M15Rik RIKEN cDNA 2310043M15 gene 3.0 Unknown

Il1rl2 Interleukin 1 receptor-like 2 2.6 Unknown

Ap1s3 Adaptor-related protein complex AP-1,
sigma 3

2.6 Cargo protein

Gtsf1 Gametocyte specific factor 1 2.5 Unknown

1200003I07Rik RIKEN cDNA 1200003I07 gene 2.4 Unknown

D4Wsu114e Migration and invasion inhibitory protein 2.2 Inhibition of cell invasion and migration

Hydin Hydrocephalus inducing 211.2 Cilia Motility

Msln Mesothelin 25.6 Unknown; Associated with ovarian cancers and mesotheliomas

Cbx3 Chromobox homolog 3 ( HP1g) 24.9 Cbx3

Taok3 TAO kinase 3 24.0 Unknown

* Aldh3a1 Aldehyde dehydrogenase family 3,
subfamily A1

24.0 Activation of cell growth

* Gpx2 Glutathione peroxidase 2 23.8 Activation of cell growth of cancer cells; Inhibition of migration and
invasion; Regulation of hyperoxides level

* Pla2g1b Phospholipase A2, group IB 23.6 Activation of cell growth ; Cell migration; digestion of
glycerophospholipids

Cabp4 Calcium binding protein 4 23.5 Important for normal synaptic function

LOC331480 Predicted gene, EG331480 23.4 Unknown

Tmem40 Transmembrane protein 40 23.4 Unknown

Tmprss5 Transmembrane protease serine 5 (spinesin) 23.2 Unknown

Acoxl Acyl-Coenzyme A oxidase-like 23.1 Unknown

Myom2 Myomesin 2 23.0 Interconection of the major structure of sarcomeres

Crxos1 Crx opposite strand transcript 1 23.0 Unknown

* Ckmt1 Creatine kinase mitochondrial 1 23.0 Activation of cell growth ; Cell viability; Cellular energy homostasis

Fxyd4 FXYD domain-containing ion transport
regulator 4

22.9 Unknown

Ggt1 Gamma-glutamyltransferase 22.9 Glutathione metabolism ; Regulation of osteoclast biology

*Calml4 Calmodulin-like 4 22.8 Activation of cell growth

*Nrp2 Neuropilin 2 22.2 Activation of cell growth; Angiogenesis; Migration of cancer cells;
Functions in nervous system

aGenes with a fold change higher than 2.2 in three independent chip hybridization experiments;
bFunctions given based on bibliography analysis.
*Genes affecting cell proliferation.
doi:10.1371/journal.pone.0015507.t001
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their analysis did not reveal any convergent function. These data

thus indicate that the decrease of HP1c level probably favors the

differentiation of embryonic stem cells from the earliest steps by

increasing the expression of differentiation markers.

To determine whether HP1c knockdown also affected the later

phases of differentiation a kinetic study of gene expression in

embryoid bodies cultivated for 1 to 7 days was done by RT-QPCR

(Figure 6). The down-regulation of the pluripotency genes Oct4

and Nanog was observed in controls and in HP1c knockdown cells

(N1 and N2 cells). When considering markers of differentiation the

situation was very different depending on the germ layers

considered. The peaks and levels of expression of the neuroecto-

dermal genes Sox1, Nestin, Musashi, were similar in the three

populations. The same was true for the mesodermal markers

Brachyury, Eomes And Mixl1. The situation was completely

different for the endodermal markers Gata4, Gata6, Cxcr4, Pdgfra
presenting a tendency to lower expression levels at the time as the

maximum was reached in control cells. These results thus indicate

that the low level of HP1c impairs the differentiation of embryoid

bodies toward the endoderm. To further explore the role of HP1c
in the orientation of ESC differentiation we then used retinoic acid

