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Abstract
Background: Current classification of protein folds are based, ultimately, on visual inspection of
similarities. Previous attempts to use computerized structure comparison methods show only
partial agreement with curated databases, but have failed to provide detailed statistical and
structural analysis of the causes of these divergences.

Results: We construct a map of similarities/dissimilarities among manually defined protein folds,
using a score cutoff value determined by means of the Receiver Operating Characteristics curve.
It identifies folds which appear to overlap or to be "confused" with each other by two distinct
similarity measures. It also identifies folds which appear inhomogeneous in that they contain
apparently dissimilar domains, as measured by both similarity measures. At a low (1%) false positive
rate, 25 to 38% of domain pairs in the same SCOP folds do not appear similar. Our results suggest
either that some of these folds are defined using criteria other than purely structural consideration
or that the similarity measures used do not recognize some relevant aspects of structural similarity
in certain cases. Specifically, variations of the "common core" of some folds are severe enough to
defeat attempts to automatically detect structural similarity and/or to lead to false detection of
similarity between domains in distinct folds. Structures in some folds vary greatly in size because
they contain varying numbers of a repeating unit, while similarity scores are quite sensitive to size
differences. Structures in different folds may contain similar substructures, which produce false
positives. Finally, the common core within a structure may be too small relative to the entire
structure, to be recognized as the basis of similarity to another.

Conclusion: A detailed analysis of the entire available protein fold space by two automated
similarity methods reveals the extent and the nature of the divergence between the automatically
determined similarity/dissimilarity and the manual fold type classifications. Some of the observed
divergences can probably be addressed with better structure comparison methods and better
automatic, intelligent classification procedures. Others may be intrinsic to the problem, suggesting
a continuous rather than discrete protein fold space.
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Background
A protein fold is often defined by the number, direction in
space and connectivity (or topology) of its secondary
structural elements[1] (alpha helices and beta strands). In
two major fold databases, the definition of a fold is itself
partially ambiguous. In SCOP[2], the definition is "same
major number and direction of secondary structures with
a same connectivity", without quantification of the term
"major". In CATH[3], it is "overall shape and connectivity
of the secondary structures", without a precise definition
of "shape", although there is a degree of quantitation in
this case since a structure comparison score is used to clus-
ter domains in the same fold family. These "soft" defini-
tions are required by the observed variations in the
structures between proteins of identical biochemical func-
tion as amino acid sequence identities fall below 40%[4].

The situation is complicated by the presence of domains
in protein structures. Their identification and delineation
are not straightforward. Nevertheless, to have a better
understanding of the effect of discrete classification as a
description of the fold space, we analyzed the SCOP
domain classification using two structure comparison
methods applied directly to these domains. Numerous
structure comparison methods exist [5-19] and some of
them have been used to conduct such analyses. Shapiro &
Brutlag[14], Ye & Godzik[17] and Kolodni et al[20] used
the Receiver Operating Characteristic (ROC) curve[21,22]
and Sierk & Pearson[23] a variant of it, mainly to compare

their own method with other methods, using SCOP or
CATH as the gold standard. Getz et al[24] devised an opti-
mization algorithm to automatically classify new
domains into existing SCOP folds or CATH topologies.
They did not use the ROC curve, and only present the pair-
wise similarity score matrix. They also noted the existence
of folds which are in twilight zone and difficult to classify.
Hadley & Jones[25] and Day et al[26] compared 3 classi-
fications: SCOP, CATH and FSSP ranging from completely
manual to entirely automatic. They give the coverage, i.e.
the percentage of pairs that are common between the 3
classifications, the percentages of pairs that are common
to all 3 methods. Hadley and Jones[25] in their analysis
briefly described a few examples of structural discrepan-
cies between the automatic method FSSP and the manual
and semi-manual SCOP and CATH classifications.

Here we use two structure comparison methods which are
based on different principles and with which we are famil-
iar. One, VAST[5,6], is based on only secondary structure
elements in its first stage of comparison while the other,
SHEBA[16], uses the amino acid sequence along with
other structural properties of each residue in its initial
step. We first construct the ROC curves using the SCOP
fold definitions. We then generate the confusion matrix
that results after setting a score cutoff value determined
from the ROC curves. We analyze various aspects of this
matrix to understand and extract the main properties of
the fold space which cause the divergence with the auto-
matic similarity assignment and the manual SCOP classi-
fication. Although some of the previous
works[14,17,20,23-28] cover portions of what we
describe here, none, as exhaustively analyzes and lists the
fundamental mechanisms that produce the observed
divergences.

Results
ROC curves
The ROC curves of each method show that both VAST and
SHEBA are generally successful in detecting when two
domains are in the same SCOP fold (Figure 1). The ROC
AUC (see Methods) is 0.93 for SHEBA, and 0.90 for VAST,
indicating that SHEBA recognizes SCOP folds slightly bet-
ter than does VAST. Also, the SHEBA ROC curve is above
the VAST ROC curve at every point; there are no points of
crossing, indicating that SHEBA is uniformly better than
VAST at this recognition task. The ROC curve we present is
actually an average of the curves obtained for each indi-
vidual SCOP fold-recognition problem using a common
cutoff value for all problems. For certain individual prob-
lems, VAST may dominate SHEBA or vice versa.

An optimal cutoff value for the binary decision of similar-
ity can be determined from the ROC curve either by spec-
ifying the desired FPR (False Positive Rate, see Methods)

ROC CurvesFigure 1
ROC Curves. ROC curves of VAST (dotted line) and 
SHEBA (solid line) obtained by plotting the True Positive 
Rate (TPR, eq. 1, see Methods) against the False Positive Rate 
(FPR, eq. 2, see Methods). Area Under the Roc Curve (AUC) 
for VAST is 0.90, AUC for SHEBA is 0.93.

SHEBA AUC = 0.93

VAST AUC = 0.90
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or by specifying the desired TPR (True Positive Rate, see
Methods). To reach a 1% FPR, the corresponding cutoff
value is 2.5 for Pcli and 2.7 for Zscore (see Methods), with
corresponding TPR values of 61.6% and 74.8% for VAST
and SHEBA, respectively.

Confusion matrix heat maps
Figure 2 shows the confusion matrix heat maps. An entry
(i, j) of each matrix indicates the fraction of pairs of
domains, one from each folds i and j, that are judged to be
similar by the automatic similarity detection method
using the cutoff value that produces 1% FPR. These maps
constitute the basis for the analysis of the properties of the
methods and the fold definition, conducted below. For
high resolution heat maps of VAST and SHEBA, [See Addi-
tional file 1].

Neither the VAST nor the SHEBA heat map is strictly sym-
metric (Figure 2); the computed similarity measure
depends on which domain is used as query and which as

target. SHEBA gives a substantially more asymmetric heat
map than VAST. Out of the total of M*(M-1) =
21,860,300 domain pairs (excluding identity pairs) on
which the heat map is based, VAST and SHEBA have
11,007 and 189,551 asymmetric pairs, respectively. A
domain pair similarity score is considered asymmetric if
its similarity score exceeds the cutoff value in one compar-
ison, but does not when the query and target structures are
exchanged.

VAST uses an heuristic algorithm to find the maximal
clique so the comparison of domain A with B may not
select the same clique as the comparison of B with A when
there are several near maximal cliques. The result is a
slight asymmetry in the Pcli Score. The more noticeable
asymmetry manifest by SHEBA is due to the Zscore com-
putation which uses the average and the standard devia-
tion of the distribution of m-scores between a fixed query
domain and all other domains in the database, making
the m-score distribution dependent on which domain, A

Confusion matrix heat mapFigure 2
Confusion matrix heat map. Confusion matrix heat map for VAST with a Pcli cutoff value of 2.5 and for SHEBA with a 
Zscore cutoff value of 2.7. The cutoffs correspond to an overall average FPR of 0.01, and result in an overall average TPR of 
0.616 and 0.748 for VAST and SHEBA respectively. The x (target folds) and y (query folds) axes of the heat maps are labeled by 
the SCOP folds, grouped into classes A, B, C, D, E, F and G. Each class is delimited by a vertical line (for the x axis) and a hor-
izontal line (for the y axis). Each pixel within the heat maps represents a fold-specific true or false positive rate and takes value 
between 0 and 1. Diagonal and off-diagonal pixels correspond to fold-specific true positive rate TPRi(c) (eq. 4, see Methods) and 
fold-specific false positive rate FPRi,j(c) (eq. 3, see methods) respectively. To improve the visibility of the heat maps, rates 
between 0 and 0.2 are represented in grey scale where white corresponds to a rate of 0 and black to a rate at or above 0.2. 
For high resolution heat maps of VAST and SHEBA, [See Additional file 1].
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or B, is declared the query domain. Since the average m-
score similarity of a query domain A to the database may
depend on parts of A which are not matched to B, the aver-
age similarity of B to the database might be quite different.
Hence the Zscore becomes asymmetric.

False negatives
The true positive rate varies with fold class, as illustrated
in Figure 3. SCOP similarity detection differs widely
among folds within a class and between the two methods.
We now seek explanations of this variation.

About 40% of the folds (216) achieve a fold specific true
positive rate (TPRi) above 0.85 for both methods. All
classes are nearly proportionally represented in this set.
For the exhaustive list of TPRi obtained by each SCOP fold
with VAST and SHEBA, [See Additional file 2].

To investigate why some domain pairs in the same SCOP
fold are not detected as similar, we look at such domain
pairs that belong to the same SCOP fold and for which the
Pcli and Zscore values are below 1 and 1.6, respectively.
These low cutoff values correspond to a FPR of 5%, and

Distribution of true positive ratesFigure 3
Distribution of true positive rates. Distribution of fold specific true positive rates within each SCOP class (A to G) for 
VAST and SHEBA. TPRi (eq. 4, see Methods) are obtained using same cutoff values as in Figure 2. The scale of the y axes for 
VAST and SHEBA distributions are the same within fold class. Histogram bar height represents the number of folds for a given 
range of TPRi. The x axis is divided in 20 bins. The class-specific average TPRi is reported within each subplot. For the list of TPRi 
obtained by each fold, with VAST and SHEBA, [See Additional file 2].
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are chosen to exclude from consideration any borderline
cases with computed similarity near but just below the
original cutoffs. For all classes A to G, a total of 144 folds
contain such extreme false negative domain pairs with 36
in A, 30 in B, 30 in C, 36 in D, 2 in E, 5 in F and 5 in G.
The complete list of these folds is provided in Table 1.

Detailed analysis of these false negative pairs highlights
some common factors which explain the varying success
of automated methods in detecting the similarity among
domains in a SCOP fold. Most of the false negatives can
be explained by structural variation within a fold and to a
lesser extend by structures made of repeating units.

Structural variation of the common core
In many cases, the structure of the common core[29] of a
fold varies significantly from one domain to the next in
the same SCOP fold. We observe this phenomenon in
folds across all SCOP classes. Many of the extreme false
negative domain pairs described above are examples of
such cases. Figure 4 shows the three domains, d1c5ch2
(a), d1akjd_ (b), and d1pama1 (c), from fold b.1. The
similarity for pairs (a, b) and (b, c) is detected by both
VAST and SHEBA, while it is not for the pair (a, c). The rel-
ative orientations between the beta sheets which form the
beta sandwich, in domains (a) and (c) vary from those in
domain (b). This variation is important enough, with
regard to thresholds admissible by VAST and SHEBA, to
make superposition of the structures (a) and (c) difficult,
and to prevent a similarity detection. This results in a loss
of transitivity for automatic similarity detection.

Structures made of repeating units
Automated similarity detection methods do not necessar-
ily consider two structures similar if they contain the same
simple structural motif but with a different number of
repeats. The SCOP fold a.118 provides an extreme exam-
ple. It is defined by domains that are comprised of
repeated occurrences of a helix-loop-helix motif[30]. The
number of occurrences of the helix-loop-helix motif varies
greatly and is unspecified by the fold definition. Figure 5
shows three members in this fold and gives their pairwise
similarity scores assigned by SHEBA and VAST. The
d1qbkq_ (c) domain contains many repeats and is much
larger (888 residues) than d1a17_ (a) and d1ku1a_ (b)
domains (159 and 211 residues, respectively). Since both
VAST and SHEBA look for global similarity, and since
d1a17_ or d1kula_ would match at best only a small part
of d1qbkq_, they yield the low Pcli and Zscore values. Size
difference does not account for the low score between
domains d1a17_ and d1ku1a_. Here, the reasons are that
the helices of the repeated motifs vary in length and that
the relative orientation of each motif varies between the
structures. Thus, a multiple occurrence of locally similar
motifs between two domains does not always produce a
high global similarity score.

Decoration of the common core by many secondary structure 
elements
Occasionally two proteins in the same SCOP fold share a
common core but are different in overall shape. An
extreme example is shown in Figure 6 for the domain pair
d1e9ga_ and d1enfa1 in the fold b.40. They both contain

Table 1: Folds having domain pairs with undetected similarity by both VAST and SHEBA.

Class List of folds

A a.4(1576/13572), a.118(777/2550), a.39(282/1640), a.60(238/812), a.138(166/272), a.24(77/930), a.1(62/930), a.2(47/272), a.100(39/90), 
a.25(37/182), a.3(37/992), a.29(25/132), a.26(20/650), a.23(10/20), a.28(10/72), a.69(9/20), a.7(9/342), a.93(8/42), a.102(7/600), a.112(4/20), 
a.127(4/30), a.35(4/110), a.61(4/30), a.5(3/90), a.55(3/20), a.74(3/272), a.116(2/20), a.126(2/30), a.133(2/20), a.137(2/6), a.64(2/20), a.128(1/
42), a.144(1/12), a.27(1/72), a.48(1/6), a.6(1/42).

B b.1(2973/57840), b.40(1382/7482), b.34(436/2652), b.82(341/930), b.10(323/1640), b.2(164/702), b.29(163/1056), b.85(91/156), b.43(69/
702), b.84(49/182), b.30(32/110), b.50(16/132), b.18(14/552), b.13(12/110), b.35(11/72), b.7(11/182), b.19(10/30), b.6(8/1406), b.80(8/110), 
b.92(7/56), b.3(6/110), b.60(6/420), b.106(5/6), b.52(4/132), b.49(3/12), b.58(3/20), b.21(2/6), b.45(2/12), b.53(2/6), b.83(2/2).

C c.37(6218/14762), c.1(1152/32942), c.55(929/2756), c.26(255/1722), c.52(228/506), c.2(197/9702), c.23(161/4160), c.69(92/2550), c.94(90/
600), c.66(87/1190), c.56(38/552), c.47(17/2550), c.58(16/110), c.92(16/110), c.3(13/2070), c.10(12/306), c.53(12/72), c.8(12/90), c.14(9/
110), c.51(9/156), c.72(6/210), c.43(4/42), c.61(3/272), c.36(2/342), c.19(1/6), c.63(1/20), c.78(1/132), c.87(1/30), c.9(1/2), c.97(1/12).

D d.58(2052/17556), d.92(235/552), d.3(221/380), d.142(164/380), d.15(104/3080), d.169(74/552), d.26(74/306), d.17(59/552), d.81(54/210), 
d.153(49/600), d.166(42/90), d.211(40/132), d.144(33/650), d.110(26/306), d.129(23/182), d.68(23/90), d.2(22/132), d.14(14/240), d.79(14/
210), d.108(12/210), d.16(12/182), d.87(10/156), d.4(8/12), d.104(5/210), d.109(4/182), d.122(4/110), d.143(4/6), d.41(4/90), d.67(4/20), 
d.10(3/20), d.50(3/72), d.184(2/2), d.52(2/90), d.18(1/2), d.74(1/56), d.82(1/6).

E e.8(110/182), e.26(3/6)
F f.1(58/110), f.4(46/182), f.21(12/42), f.23(5/20), f.7(4/6).
G g.3(357/1406), g.41(96/420), g.15(5/90), g.17(4/132), g.39(2/132).

Folds from classes A, B, C, D, E, F and G are reported in rows labeled by the name of the class. Reported folds within a given class are ordered by 
decreasing number of domain pairs with undetected similarity they contain. The number of such pairs within a fold and the total number of pairs are 
indicated for each fold in parenthesis. Similarity between domains of a pair was considered undetected when their Pcli and Zscore were below the 
5% FPR cutoffs of 1 for Pcli and 1.6 for Zscore.
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a beta barrel, but the beta barrel in domain d1e9ga_ is
only a small part of its entire structure. A match between
this domain and domain d1enfa1, based on the conserved
common core is thus not found sufficient to consider
them to be similar by the automatic pair-wise structure
comparison methods.