to induce a rapid differentiation, preferentially toward neuroec-

toderm and to a lesser extent to endoderm (Figure 7). The analysis

by RT-qPCR showed that the expression of the pluripotency

markers Oct4 and Nanog decreased rapidly and similarly in

shHP1c and control cells at day 2. The expression of the

neuroectoderm-associated genes (Fgf5, Sox1 And Nestin) and of

Figure 2. HP1c knocked-down ESC sporadically express differentiation markers but show normal expression of pluripotency
markers. A. The expression of the indicated genes representing the three germ layers (neuroectoderm, mesoderm and endoderm) was measured by
RT-qPCR. Results from three independent RNA samples are reported to illustrate the variability of the results obtained when genes are analyzed
individually. B. The RNA expression levels of the core set of transcription factors required to sustain pluripotency was measured in shRNA cell lines by
real time PCR. C. Fold change of additional markers associated with pluripotency obtained from microarrays analysis. Results are mean +/2 SD of
three independent microarrays experiments. D. The proportion of undifferentiated cells in the three shRNA cell lines was measured by
immunolabelling of SSEA1 and subsequent flow cytometry analysis. In A, B and C results are reported as a ratio of the values obtained in the shCTR
cells. For B and D, the means and standard errors were calculated from four independent experiments.
doi:10.1371/journal.pone.0015507.g002

Figure 3. HP1c knockdown increases the proportion of cells
expressing the differentiation marker Brachyury. ESC transfected
with a Brachyury promoter-GFP construct were further transfected with
the three shRNA. The promoter activity was followed by GFP expression
measured by flow cytometry. A. The proportion of GFP positive cells is
reported as the ratio of the value obtained in the shCTR cells. B.
Representation of the mean fluorescence intensities (MFI) in GFP
positive cells. The means and standard errors were calculated from four
independent experiments. *** p,0.02 by t test.
doi:10.1371/journal.pone.0015507.g003
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the mesoderm associated genes (Tbx2 and Flk1) followed similar

kinetics in controls and HP1c knockdown cells but their expression

was enhanced in repressed cells. Both sets of sh RNA against

HP1c gave the same results in spite of uneven efficiency. In

contrast, the expression of the endodermal markers Gata4, Gata6,

Foxa2 and Hnf1 was not increased, showing similar or lower levels

in sh HP1c cells.

Altogether these results show that knockdown of HP1c cells

enhances the early commitment and drives differentiation in a way

that limits the expression of endodermal markers in comparison

with other lineages in both embryonic and retinoic acid

differentiated cells.

HP1c is not regulated at the protein level during
differentiation

Since the expression level of HP1c affects the ability of ESCs to

differentiate, we wondered whether HP1c might be regulated in a

differentiation-dependent manner. The differentiation of ESCs

was followed by a decrease in Oct4 protein levels when induced by

retinoic acid, or by a decrease in Nanog protein levels when

induced by embryoid bodies formation, as observed by western

blot analysis. Within the same time periods, no change in the level

of HP1c protein was observed (Figure 8), indicating that the

activity of HP1c in ESCs was not controlled at this level.

Discussion

Numerous reports have described the major epigenetic

modifications associated with the differentiation of ESC, but very

little is known about the epigenetic regulators that interpret these

chromatin marks and control the switch from the pluripotent state

to the differentiation programs. We have focused our interest on

the chromatin associated protein HP1c protein that, in addition to

its role in the recruitment of transcriptional regulators, is

associated with both the negative [37] and positive [29,30,32]

regulation of gene transcription in the euchromatic regions [31]

undergoing profound change during differentiation [8,9].

Using an RNA interference approach to study the role of HP1c
in ESC, the results presented here show that HP1c is involved in

the self-renewal of ESC, in their commitment to differentiation

and in the orientation of differentiation.