Miscellaneous cases
Some folds, such as fold d.184 or a.138, are described in
SCOP as including a variety of structures. We also note the
existence of several ambiguous fold definitions leading
necessarily to a low TPRi. For instance, fold c.37 whose
SCOP description is "3 layers: alpha/beta/alpha, parallel
or mixed beta-sheets of variable sizes", can probably be
split into at least 2 folds. We also spotted what appears to
be a bookkeeping error by SCOP. Domains d1kkea2 and
d1qiua2 of fold b.83 were not found to be similar either
by VAST or SHEBA. The protein 1kke has two domains,
which belong to two different folds. The N-terminal
domain (residues 250–312) forms an extended structure
belonging to the SCOP fold b.83 ("Triple beta-spiral").
The C-terminal domain (residues 313–455) forms a beta
barrel belonging to the SCOP fold b.21 ("Virus attach-
ment protein globular domain"). In SCOP and in the
Astral database, the domain d1kkea1, which consists of
the residues 250–312, is placed in the b.21 fold and
d1kkea2, which consists of residues 313–455, is placed in
the b.83 fold.

Differences between VAST and SHEBA
There are 27 folds with a TPRi below 0.05 by VAST yet
above 0.9 by SHEBA. They are a.16, a.37, a.38, a.97,
a.115, a.121, a.130, a.158, a.159, b.76, c.107, d.6, d.83,
d.88, d.101, d.118, d.175, f.10, f.14, f.17, g.14, g.22, g.24,
g.38, g.49, g.50, g.53. These are mainly small folds with
only 2 domains each. No fold has been identified with a
TPRi less than 0.05 by SHEBA but above 0.9 by VAST.
Additionally, the class specific true positive rates reported
in Figure 3, shows an important difference between VAST
and SHEBA in the A class (0.37 for VAST and 0.74 for
SHEBA).

Some of the differences observed between VAST and
SHEBA are related to the calculation of the scoring func-
tion in VAST (see Appendix, Calculation of Pcli), and to
the fact that structures sharing fewer than 3 secondary
structure elements (SSEs) are often judged not significant
by VAST. This latter factor also affects true positive rates
computed by VAST in the A class, where the TPRi averages
only 0.2 for folds with 2,3 or 4 SSEs, but rises to 0.7 when
the fold has about 9 or more SSEs (data not shown). But
at least one case could not be explained by the issue of the

Repeat of a structural motif within fold a.118Figure 5
Repeat of a structural motif within fold a.118. The 
color scheme is the same as in Figure 4. Structures of 
domains (a) d1a17_, (b) d1kula_ and (c) d1qbkb_ from fold 
a.118 (alpha-alpha superhelix, multihelical; 2 (curved) layers: 
alpha/alpha; right-handed superhelix). Domains have 159 res-
idues and 7 helices, 211 residues and 10 helices, and 888 res-
idues and 48 helices, respectively. The VAST similarity score 
Pcli assigned to the domain pair (a) and (b) is -2.3, to (a) and 
(c) is -3, and to (b) and (c) is -8. The SHEBA Zscores are 
respectively 1.8, 1.3, and 1.3. The negative values reported 
for the Pcli should be interpreted as values very close or 
equal to zero (no similarity), and resulted from the use of an 
approximation for the computation of Pcli.

a

b

c

Structural variations within fold b.1Figure 4
Structural variations within fold b.1. Domains (a) 
d1c5ch2, (b) d1akjd_, and (c) d1pama1 belong to the fold b.1 
(Immunoglobulin-like beta-sandwich; 7 strands in 2 sheets 
greek-key, some members of the fold have additional 
strands). Domain pair (a) and (b) have Pcli = 4.7 and Zscore = 
3.09; domain pair (b) and (c) have Pcli = 4.2 and Zscore = 3.34; 
and domain pair (a) and (c) have Pcli=-0.5 and Zscore = 0.11. 
Domains d1c5ch2, d1akjd_, and d1pama1 have 103, 114, and 
86 residues, respectively. The helices are colored in green, 
the strands in red, and the other regions in blue. This and all 
other structure figures were prepared using Pymol [43].

a b c
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Pcli calculation. Domains d1h8pa1, d1l6ja3, d1pmla_,
d2hpqp_and d2pf1_1, of fold g.14 defined as a disul-
phide-rich fold, scored low in VAST similarity but surpris-
ingly high by SHEBA. These domains have particularly
small SSEs, distributed sparsely over the backbone of the
structure. It is quite understandable that VAST which relies
on the SSEs, finds low similarity among them. It was also
observed that pairs for which SHEBA Zscore was high also
had a higher level of sequence homology than those for
which the SHEBA Zscore was low (data not shown). This
indicates that SHEBA benefited by using the sequence
homology in finding the initial alignment (see the Meth-
ods).

False positives
The off-diagonal pixels in the heat maps, on Figure 2, rep-
resent fold pairs having a non-zero fold-specific false pos-
itive rate FPRi,j. The confusion made by each method has
different characteristics, shown by the difference in the
distribution of the dark areas. There are a relatively small
number of pixels between classes. In contrast, confusion
within each class varies with the method and can be high.

The main confusion is within classes B, C and D, with
respectively 37 folds out of 78 within B class, 80 folds out
of 94 within class C, and 53 folds out of 139 within class
D, involved in some type of confusion. VAST does not
show a noticeable level of confusion within classes A, and
F, although SHEBA does. The relatively high A-class con-
fusion level for SHEBA is probably related to its use of the
dynamic programming algorithm, without gap penalty, in
finding the best alignment between a pair of superim-
posed structures[16].

Besides these global observations, more specific confu-
sion trends can be determined by analyzing the predomi-
nant confusion patterns shown by the heat maps.

Intraclass confusion
Confused folds occur mainly near the diagonal of the
sorted heat map, as a result of the hierarchal clustering
and re-ordering of the folds within each fold class (see
Methods).

Table 2 reports a number of clusters of confused folds
within classes A, B, C and D common to VAST and SHEBA.

Confused folds in the A class include helix bundles of
either identical or a similar number of helices in similar
relative orientations. Examples are reported in Table 2,
rows 1, 2 and 3. The close similarity of some domain
pairs, for example d1m7ka_ and d1hs7a_ belonging to
folds a.7 and a.47, respectively, indicates that these "con-
fusions" appear to be cases wherein SCOP includes con-
siderations other than purely structural similarity/
dissimilarity.

Figure 7 illustrates clusters of confused folds within class
B, which are found in both the VAST and SHEBA heat
maps. There are two large clusters of confused folds in Fig-
ure 7. The darkest area covers the five beta-propeller folds
(Table 2, row 4), with each fold containing different
number of blades ranging from 4 to 8. These tend to be
highly confused with each other, more by SHEBA than by
VAST. Figure 8 shows domains d1gyha_ (a) and d1loqa2
(b) from folds b.67 and b.69 respectively. Since the 7
bladed beta-propeller domain can have up to 5 blades
common with the 5 bladed beta-propeller domain, pairs
of domains from these separate folds tend to have a high
similarity scores.

The next cluster of five folds in Figure 7 (Table 2, row 5),
includes all beta sandwich immunoglobulin-like folds,
with 7, 8 or 9 strands in 2 sheets with a Greek-key topol-
ogy. Their confusion is caused by the sharing of the motif
of the beta sandwich of the common core. Others con-
fused sets of folds in the B class also involve mainly beta
sandwich folds (Table 2, rows 6, 9, and 12), or beta barrel
folds (Table 2, rows 7, 8, 10 and 11). The confusion
among domains of these clusters of folds is similarly
caused by a common beta sandwich or beta barrel motif.
In the B class, where folds defined by the beta barrel or the
beta sandwich motifs are frequent, confusion among
folds of either motif is frequent as well.

A large common confusion pattern among folds appears
at the bottom right corner of the C class area of the heat
map (Figure 2). A highly confused set, Table 2 row 17,
from this large confused area consists of 3 layer alpha/

Decoration of a common coreFigure 6
Decoration of a common core. Structures of domains 
d1e9ga_ (a) and d1enfa1 (b) of SCOP fold b.40 (barrel, 
closed or partly opened n = 5, S = 10 or S = 8; greek-key). 
Color scheme is the same as in Figure 4. Domain (a) has 284 
residues, and (b) has 100 residues. Pcli and Zscore values 
assigned by VAST and SHEBA to this pair are 0.1 and -1.3, 
respectively.
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Sets of confused 
folds, S

Number of 
domains in S

Sheba 
FPRS (%)

Sheba 
TPRS (%)

Sheba FPRS/
TPRS (%)

Vast 
FPRS (%)

Vast 
TPRS (%)

Vast FPRS/
TPRS (%)

Explanation for confusion

1 a.28, a.39 50 29 57 51 10 16 64 4 helix bundle up-and-down (a
Confusion is caused by match 
mostly by SHEBA.

2 a.46, a.52 9 45 97 46 7 36 20 4 helix bundle left and right-ha
super helix folds. Confusion is 
Folds confused mostly by SHEB

3 a.47, a.7 24 87 88 98 8 20 40 3 helix bundle (a.7) and 4 helix
very similar structure. Folds co

4 b.68, b.69, b.66, 
b.67, b.70

45 92 98 94 40 83 48 Beta-propellers (repetitive 4-st
depending on the fold. Confusi
blades among domains of these

5 b.1, b.2, b.3, b.7, 
b.12.

297 19 66 29 32 68 48 Beta sandwich folds of 7, 8, 9 s
motif causing the confusion am
matched between domains of t

6 b.24, b.71 24 69 97 72 27 93 29 Sandwich fold, with 10 strands
(b.24), and folded sheet with G
parts of the sheets of the comm

7 b.60, b.61 30 63 90 70 57 78 74 Closed barrel, with meander to
between barrel motifs of the c

8 b.43, b.49, b.58, 
b.44

39 42 71 59 32 72 44 Folds of closed barrel with Gre
substantial part of the barrel co

9 b.107, b.4 4 100 100 100 25 100 25 Sandwich fold (b.4), and closed
good match between a deform

10 b.34, b.38 62 69 67 103 19 49 39 Barrel folds, with meander top
between the barrel common c

11 b.38, b.56 12 52 100 52 65 93 70 Open barrel (b.38) and closed 
match of the barrel.

12 b.10, b.19, b.13, 
b.18, b.22, b.23

91 42 76 55 16 54 29 Folds with common core moti
or 10 strands depending on the
among these folds is caused by
common core.

13 c.1, c.6 185 62 75 83 78 87 90 TIM barrel (c.1) and variant of 
barrel (c.6) folds. Confusion is 
barrel.

14 c.8, c.98 14 50 75 68 30 54 56 3 layer beta/beta/alpha (c.8) an
is caused by the match betwee

15 c.84, c.95 19 65 91 71 55 92 60 3 layer alpha/beta/alpha of 4 st
of the 3 layer alpha/beta/alpha 

16 c.101, c.73, c.27 7 11 100 11 49 100 49 3 layer alpha/beta/alpha folds, w
Confusion is caused by the ma
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17 c.100, c.28, c.25, 
c.24, c.30, c.78, 
c.108, c.116, 
c.31, c.114, c.3, 
c.4, c.49, c.59, 
c.16, c.57, c.44, 
c.48, c.2, c.33, 
c.32, c.34, c.23, 
c.62, c.65, c.5

334 24 80 31 51 92 56 3 layer alpha/beta/alpha folds, w
of the fold. 3 layer beta/beta/al
among 3 layer alpha/beta/alpha
beta/alpha common core. Con
beta/alpha is caused by the mat

18 d.13, d.173 7 26 93 28 43 86 50 Fold containing the 3 layer alph
fold containing a common core
(d.173). Confusion caused by t

19 d.65, d.67 7 47 46 102 60 64 93 2 layer alpha/beta sandwich fol
alpha/beta sandwich common c

20 d.181, d.212 5 50 60 83 17 60 28 Folds containing beta-alpha-bet
alpha/beta layers.

21 d.10, d.50 14 34 66 51 40 61 66 2 layer alpha/beta folds. Confu
common cores.

22 d.140, d.68 12 34 68 51 40 52 77 Fold with 2 layer beta/alpha san
match of the 2 layer beta/alpha

23 d.151, d.160 7 75 100 75 58 100 58 Beta-sandwich; duplication of a
alpha; mixed beta sheets (d.160
beta sandwich.

24 d.95, d.206, d.64 12 18 96 18 34 79 43 2 layer alpha/beta sandwich fold
alpha/beta sandwich.

25 d.11, d.40 5 100 100 100 67 100 67 2 layer alpha/beta sandwich fol
alpha/beta sandwich.

26 d.130, d.80, d.52 19 53 90 59 51 62 82 2 layer alpha/beta sandwich fol
layer alpha/beta sandwich.

27 d.45, d.74, d.58, 
d.51, d.94, 
d.141, d.105

160 43 58 74 48 59 81 2 layer alpha/beta sandwich, an
around single core (d.141) fold
strands of the 2 layer alpha/bet

28 e.24, c.16, c.57, 
c.44, c.23, c.5

79 47 73 64 68 85 80 A domain component of a "mu
full domain of another fold wh

29 e.4, c.48, c.2, 
c.32, c.33, c.34, 
c.23

178 35 74 48 74 87 85 A domain component of a "mu
domain of another fold which d

Clusters of confused folds in VAST and SHEBA heat maps are reported. Rows 1 to 27 are intra-class clusters of confused folds found along the d
classes A, B, C and D are reported. Rows 28 and 29 are two off-diagonal clusters involving multi domains. Clusters and confused folds are listed 
heat maps of both methods obtained at 1% overall FPR were used to determined these clusters. Column 3 is the total number of domains within
(see Methods) and their ratios (in bold), for SHEBA, respectively, similarly, columns 7 to 9, report FPRS, TPRS and their ratios (in bold), for VAST,

Table 2: Sets of folds confused by both VAST and SHEBA. (Continued)
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beta/alpha folds with parallel beta sheets for some, and
mixed beta sheets for other, and with 4, 5, 6 or 7 strands.
The superposition of the domains d1a8p_2 (a) and
d1a9xa2 (b), from folds c.25 and c.24 respectively (Figure
9), illustrates that confusion is caused by the presence of
a common sub-structure. Examination of other confused
folds from this large confused set within the C class in
Table 2, rows 15, and 16, shows that they also involve 3-
layer alpha/beta/alpha folds that share sub-structures of
varying sizes that are similar. The large number of confu-
sions in the C class can be attributed to the abundance of
the 3-layer alpha/beta/alpha folding pattern, which get
confused by a similar mechanism.

The C class also shows some small confused sets among
folds with different architectures. For example, confused
folds c.1 and c.6 (Table 2, row 13) correspond respectively
to TIM beta-alpha barrel and variants having 7 strands or
less. Confused folds c.8 and c.98 (Table 2, row 14) are
described respectively as "3 layers: beta/beta/alpha; the
central sheet is parallel, and the other one is anti-parallel"
and "core: 3 layers, alpha/beta/alpha; parallel beta-sheet
of 4 strands". The confusion occurs due to a common
beta/alpha sub-structure.

Figure 10 shows several clusters of varying size, common
to VAST and SHEBA within the D class. They correspond
to the sets of confused folds reported in Table 2, row 23,
24, 25, 26, 27. Folds in these sets share a common core
structure consisting of a 2-layer alpha/beta sandwich. An
analysis of the clusters reported in Table 2 for the D class
shows that most of the confused folds are mainly varia-
tions of the 2-layer alpha/beta sandwich structures.

We have noticed confusions involving distinct motifs
such as between the beta sandwich fold b.4 and beta bar-
rel fold b.107, (Table 2, row 9). Beta sandwich and beta
barrel motif folds are generally well separated, but false
positives due to proximity of some extreme members of
these respective folds can happen. Figure 11 reports a false
positive between domains from the beta sandwich fold
b.1 and beta barrel folds b.43, which are well distin-
guished on average. Domain d1pama1 (b) from fold b.1
is confused with domain d1ep3b1 (c) from fold b.43.
Such confusion is caused by structural variation of the
common core of the beta sandwich fold b.1 and barrel
fold b.43 represented by prototypical domains d1tvda_
(a) and d1d2ea1 (d), respectively. Deformation causes the
relative orientation between the beta sheets of domain (b)
to become more similar to that of the barrel domain (c).