In proliferating conditions ESC repressed for HP1c have a

reduced proliferation rate. However they can be expanded,

cultivated during this study with no limitation of time and do

not show obvious morphological change. We rejected any cell

cycle arrest or accumulation of dead cells as possible causes of the

decreased proliferation rate. It has been reported that the

knockdown of both HP1a and HP1c by RNAi in HeLa cells

abolishes the localization of the HP1-interacting kinetochore

protein hMis12, resulting in aberrant chromosome segregation

[38]. However, the authors have pointed out some functional

redundancy between the two HP1 isoforms. In ESC, the presence

of HP1a certainly prevented the cells from undergoing massive

death due to mitotic catastrophe. We also failed to detect any

increase of the b-galactosidase activity characteristic of senescent

cells and expected if the protection of ESC from ageing was

disrupted [39,40] (data not shown). Therefore the self-renewal

decrease of cells knocked-down for HP1c results probably from a

slowing-down of the cell cycle as a consequence of the

deregulation of direct or indirect HP1c target genes. Indeed,

some cell growth regulators were misregulated upon HP1c knock

down. Hence, the function of HP1c in ESC appears to be the

control of self-renewal shown to result from the inhibition of

differentiation inducing signaling [41]. It is noteworthy that this

impact of HP1c on proliferation seems to be restricted to highly

self-renewing cells. Indeed, it has been shown that siRNA against

HP1c decreases the proliferation of cancer cell lines but not of

noncancer-derived cell lines [42].

In ESC, as a probable consequence of the self-renewal defect,

HP1c depletion was found to disturb the balance between self-

renewal and differentiation. First, the sporadic expression of

differentiation genes that is inherent to ESC populations [11] was

increased in HP1c knocked-down cells, in correlation with an

increased proportion of cells activating the promoter of the

differentiation gene Brachyury. Second, an increased propensity to

Figure 4. A low level of HP1c favors ESC commitment to differentiation. The three shRNA cell lines (shN1, shN2 and shCTR) were seeded at
low density and cultured with medium containing the indicated concentrations of LIF; the concentration of 1000 U/ml corresponds to that used
in proliferating medium. Five days after seeding, colonies were fixed, stained for alkaline phosphatase and scored as undifferentiated (AP+), mixed
(AP+/2) or differentiated (AP-). For each concentration of LIF, results are represented as the percent of the total number of colonies. Means and
standard errors were calculated from three independent experiments, and t tests were performed to determine the significance of the differences
between shHP1 and shCTR cells at each LIF concentration for a given type of colony (AP+, AP- or mixed). * p,0.1, ** p,0.05, *** p,0.02.
doi:10.1371/journal.pone.0015507.g004
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commit into differentiation was observed when the LIF that

controls ESC maintenance was removed. However, in proliferat-

ing conditions the expression of several pluripotency markers,

among which Oct4, Sox2, Nanog, Rex1 and SSEA1, was not

affected, indicating that HP1c depletion did not induce the

spontaneous differentiation of ESC. The concomitant expression

of pluripotency and differentiation makers along with proliferation

defects show some similarities with the phenotype recently

described for another chromatin associated protein, the histones

acetyl transferase Tip60-p400 [13] that associates with Nanog.

Similarly shHP1c cells share some common features with the

reported phenotype of Nanog knockout ESC, which also remain

self-renewing but have a reduced proliferation rate and an

increased sensitivity to LIF privation [4,5,43]. This observation

suggests that like Nanog, HP1c may serve to block the transition

toward differentiation. Whether the low proliferation rate of HP1c
knocked-down ESC is the cause or the consequence of the

sporadic expression of differentiation genes is not elucidated here.

It cannot be excluded that HP1c contributes to the repression of

these differentiation genes. It is however intriguing that among the

restricted number of genes reproducibly misregulated by HP1c
knock down in ESC (less than 0.1%), a strong proportion is

associated with the control of cell proliferation and not with

differentiation, suggesting that the increased and sporadic

expression of differentiation markers in ESC is the indirect

consequence of the proliferation defect. It is of note that self-

renewal is controlled by the classical Oct4/Sox2/Nanog set of

transcription factors involved in differentiation blockage but also

by another group of genes that directly regulate targets involved in

cell cycle and cell survival [44]. This situation indicates that the

ESC proliferation rate probably results from the cumulative effect

of direct and indirect regulation pathways. The analysis of the

transcripts in early-differentiating ESC indicated that the depletion

of HP1c mostly amplifies the variations of genes expression that

are also targeted in control cells. In contrast, the genes specifically

misregulated by HP1c knock down during differentiation

represent a minority. This expression pattern reinforces the idea

that the function of HP1c is to block the commitment of ESC

toward differentiation.