Confusion matrix for the B classFigure 7
Confusion matrix for the B class. Confusion matrix heat map for VAST and SHEBA showing confusion among some SCOP 
folds of the class B, mainly beta domains. Fold identifiers appear on the x and y axis. Grey scale from white to black for positive 
rates from 0 to 1.
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Interclass confusion
Finally, the heat maps also show off-diagonal grey or
black pixels where members of a SCOP fold in one class
are detected as similar to domains in another. Both heat
maps present such confusion patterns. As apparent in Fig-
ure 2, the confusion between classes is very low for both
methods. Nevertheless, it is still detectable between some
classes, in particular, between classes B and D, C and D, C
and E, and between D and G. For VAST, there is no addi-
tional noticeable confusion between classes. However
SHEBA shows additional minor confusion of the class A
with the classes B, C, D, F, and G, and between classes D
and F.

The confusions involving the E-class ("Folds consisting of
two or more domains belonging to different classes") are
easily understandable. They all involve structures which
contain a domain which shares similarity with another
domain in a different class, mainly class C. Examples
include fold e.24 confused with c.16, c.57, c.44, c.23 and
c.5, (Table 2, row 28), and fold e.4 confused with folds
c.48, c.2, c.32, c.33, c.34 and c.23, (Table 2, row 29).

Additionally, SHEBA confuses some folds from class A,
with folds in classes D and F ("membrane proteins"). The
most confused folds from the A and D classes, having
more than 100 confused domain pairs, are: (a.118, d.211:
250 confused pairs), (a.60, d.58: 132), (a.1, d.58: 118),
(a.77, d.58: 114), (a.6, d.58: 104), (a.4, d.95: 104). For
confused folds a.118 and d.211, for example, even though
VAST and SHEBA match a similar number of residues, the
Sheba Zscore tends to be high while the VAST Pcli is below
the cutoff value. A similar trend is observed between the A

and F classes. The way the Zscore is computed has the ten-
dency to increase the confusion, by over-emphasizing the
significance of the match, compared to the number of
matched residues when helices are matched.

Discussion
The combined use of the ROC curve and the confusion
matrix heat map has been the key in making this large
scale analysis of protein classification. Several
authors[14,17,20,23] have used the ROC curve to evalu-
ate structure comparison methods using the CATH or
SCOP protein classification database as the reference. In
the most recent and comprehensive study, Kolodny et
al[20] compared six different methods and found the
highest true positive rate to be 50%, at 1% false positive
rate, attained by the DALI method using the native DALI
score and CATH as the reference. Our ROC analysis finds
a true positive rate of 61.6% and 74.8% at 1% false posi-
tive rate, for the comparisons of VAST and SHEBA to
SCOP, respectively. The differences between their result
and ours might be explained by differences between the
comparison methods (DALI, VAST, SHEBA), by differ-
ences between the definitions used for the false and true
positive rates (they do not give explicit equations), and/or
by the use of different databases of protein structures
(CATH vs. SCOP). In particular, CATH groups domains
into different numbers of folds than does SCOP, as noted
by Hadley & Jones[25] and Day et al[26].

Aside from providing a global measure of the agreement,
ROC curves are also useful because they provide a practi-
cal means to select a score cutoff value for deciding if a
pair of structures is to be considered similar or not, by
trading off true and false positive rates. Other approaches
have used methods other than ROC analysis or have
ignored that tradeoff entirely. In their comparison of sev-
eral structure comparison methods with CATH, Sierk and
Pearson[23] selected a decision level corresponding to the
first 100 errors made by the program. Other approaches
[24-28] do not use the ROC curve and often fail to prop-
erly acknowledge the obligatory trade off between false
and true positive rates, making it difficult to compare the
reported degree of agreement with others.

Although the ROC AUC varies somewhat by method,
none of the reported values are high as desired. This raises
a fundamental and important question: What mecha-
nisms cause the automatic structural comparison meth-
ods to diverge so significantly from SCOP or CATH? To
address this aspect of the problem, we need to descend
from a global view of the database to a more detailed view
of individual folds and finally of the domains comprising
each fold. To investigate why structural comparison meth-
ods diverge from SCOP, we used the confusion matrix to
distribute the 1% false positive comparisons to the indi-

Similar structures in different SCOP foldsFigure 8
Similar structures in different SCOP folds. Structures 
of domains (a) d1gyha_ of fold b.67 and (b) d1loqa2 of fold 
b.69, with 318 residues and 295 residues respectively. They 
correspond to beta propeller domains with respectively 5 
and 7 four-stranded blades. The Pcli and Zscore values are 5.2 
and 7.2, respectively. Color scheme is the same as in Figure 
4.
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vidual fold pairs, resulting in a "false and true positive
rates" map of the protein fold space. This can be distin-
guished from the map of the fold space constructed by
Hou et al.[31,32] who applied multi-dimensional scaling
to pair-wise similarity scores. The exploration of the fold
space, guided by our map, leads directly and objectively to
the areas or subsets of folds where divergence with struc-
tural comparison methods is most evident. In particular,
it has allowed us to move from the areas of high false pos-
itive or negative rates to the corresponding properties of
the fold space. False negative rates are seen to relate
directly to the issues of core variation and repeated sub-
structures within a fold, while false positive rates are
linked to the sharing of a common sub-structure between
folds. Since the mathematical quantities FPR and TPR are
interdependent, so are the corresponding properties of the
folds space.

In looking at a particular area of our heat map, we can cal-
culate an index of how likely a method is to confuse those
folds, as the ratio of the average of fold-specific false pos-
itive rates to the average fold-specific true positive rate in
that area. A value near 1 indicates that the folds in this
area cannot be distinguished by the structure comparison

method, on the average. It is worth noting that this index
is cutoff dependent, as expressed in terms of true and false
positive rates, and can thus be obtained for more or less
severe false positive rates. The index of confusion is
related but distinct from the index of "gregariousness" in
Harrison et al.[13] for the CATH folds (topology level),
which is a property of a fold that measures the number of
other folds that are similar to it as judged by comparing
the score to that of an empirically established standard
score distribution at a certain cutoff level. The substantial
number of highly confused sets of folds listed in Table 2
allows us to examine in detail the source of the discrep-
ancy between SCOP and our structure comparison meth-
ods.

Causes of false negatives and false positives
In the Results section we presented several examples of
false negative and false positive cases related in one way or
another to the common core. SCOP defines the common
core of domains in the same fold to have the "same sec-
ondary structure elements in the same arrangement with
the same topological connections" (Brenner et al[29]),
leaving open the possibility for some variation such as dif-
ferences in length, relative orientations and/or number of
the SSEs which we call variation of the common core.

Variation of the common core of domains within a fold,
considered insignificant by SCOP, may still be large
enough to cause VAST and SHEBA to find the domains
dissimilar, giving rise to false negatives as in Figures 4 and
5. False negatives may also occur when the common core
is so small compared to the whole structure that the over-
all structural similarity is unrecognizable, as in Figure 6.
The evidence of structural variations of the common core
of proteins within the same fold was shown in the work
by Chothia & Lesk[4]. When the percentage of sequence
identity between domains decreases much below 40%,
their common cores tend to diverge structurally. The anal-
ysis of the confusion matrix shows that some false nega-
tives for folds reported in Table 1 arise from such core
structure variations.

When two domains share an apparent common core, but
SCOP judges the core elements to be significantly differ-
ent, SCOP places the domains in distinct folds. However,
the automatic methods may find the domains similar, as
in Figure 9 and 11, giving rise to false positives. Also, con-
versely to the case in Figure 5, when the repeats of a com-
mon motif are organized in a regular fashion in a domain,
our methods may consider the domains similar, but
SCOP may place them in distinct folds (see Figure 8).
Table 2 enumerates a number of false positive cases aris-
ing from closely related common cores in distinct SCOP
folds.

Superposition of two structuresFigure 9
Superposition of two structures. Superposition by VAST 
of two structures from different 3 layers alpha/beta/alpha 
SCOP folds of class C. View of backbones of domains (a) 
d1a8p_2 and (b) d1a9xa2, from folds c.25 and c.24, respec-
tively. The common parts of both structures superposed by 
VAST, are in red and the unmatched residues in green. The 
superposition aligned 71 residues; d1a8p_2 has 158 residues 
and d1a9xa2 has 138; RMSD = 2.7, Pcli = 6.0. SHEBA Zscore is 
3.4. The SCOP definition of fold c.25 is: Methylglyoxal syn-
thase-like; 3 layers, alpha/beta/alpha; parallel beta-sheet of 5 
strands, order 32145. The SCOP definition of fold c.24 is: 
Ferredoxin reductase-like, C-terminal NADP-linked domain; 
3 layers, alpha/beta/alpha; parallel beta-sheet of 5 strands, order 
32145.
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VAST and SHEBA decide on the similarity on the basis of
the largest fraction of matching secondary structural ele-
ments or residues. However, visual inspection may allow
the overall context of the matching and mismatching
parts to play a role. If only a small part matches, but the
matching part appears to be the core of each structure,
then the match may appear more meaningful. If the
number of repeats in a structure appears to be an impor-
tant property of the structure, structures with different
numbers of repeats may be placed in different folds. If, on
the other hand, the precise number of repeats is not
important for a structure, structures with different num-
bers of repeats are all placed in the same fold. If almost all
parts match, but some important part, perhaps one critical
beta-strand or even an irregular loop, is missing or placed
differently in one structure, it may be placed in a different
fold, etc.

It is possible that the problem is rooted in part, in the way
structural alignment is currently conceived. Analogous to
sequence alignment methodology, structural alignment
maximizes the match between two structures, at the resi-
due or secondary structure level, to infer a similarity rela-
tionship. On the other hand, the concept of similarity

implicitly defined by SCOP, is focused on the sharing of
higher level (above SSEs) motifs. This is in contrast to sim-
ilarity measures based on the residue or SSE-level matches
as defined by many structure comparison methods. We
have shown examples (beta propellers, or alpha-sole-
noids) where occurrence of a motif is more appropriate
for inferring similarity than is the maximum residue or
SSE-level structural match. Although not evaluated
directly here, we suspect that the structural comparison
methods agree with SCOP when these two concepts agree,
i.e. when the motif in question coincides with the maxi-
mum residue or SSE-level structural match, but disagree
otherwise. Automatic structural similarity measures might
thus be improved either by incorporating higher level
structural motifs such as barrels or sheets, rather than
remaining at the level of residues, strands or helices, or by
weighting matching residues according to their structural
context or functional importance.

Problems encountered by structural comparison methods
might also be a reflection of intrinsic properties of the pro-
tein fold space. We have reported examples which tend to
support the idea of structural drift [33], i.e. a series of
gradual steps which connect one fold with another, and

Confusion matrix heat map for the D classFigure 10
Confusion matrix heat map for the D class. Confusion matrix heat map for the D class for VAST and SHEBA showing 
clusters of confused SCOP folds. The fold identifiers appear on the x and y axis. Grey scale from white to black for positive 
rates from 0 to 1.
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showed areas where folds were highly confused. In such
sets of folds, some structures within the same fold are too
dissimilar to be detectable by structural comparison
methods, while those in different folds are not always
completely distinct. This raises questions about the fold
definition. We have observed, for example, that distinc-
tion between beta barrel and two layer beta-sandwich
domains can be surprisingly difficult. As the relative ori-
entations of the strands in the two beta sheets in a barrel
departs from orthogonality, and become more parallel,
the distinction between barrel and two layer beta sand-
wich motifs becomes fuzzy. Drawing the proper separa-
tions within a set of domains in which such phenomenon
is observed is not obvious and necessarily introduces
some arbitrariness. Should such diverse folds be sub-
divided into two, three or more folds? If this decision is
taken at some point in time, with the then available struc-
tures, how stable and universal will this distinction
remain over time? VAST and SHEBA are generally well
able to a major part reproduce the fold classification of
SCOP, consistent with the notion that protein folds are
well-defined, discrete entities. However, despite many
attempts, SCOP folds or CATH topologies continue to
elude precise quantitative or computational definition.

We suggest therefore, that for some parts of the fold space,
folds are not well separated entities but more nearly a con-
tinuum of structural arrangements as also observed in
[1,3,34-36], with some regions more populous than oth-
ers. Here, apparent "folds" may arise as much from den-
sity fluctuations in regions where experimentally
determined structures are sparse, as from thermodynamic
stability wells which would partition the fold space. We
speculate that the idea of continuum will become more
apparent as a larger number of new structures are solved
by structural genomics projects[31]. In any case, the clas-
sification of structures into folds is probably a valuable
and practical way of describing the fold space. When the
fold space is continuous, this necessitates some arbitrary
classification decisions, which may in fact not be com-
pletely reproducible by any automated approach.

Conclusion
The results of this comprehensive comparison of VAST
and SHEBA with the SCOP classification demonstrate that
these two methods in their present form can reproduce at
best 75% of the SCOP fold classification (for 1% false pos-
itive rate). Our detailed study of over 20 million pairs of
protein domains underlines the difficulties encountered
by automatic methods analyzing a classification of pro-
tein structures. A major difficulty arises from structural
variation, which naturally accompanies amino acid
sequence divergence, within the core of a defined fold.
When severe enough, this can produce false negatives.
When common cores of different folds are too similar,
false positives result. Another, though less common, diffi-
culty also arises when a motif is repeated several times
within a single domain and in variable numbers. When
the defining "common core" corresponds to only a small
part of a whole structure, when the core is decorated
extensively, automatic recognition of its similarity to
other fold members becomes difficult. These divergences
suggest a continuous rather than a discrete protein fold
space, further complicating the problem of automatic
classification. Clearly, improved algorithms of compari-
son must be developed and/or other types of classifica-
tions must be considered, and will be considered in future
work.

Methods
Structural comparison methods
VAST is a method to superimpose and compare protein
3D structures. It consists of a two stage procedure. The first
stage is based on a high-level description of protein struc-
tures. Secondary Structure Elements (SSEs) are repre-
sented by vectors and an algorithm based on a maximum
clique search which finds the best one-to-one correspond-
ence of a set of vectors in a query structure to a set of vec-
tors in a target structure. Special care is paid to the
significance of the one-to-one correspondence found

Confusion between SCOP folds of class BFigure 11
Confusion between SCOP folds of class B. Color 
scheme is the same as in Figure 4. Domain (a) d1tvda_ and 
domain (b) d1pama1 belong to the same fold, b.1 (sandwich; 
7 strands in 2 sheets; greek-key), and are found similar with 
Pcli = 3 and Zscore = 3.38. Domain (c) d1ep3b1 and domain 
(d) d1d2ea1 belong to the same fold, b.43 (barrel, closed; n = 
6, S = 10; greek-key), and are found similar with Pcli = 4.5 and 
Zscore = 3.7. Domains (b) and (c) belong to folds defined by 
different folding patterns. Both VAST and SHEBA found them 
similar with Pcli = 3.1 and Zscore = 3.32. Domains (a) and (d) 
were found dissimilar by VAST and SHEBA with a Pcli = -1.8, 
and a Zscore = 0.73.
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between the two 3D structures. The method calculates the
probability of generating a similar one-to-one corre-
spondence by chance, and then correspondences are
ranked and selected according to the value of this proba-
bility. Results of the first stage are used as seeds for the sec-
ond stage.

In the second stage proteins are described using the alpha
carbons (CAs) of the residues. The algorithm, based on a
Gibbs-Monte Carlo procedure, tries to extend alignment
of the initial seed to CAs belonging to the connecting
loops. Usually, one wants to find the alignment that
includes the maximum number of CAs yet with the small-
est root mean square deviation (RMSD) value possible.
Unfortunately, there is a correlation between the number
of CAs included in the alignment and the value of RMSD:
the larger the number of residues the higher the resulting
RMSD value. The algorithm, in this second stage intended
to solve this problem by answering questions such as:
which alignment, one having 60 superimposed residues
with a RMSD of 2.0, or one having 80 superimposed resi-
dues with a RMSD of 2.5 is the best one? This question is
settled by choosing the alignment least likely to occur by
chance, based on a Z-score calculation with respect to ran-
dom distributions of the RMSD (see Appendix for more
details). Please note that the VAST program we use is
homologous to the version that can be downloaded at
NCBI[37] (they both descent from a common ances-
tor[5,6]). The original VAST source code includes S+ sub-
routines. In this version, these subroutines were re-
implemented in C language and regular PDB files can be
used as input. It can be downloaded at VAST INRA server
[38]. No other changes were made from the original ver-
sion.

SHEBA is a protein structure comparison program which
performs pairwise protein structure alignment in two
steps. The initial alignment is made by maximizing the
weighted sum of scores for the sequence homology, sec-
ondary structural similarity, and the similarity of the envi-
ronment profile. The environment profile includes the
solvent accessibility and polarity of the atoms around a
given residue. The alignment is then iteratively refined in
the second step, in which a new alignment is obtained
from the three-dimensionally superimposed structures
based on the current alignment, using a dynamic pro-
gramming procedure that maximizes the number of resi-
due pairs for which the CAs distance is less than 3.5 Å.