Another important consequence of HP1c depletion in ESC is to

disadvantage differentiation toward the endoderm when com-

pared with the neuroectoderm and/or the mesoderm pathways

that in contrast were amplified. Further illustrating this bias, we

observed that in proliferating conditions, markers of the three

germ layers were detectable but only those of the neuroectoderm

and the mesoderm were sporadically increased in cells with low

level of HP1c. These results indicate that in addition to its role in

the balance between self-renewal and differentiation, HP1c is

required to manage the endoderm differentiation.

HP1 proteins are known to interact with numerous proteins,

being described as a docking platform for some transcription

factors [45]. In ESC HP1c is abundantly expressed and its

expression remains constant following differentiation induction,

supporting the existence of non-transcriptional mechanisms to

specify the different functions of HP1c in ESC and upon

differentiation such as post-translational modifications or the

interaction with distinct binding proteins. In embryonic carcinoma

cells the interaction between the transcription factor TIF1b and

HP1 proteins sustains endoderm differentiation and is essential for

late endoderm formation [46]. It can thus be assumed that the

interaction between HP1c and TIF1b accounts for the phenotype

described here on the orientation of differentiation.

To conclude, our results support the growing evidence that a

group of epigenetic regulators including HP1c, Tip60/p400 [13]

and Chd1 [12], are involved in the regulation of ESC properties

by acting on ESC selfrenewal and controlling the expression of

differentiation genes. The phenotype associated with HP1c
depletion is an intermediate between those described for the two

other proteins by two aspects. First, the supression of HP1c slows

down the cell cycle without decreasing the expression of

Figure 5. HP1c knockdown improves early differentiation of
ESC. The transcriptome of shN2 cells was compared to that of shCTR
cells using Affymetrix chip hybridization. RNA were isolated from cells
that were cultivated in the absence of LIF and in non-adherent
conditions to form embryoid bodies (EB) over the course of 36 hours. A.
RNA levels of the three pluripotent transcription factors measured by
real time PCR in the same RNA extracts that were compared by
microarrays analysis. B. Variation of genes associated with differentia-
tion are represented relative to the mean value obtained in
undifferentiated shCTR RNA. Upregulated expression is indicated in
red, downregulated expression is indicated in green; the variations
obtained from the three independent differentiation experiments are
represented.
doi:10.1371/journal.pone.0015507.g005
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pluripotency genes in ESC as described for Tip60/p400 [13];

second, the depletion of HP1c orientates the differentiation as

described for Chd1 [12]. Both Tip60/p400 and Chd1 recognize

methylated H3K4 that are associated with active genes [47] and

are abundantly represented in ESC chromatin [20] [21].

Differently from the two other chromatin binding proteins,

HP1c recognizes histone marks associated with heterochromatin

formation and gene silencing. The results presented here suggest

that pathways regulating the function of apparently antagonistic

epigenetic regulators converge to maintain ESC identity, notably

in their ability to give rise to a well-balanced pattern of

differentiation between the three germ lineages. Understanding

how HP1c is regulated to sustain specific functions will provide

insight into the underlying network.

Figure 6. HP1c deprivation of ESC specifies differentiation during embryoid bodies formation. The three shRNA cell lines (shN1, shN2
and shCTR) were induced to differentiate by embryoid bodies formation. Differentiation efficiency was assessed following the decrease of
pluripotency markers (purple). Transcript levels of markers representing the three germ layers (neuroectoderm in blue, mesoderm in red and
endoderm in green) were measured by RT-qPCR each day (d) after seeding. Results represented relatively to the value obtained in ESC (d0), are the
mean of duplicates +/2 SD from one experiment representative of two.
doi:10.1371/journal.pone.0015507.g006
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Materials and Methods

Plasmids and production of lentiviral vectors
The short hairpin (sh) lentiviral vectors used were Mission-

shRNA (derived from pLKO.1-puro) purchased from Sigma

(MISSIONH shRNA; Sigma-Aldrich, St. Louis). Self-inactivating

HIV-1-derived vectors were generated by the transient transfection

of 293T cells as previously described [48] using pCMV-G [49] and

pCMVdeR8.91 [50]. Viral supernatants were harvested 24 hours

after transfection and then filtered on 0.45 mm porosity filter.