For each pair of proteins compared, SHEBA computes the
m score defined as the number of matched residues
divided by the mean length of the two protein domains.
When one protein is compared to each protein in a data-
base of target proteins, SHEBA also computes the Zscore
computed from the score m as

where <m> and σ(m) are the mean and the standard devi-
ation of the scores m between the same query domain and
all other target domains in the database. SHEBA source
code can be downloaded at SHEBA server[39].

Analysis of structure comparison methods
We consider a set of protein structural domains, D, and a
collection of N folds {Fi} of the SCOP classification.
Structural similarity of a query domain q to a target
domain t is declared when q and t are members of the
same SCOP fold. In other words, given a query q, we say
that q is similar to (or SCOP-similar to) another domain t if
and only if q ∈ Fi and t ∈ Fi, for some SCOP fold Fi. Under
this definition, structural similarity is an all-or-none phe-
nomenon, as judged by SCOP, used as the reference.

Structure comparison methods are said to detect the struc-
tural similarity between a query domain q and a target
domain t when the value of the computed similarity score
S(q,t) (Pcli for VAST and Zscore for SHEBA) is above a pre-
specified cutoff value. Formally, domain q is detected as
structurally similar to t if and only if S(q, t) ≥ c, for some
fixed cutoff value c.

We proceed as follow. First, the similarity scores S(q,t) for
every q ∈ D and every t ∈ D, are calculated by VAST and
SHEBA. Then, the overall accuracy of detection of struc-
tural similarity, compared to SCOP fold similarity is eval-
uated using ROC methodology, for structure comparison
methods VAST and SHEBA, excluding similarity scores for
q≡t. Finally, divergences between structural similarities
measured by either structure comparison methods, and
the SCOP classification are investigated using a heat map
representation of the confusion matrix.

ROC analysis
The four possible outcomes for a particular domain q eval-
uated against a particular target domain t are summarized
in the Table 3.

The True Positive Rate, TPR(c), the overall rate that a
domain q is correctly detected to be similar to another
domain is calculated first by comparing that domain to all
other domains in its fold, then averaging this rate over all
domains in the dataset D. Formally,
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where M is the total number of structural domains in the
dataset D, N is the number of folds (we consider only
folds with ni >1), ni is the number of domains within a
fold Fi, and I(&#x227A;) is the indicator function, i.e.
I(TRUE) = 1 and I(FALSE) = 0. TPR(c) is also the sensitiv-
ity of the method for SCOP.

Likewise, the False Positive Rate, the rate at which a
domain q is falsely detected to be similar to another
domain, is

The specificity of the method for SCOP is [1 - FPR(c)].

The ROC curve and the area under the ROC curve
The ROC curve is obtained by plotting the True Positive
Rate TPR(c) against the False Positive Rate FPR(c), for the
entire range of possible cutoff values, c. On this plot, the
line through the origin with slope 1 would correspond to
the performance of a similarity detection based on a ran-
dom similarity score. A method which detects SCOP sim-
ilarity better than randomly must show a ROC curve
situated above this diagonal. The overall performance of
either VAST or SHEBA in detecting SCOP fold similarity
can be measured by the area under the ROC curve
(AUC)[21,22], where a perfect detection method would
yield AUC = 1 and a random prediction AUC = 0.5. The
area is estimated using the trapezoid integration rule.
Strictly speaking, we are presenting an average of the ROC
curves for each individual fold-recognition problem,
where the average is taken with the cutoff value, c, in com-
mon.

Confusion matrix heat map
The performance of a similarity detection method can be
studied within specific folds or fold pairs. Thus, we define
a fold specific false positive rate between two different
folds, FPRi,j(c) as the rate at which query domains in Fi are
detected to be similar to target domains in Fj. We estimate
this rate from our data as

We see this as a confusion in the similarity detection.

When i = j, we define the fold-specific true positive rate for
domains in the same fold Fi, estimated as

The confusion matrix, defined by TPRi(c) for i = j and by
FPRi,j(c) otherwise, for a particular value of c, can be visu-
alized graphically as a heat map, with values of the matrix
coded in grey scale (1 = black, 0 = white). To emphasize
underlying patterns of confusion amongst the folds, the
order of rows and columns (corresponding to the folds of
SCOP) is permuted within fold class using hierarchical
cluster analysis of the columns of the VAST heat map for
class C and of the SHEBA heat map for the other classes.
The hierarchical clustering was based on correlation
between columns, and used Ward's method, as imple-
mented in the Matlab Statistics toolbox (The Mathworks,
Natick, MA). The same ordering of folds was then applied
to the rows and columns of the confusion matrix heat
map for both methods. Visually, the main diagonal of the
heat map shows the agreement between SCOP and the
structure comparison/similarity method, while the off-
diagonal shows areas of confusion made by each structure
comparison method in detecting SCOP fold similarity.
The overall, global properties based on the entire set of
SCOP folds may be appreciated by viewing the entire heat
map, while particular properties of subsets of folds may be
viewed by zooming into particular areas. Sets of confused
folds may be quickly recognized and identified in this
manner.

The TPR(c)(eq. 1) can be computed as the average of the

TPRi(c) weighted by fold size, . Likewise

the FPR(c)(eq. 2) can be computed as the fold size-
weighted average of the fold specific false positive rate,

.

The true positive rate averaged over a subset of folds, S, is
defined by
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Table 3: The four possible outcomes of ROC analysis for a particular domain.

Domain q is in the same SCOP fold as t Domain q is not in the same fold as t

Domain q is detected as similar to t True Positive False Positive
Domain q is not detected as similar to t False Negative True Negative
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where Ms is the total number of domains represented in
set S. Likewise, the false positive rate averaged over a sub-
set of folds is defined

A fold confusion index may be defined as the ratio FPRS/
TPRS for a set S of folds. When the index has a value near
1.0, it means that domains in the same fold are no more
distinguishable than domains in different folds, using
that particular cutoff value.

An alternate, but straightforward definition of the TPR(c)
could be obtained by counting all correctly detected simi-
lar-appearing pairs divided by the total number of pairs in
the same SCOP folds. This alternate definition would in
fact weight the fold-specific TPRi(c) (eq. 4) according to
the square of the fold size, thus over-weighting the
domains in large folds compared to those in small folds.
Our preferred definition, given in the equation above,
weights each domain, not each domain pair, equally. The
confusion matrix computed for this study and the corre-
sponding MATLAB code is available at MSCL server [40].

Datasets

The set of SCOP domains considered here are drawn from
ASTRAL[41] version 1.63, with less that 40% pairwise
sequence identity. The total number of domains in that
sample is 4948, classified by SCOP into 740 folds. As
more than one domain is required to evaluate the fold-
specific TPRi, we study only the reduced data set of 468

folds containing 2 or more domains, which together con-
tain M = 4676 domains. The sum of the squares of their

respective content  is 226,900. The folds fall into

classes A (all alpha helix proteins), B (all beta sheet pro-
teins), C (alpha and beta proteins, alpha/beta), D(alpha
and beta proteins, alpha+beta), E(multi-domain proteins,
alpha and beta), F(membrane and cell surface proteins
and peptides) and G(small proteins) with 97, 78, 94, 139,
18, 17 and 25 folds each, respectively. The classes hold
844, 1091, 1330, 1070, 80, 67 and 194 domains each
respectively.

All domain pairs drawn from the reduced dataset were
compared by both VAST and SHEBA, corresponding to a
total number of pairs of M*(M - 1) = 21,860,300, exclud-

ing identity pairs. The calculations were made using the
high-performance computational capabilities of the Bio-
wulf PC/Linux cluster at the National Institutes of Health,
Bethesda, Md.[42]. Data resulting from the computations
were used to produce two large matrices containing the
Zscore, the Pcli score, respectively. For pairs of domains for
which VAST could not assign a quantitative measure of
similarity the Pcli value was arbitrarily set to -10.

Abbreviations
AUC Area Under the ROC Curve

CA Carbon Alpha

CATH Hierarchical classification of protein domain struc-
tures, which clusters proteins at four major levels,
Class(C), Architecture(A), Topology(T) and Homologous
superfamily (H).

DALI Distance mAtrix aLIgnment

FPR False Positive Rate

NCBI National Center for Biotechnology Information

PDB Protein Data Bank

RMSD Root Mean Square Deviation

ROC Receiver Operating Characteristic

SCOP Structural Classification of Proteins

SHEBA Structural Homology by Environment-Based
Alignment

SSE Secondary Structure Element

TPR True Positive Rate

VAST Vector Alignment Search Tool
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Appendix. VAST statistics: calculation of Pcli
In the first stage of VAST we consider a "high" level
description of proteins. Proteins are represented by their
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secondary structure elements (SSEs), more specifically by
the endpoints of vectors going through these SSEs. The
basic task of the algorithm is to find the best 3D common
substructure.

A 3D common substructure is formally defined as a one-
to-one correspondence between a subset of SSE vectors in
the first protein and a subset of the SSE vectors in the sec-
ond protein. This correspondence respects the type of SSE
(i.e., helices are only paired with helices and strands with
strands) and the topology. A correspondence {(i,k),(j,l)}
of SSEs i and j in the first protein with SSEs j and k in the
second, is said to respect the topology when i<j implies
k<l. For instance, if SSEs 1 and 2 in the first protein and
SSEs 4 and 7 in the second protein are paired 1–4 and 2–
7, the correspondence respects the topology. The corre-
spondence 1–7 and 2–4 does not.

Computation of the score for a common 3D substructure
The problem of searching for 3D common substructures
is next transformed into a graph theory problem. A "com-
parison" graph is formed whose vertices are made of pairs
of vectors, one from each protein to be compared. Two
such vertices are connected by an edge if the two vectors
in the first protein have the same relative orientation and
spacing, within some tolerance, as the two vectors in the
second. Each edge is labeled by a score s, reflecting the
quality of the superimposition of the 2 pairs of vectors.
Finding the best 3D common substructure is solved by
finding the clique (i.e., a subgraph for which each vertex
is linked with all others) with the best overall score. The
overall score is defined as a normalized sum of scores for
all the edges within the clique. The n vertices of a clique
(an n-clique) are labeled by i and j, and the overall score
is defined:

Computation of the score for a 2-clique
The 2-clique score, s, is computed from the RMSD of the
superimposition of the two corresponding pairs of vec-
tors. The RMSD is normalized to an observed distribution
of such values obtained from a large sample of random
pairings of 2 SSEs from pairs of proteins drawn from a rep-
resentative set of proteins. This empirical distribution rep-
resents the behavior of random pairing of two secondary
structures, when there is presumably no overall structural
similarity between the two proteins. By definition, we set
s = -log10 (P) where P is the empirical cumulative distribu-
tion function (cdf) value associated with the particular
RMSD value. For instance if the RMSD is found to be 5.8
Å when the 2 pairs of vectors are superimposed, the prob-
ability P that the RMSD is less than or equal to 5.8 can be
read off the curve as, say, P = 0.2. The score is then defined

as minus the log of this probability: s = -log10(.2) = 0.7.
Therefore the smaller the RMSD between the 2 pairs of
SSEs the larger the resulting score.

Computing the probability distribution for the best n-
clique score

In the previous section, P represented the cdf value of the
RMSD of a random 2-clique. Accordingly, P has a uniform
distribution and its score (-log10(P)/2.303) has a negative

exponential distribution, after dividing by the natural log-

arithm of 10, ln(10) ≈ 2.303. Rewriting in terms of natural
logarithms, we have score(n - clique) =

. Since this is a sum of n(n - 1)/2

independent exponential variates, multiplied by the fac-
tor 2/2.303n, it follows a classical Gamma distribution

with parameters α = n(n - 1)/2 and β = 2/2.303n.

For example, assume that we found a common 3D sub-
structure between 2 proteins, and it is a 6-clique with a
score of 9.6. In order to determine the significance of this
score one must compare it with a distribution of scores for
randomly generated 6-cliques. The mean of the 6-clique
score distribution is given by α·β = (6-1)/2.303 ≈ 2.171,
5 times larger than the mean of a 2-clique score, 0.434. As
n grows, the distributions become broader and more sym-
metric. Having calculated the score probability density
distribution for a 6-clique, it is then easy to estimate the
significance of the score obtained for our 6-clique found
while comparing the 2 proteins. The corresponding
cumulative probability distribution is calculated and used
to compute the probability that a random score is = 9.6.
This probability is written Q(s,n) = 1 - P(s,n) where s and
n refer respectively to the score and the number of ele-
ments of the clique.

Number of n-cliques that can be generated with a 
particular pair of proteins

For the sake of simplicity, we consider proteins having
only one type of SSE, for instance, helices (when both pro-
teins contain helices and strands, the problem of estimat-
ing C(n, N1, N2) can be formulated as a substring
matching problem, for which a fast recursive algorithm
exists). If we compare 2 proteins having 6 helices and we
find that the best clique has 6 elements, there is only one
possibility of generating this 6-clique. On the other hand,
if both proteins have 12 helices, the number of 6-cliques

that can be generated is given by  =

853776 cliques. It is thus much more probable to observe,
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just by chance, a 6-clique with a score of 9.6 with 2 pro-
teins having 12 helices rather than with 2 proteins having
6 helices. Let us call C(n, N1, N2) the number of n-cliques
that can be generated with a pair of proteins having
respectively N1 and N2 SSEs.

Calculation of Pcli for the best clique
Because C(n, N1, N2) independent n-cliques can be gen-
erated, in the best n-clique for randomly paired proteins,
we may observe a score larger than one would expect from
the empirical distribution. The corrected significance,
termed EPcli, is the probability that any random score in
C(n, N1, N2) trials would exceed our observed score s. The
probability of finding one value s* higher than observed
value s, by chance alone is

This approximation is valid when C(n, N1, N2)·Q(s,
n)<<1. With the above definition of EPcli, notice that the
smaller the value of EPcli the more significant the clique.
Finally, we define

Pcli = -log10(EPcli).

Remark on the calculation of Pcli
Two types of problems occur. The first one is related to the
number of elements of the clique with respect to the
number of secondary structure elements (SSEs) found in
the 2 domains being compared. To illustrate let us con-
sider the 7-element clique that is generated when compar-
ing domains d1amx_ and d1h6fa_ (fold b.2) having 14
and 19 SSEs, respectively. The score of this 7-clique, calcu-
lated according to Eq. 1 is 8.6. The probability of generat-
ing a 7-clique having a score s = 8.6 is given by P(s, n)= 10-

5.3. The number of 7-cliques that can be generated with the
above two domains is C(7, 14, 19) = 10+7. This leads to an
approximation of EPcli > 1, and hence Pcli<0. The match
found between the 2 domains is thus not significant. The
second problem occurs with small proteins having few (3
or 4) SSEs. As shown in Eq. 1 the score of a clique depends
on the number of elements. Small cliques will have rela-
tively small scores and will appear more likely to have
been generated by chance than large scores. This is analo-
gous to the problem of detecting similarities for small
peptides with sequence comparison methods: although a
perfect match might be found, the resulting score, due to
the size of the query sequence, will always be small and
thus will appear not significant.

Additional material
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Additional File 1
• VAST and SHEBA heat maps • Complete heat map of VAST and 
SHEBA, obtained for a Pcli cutoff value of 2.5 and a Zscore cutoff value 
of 2.7, respectively. The cutoffs correspond to an overall average FPR of 
0.01, and result in an overall average TPR of 0.616 and 0.748 for VAST 
and SHEBA respectively. The x (target folds) and y (query folds) axes of 
the heat maps are labeled by the SCOP folds, grouped into the different 
classes A, B, C, D, E, F and G. Each pixel within the heat maps represents 
a fold-specific true or false positive rate and takes value between 0 and 1. 
Diagonal and off-diagonal pixels correspond to fold-specific true positive 
rate TPRi(c) (eq. 4, see Methods) and fold-specific false positive rate 
FPRi,j(c) (eq. 3, see Methods) respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-206-S1.pdf]

Additional File 2
• Fold-specific True Positive Rates (see Methods) at 1% False Positive 
Rate, for VAST and SHEBA, for 468 SCOP Folds in the order of the Heat 
Map. • Rows 1 to 7 correspond respectively to: the row number, the SCOP 
fold identifier, the number of domains within a fold, TPRi value obtained 
by the fold with VAST, TPRi value obtained by the fold with SHEBA, 
SCOP name of the fold, and SCOP description of the fold.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-206-S2.pdf]
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