ES cell culture, retroviral infection and differentiation
CGR8 mouse ESC were grown on gelatin coated dishes in

proliferation medium (Glasgow’s modified Eagle’s medium

supplemented with 10% fetal calf serum (FCV) (PerbioScience,

Berbieres, France), 10% of non essential amino acids (Invitrogen

Carlsbad, CA), 10% of sodium pyruvate (Invitrogen) and 1000 U/

ml LIF (Abcys, Paris, France).

For lentiviral infection, CGR8 cells were plated at a density of

2.105 cells per 4 cm dish and cultivated for 24 hours. The viral

supernatant was then added and ESC were cultivated for 24 hours

before selection by puromycin (1 mg/ml) (Invitrogen) for 4 days.

Resistant colonies were dissociated and pooled for amplification in

the presence of puromycin for 2 days before all analysis.

For retinoic acid (RA)-induced differentiation, 5.105 cells were

seeded per 4 cm dish. RA (Sigma Aldrich) was added at a final

concentration of 1027 M 24 hours after plating (referred to as day

0) in ES cells differentiation medium that is the same as

proliferation medium but without LIF and with 5% FCV.

For EB-induced differentiation, proliferating cells were seeded

in differentiation medium (final density 6.105 cells in 10 ml) and

allowed to float in non-adherent Petri dishes during the indicated

times.

Decreasing LIF concentration assay
Cells in exponential phase of growth were seeded at very low

density (104 cells in a 3.5 cm diameter dish) and cultured for 5 days

before alkaline phosphatase staining and analysis.

Detection of alkaline phosphatase activity
Cells were fixed for 30 min at 4uC (1.5% formaldehyde and

0.5% glutaraldehyde in PBS). After washes with PBS, the cells

Figure 7. Specification of ESC differentiation by HP1c deprivation is also observed in retinoic acid-induced cells. The three shRNA cell
lines (shN1, shN2 and shCTR) were induced to differentiate using retinoic acid. Differentiation efficiency was assessed following the decrease of
pluripotency markers (in purple). Transcript levels of markers representing the three germ layers (neuroectoderm in blue, mesoderm in red and
endoderm in green) were measured by RT-qPCR after 2 or 6 days of differentiation. Results represented relatively to the value obtained in ESC (d0),
are the mean of duplicates +/2 SD from one experiment representative of three.
doi:10.1371/journal.pone.0015507.g007

Role of HP1c in Embryonic Stem Cells

PLoS ONE | www.plosone.org 9 November 2010 | Volume 5 | Issue 11 | e15507



were stained using a diluted solution of NBT/BCIP (Roche)

prepared according to the manufacturers’ instructions. Colonies

were observed and counted using an inverted microscope (Axovert

135, Zeiss).

Measurment of cell proliferation by BrdU incorporation
assay

ES cells were seeded in 96-well dishes at a density of 26103

cells/well and cultivated overnight to obtain 40% confluence.

BrdU from the ELISA BrdU kit (Roche Applied Science, Basel,

Switzerland) was added to the wells for the last 8 hours of culture.

BrdU incorporation was measured by colorimetry according to the

manufacturer’s instructions.

Cell cycle analysis
Exponentially growing ESC were refed with fresh medium and

incubated for 2 hours. BrdU was then added at a final concentration

of 50 mM and the cells were incubated for 40 minutes. The cells

were trypsinised and 5 million of them were fixed and labeled with

propidium iodide and anti-BrdU antibody as described [51]. Flow

cytometry analyses were performed using FACS (FACScalibur 4C +
HTS; BD Biosciences). Data acquisition was performed using the

CellQuest Pro software (BD Bioscience).

Cell death detection
The cells were cultivated overnight. The supernatant was

removed and the cells were dissociated using trypsine/EDTA

(Invitrogen). After centrifugation and washing with PBS, Annexin

V labeling (Bender Med Systems) was performed according to the

manufacturer’s instructions. Just before analysis by flow cytometry

BrdU was added at a final concentration of 1 mg.mL21.

Detection of Stem Cell-Specific Embryonic Antigen-1
expression

Dissociated cells were labeled using PE-labeled anti-SSEA1

antibody (anti-SSEA1-phycoerythrin, R&D Systems Inc., Min-

neapolis) applied for 45 min on ice. After washing, the fluorescence

intensity was determined by flow cytometry.

Measurment of the Brachyury promoter activity
The cells were infected with a lentivirus containing a GFP

transgene under the control of the Brachyury gene promoter

(Brachyury-eGFP, Addgene). After one week of culture, the cell

line was transduced with short hairpin vectors directed against

HP1c (N1 and N2) or control. Transduced cells were selected by

culture in the presence of puromycin for a week before analysis by

flow cytometry.

Real Time Quantitative Polymerase Chain Reaction
(RT -QPCR)

RNA was extracted using an RNeasy kit with on-column DNase

digestion, according to the manufacturer’s recommendations

(Qiagen, Hilden, Germany). Reverse transcription was carried

out with 1 mg of RNA and SuperScript II (Invitrogen) according to

the manufacturers’ recommendations.

Real-Time PCR was performed using the MXP-300P PCR-

system (Stratagene, Amsterdam, Netherlands) and Mix-Quantitect

SYBR Green (Qiagen, Hilden, Germany) as reagent. Regimens of

40 cycles at 95uC for 30 seconds, at 55uC for 1 minute and 72uC
for 30 seconds were applied. Samples were run in duplicate and

gene expression levels were calculated using Delta Delta Ct

(http://www.gene-quantification.info/) normalized with the

mouse 40S ribosomal protein S17 as housekeeping gene. The

number of independent experiments performed is indicated in

each figure legend.

Oligonucleotide sequences
The oligonucleotide primers for PCR, listed in Table 2, were

designed using the Primer3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_results.cgi) and were purchased from

MWG (Eurofins MWG Operon, Ebersberg, Germany). Qiagen

Quantitec primers (Qiagen) were used for the RT-qPCR

validation of cell growth-associated gene (Table S1).

Western blots
Cytoplasmic proteins separated on 10% SDS-polyacrylamide

gels were transfered on Hybond ECL membranes (GE Health-

care). Blots were submitted to Western analysis using the following

antibodies: anti-HP1c (clone 2MOD-1G6AS, Euromedex), anti-

Oct-3/4 (clone H-134, Santa Cruz Biotechnology), anti-Nanog

(ab-21603, Abcam), anti-b tubulin (clone TUB2.1, Sigma).

Affymetrix GeneChip Assays
Experimental design. Three completely independent

experiments were carried out, with three independent infections,

cell cultures and EB experiments.

Processing of RNA. Biotinylated antisense cRNA for

microarray hybridization was prepared using the GeneChipH
One-Cycle target labeling kit and procedures from Affymetrix

(Santa Clara, CA, USA). cRNA quantification was performed with

Figure 8. HP1c protein level remains constant during ESC
differentiation. ESC cells were induced to differentiate using 100 nM
retinoic acid for 1 to 8 days (upper figure) or by embryoid bodies
formation for 1 to 5 days (lower figure). The expression of the HP1c,
Oct4 and Nanog proteins were observed by western blot. Beta-tubulin
was used as a protein loading control.
doi:10.1371/journal.pone.0015507.g008
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a Nanodrop and quality checked with an Agilent 2100 Bioanalyzer

(Agilent technologies, Inc, Palto Alto, CA, USA).
Array hybridization and scanning. Microarray analyses

were performed using high-density oligonucleotide arrays (Mouse

Genome 430 2.0 Array, Affymetrix). Biotinylated cRNA (15 mg)

was fragmented and hybridization on the chip was performed

following the Affymetrix protocol (http://www.affymetrix.com).

Washing and staining were performed in a Fluidics Station 450

(Affymetrix). The arrays were scanned with a confocal laser

(Genechip Scanner 3000, Affymetrix) and analysed with

Expression Console Software (Affymetrix).
Microarray data analysis. The results were filtered using

Genespring 7.3.1 (Agilent). A first selection of genes was

performed by pairwise comparisons between shCTR and shN2

(table 1) or between shCTR, shN2, shCTR-EB36h and shN2-

EB36h (Figure 5). Each sample from one group was compared

with each sample from the other group, and only genes showing a

fold change $1.8 between groups were retained. A gene was

considered differentially expressed only if it met the above criteria

in all pairwise comparisons and if the detected signal was above

the background in at least one of the compared groups, thereby

carrying a statistically significant absolute call of ‘present’ or

‘marginal’ in all samples.

A list of genes associated with differentiation was generated with

MedscanReader 2.2 (Ariadne Genomics) and Pathway Studio 6.2

(Ariadne Genomics) software that enables the automated extraction

of information from scientific text (list displayed as supplementary

data). Genes that were differentially expressed or common to the

generated list were clustered into a tree based on Pearson

correlation with the average linkage used as a clustering algorithm.

Microarray validation by RT-qPCR. To validate the

results of the microarray analysis, seven genes of biological

significance were subjected to RT-qPCR and their expression

levels were measured (Table S2).

All microarray data is MIAME compliant and the raw data has

been deposited in Array Express at http://www.ebi.ac.uk/

microarray-as/ae/. Accession number is E-MEXP-2238.

Supporting Information

Table S1 Validation of microarray fold change by RT-qPCR

for genes associated with cell growth. (RTF)

Table S2 Microarrays validation by RT-qPCR. (RTF)

File S1 List of the genes displayed in Figure 5B. (RTF)
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Table 2. Oligonucleotide primers used in QPCR experiments.

Gene Sense Antisense

Brachyury CCGGTGCTGAAGGTAAATGT CCTCCATTGAGCTTGTTGGT

Cbx1 GTCAAGGGCAAGGTGGAATA CCTCGTGGCTTTTCTGACTC

Cbx3 GAGATGCTGCTGACAAACCA GCTCCTCGTAGAAGGCAATG

Cbx5 TCTGTCATTGCCACTTGAGC CCCTTCCTTCACCACTGTGT

Cxcr4 TCCTGCCCACCATCTACTTG CTTTTCAGCCAGCAGTTTCC

Eomes GGCAAAGCGGACAATAACAT AGCCTCGGTTGGTATTTGTG

Fgf5 CGCTTTGACTGGAACTAAAC GAATGCTAACCATCCTCAAA

Flk1 GTAAAAGCAGGGAGTCTGTG GTGGTGGAAAGAACAACACT

Foxa2 TGGTCACTGGGGACAAGGGAA CTGCAACAACAGCAATAGAGAACAAC

Gata4 CTGTGCCAACTGCCAGACTA GCATCTCTTCACTGCTGCTG

Gata6 ACAGCCCACTTCTGTGTTC TGGGTTGGTCACGTGGTACA

Hnf1 GATGTCAGGAGTGCGCTACA CTGAGATTGCTGGGGATTGT

Mixl1 GCACGTCGTTCAGCTCGGAG GTCATGCTGGGATCCGGAACGTG

Musashi1 CGGGGAACTGGTAGGTGTAA ATGCTGGGTATTGGGATGCT

Nanog AAGTACCTCAGCCTCCAGCA GTGCTGAGCCCTTCTGAATC

Nestin GAAGACCAGCAGGCGTTTAG TCCTCTGCGTCTTCAAACCT

Oct4 CACGAGTGGAAAGCAACTCA AGATGGTGGTCTGGCTGAAC

Pdgfr a CAAGAGAGTGACTGGCCACA CGGTTCCAGTACCTTCCAAA

Rex1 CGTGTAACATACACCATCCG GAAATCCTCTTCCAGAATGG

Rs17 ATGACTTCCACACCAACAAGC GCCAACTGTAGGCTGAGTGAC

Sox1 CACAACTCGGAGATCAGCAA GTCCTTCTTGAGCAGCGTCT

Tbx2 CGAGGAGTCAGTCTATCCAG ACCTCTACCCTATGCACCTT

doi:10.1371/journal.pone.0015507.t002
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