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[11 We introduce the (P, R, p) procedure for analysis of distributed erosion models,
evaluating separate sensitivities to input fluxes (precipitations P), to the propensity of
soil to surface flow (runoff conditions R), and to specific erosion properties (descriptive
parameters p). For genericity and easier comparisons between models, superparameters
of equivalent slope and equivalent erodibility are assembled from innate descriptive
parameters: parameterization is reduced to four coded integers that are arguments of the
soil loss function. Directional sensitivities are calculated in a deterministic way, associated
with any selected displacement in parameter space. In this multistage and risk-orientated

procedure, special emphasis is placed on trajectories from best-case toward worst-case
scenarios, involving one-at-a-time variations and Latin Hypercube samples. Sensitivity
maps are produced in the superparameter plane, tracing risk isovalues and estimating
the relative importance of the equivalent parameters and of their spatial distributions.

Citation: Cheviron, B., S. J. Gumiere, Y. Le Bissonnais, R. Moussa, and D. Raclot (2010), Sensitivity analysis of distributed
erosion models: Framework, Water Resour. Res., 46, W08508, doi:10.1029/2009WR007950.

1. Introduction and Scope

[2] New insights on the topic of climate change urge
research on erosion, especially in regions that have been iden-
tified as vulnerable to sharpened or more frequent natural
events. Although different concepts appear in models pertain-
ing to different scales, all water erosion models address
potential damages caused by rain and runoff. Soil loss results
are nevertheless conditioned by slopes and by soil erodibility
encountered along flow paths. Regarding phenomenology
and parameter requirements, erosion models integrate spe-
cific processes, one step further in complexity but far less
studied than the hydrological descriptions on which they
necessarily rely and strongly depend. Sensitivity analysis
conducted on erosion models lack an explicit and generic
framework to estimate the relative importance of hydrolog-
ical and erosion factors or categories of factors. To remedy
this flaw, we propose an adaptable guideline resorting to
intelligent selection of parameters.

[3] Hydrological parameters cited as crucial to soil losses
are the saturated hydraulic conductivity of surface layers in
WEPP [Nearing et al., 1990], LISEM [De Roo et al., 1996] and
EUROSEM [Veihe and Quinton, 2000], friction coefficients
responsible for flow retardation in PSEM-2D [Nord and
Esteves, 2005] or net capillary drive [Veihe and Quinton,
2000] in small-scale physics based models. At medium
scales, sensitivity to runoff and antecedent rain are used in
STREAM [Cerdan et al., 2002] to qualify the influence of
hydrological factors. At larger scales, surface crusting and
percentage of vegetation cover control the effect of input
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fluxes on soil losses in PESERA [Gobin et al., 2004; Kirkby
et al., 2008], while MESALES [Le Bissonnais et al., 2002]
resorts to surface crusting and land use as indicators of
runoff conditions. Parameter sets associated with optimum
transmission of input fluxes render soils more prone to
simulated erosion, but particle detachment still depends
on values of a different set of specific erosion parameters.
For example, key erosion parameters are soil erodibility in
MESALES and PESERA, sensitivity to diffuse erosion and
soil cohesion in STREAM, sediment size in EUROSEM,
soil cohesion and rill erodibility in PSEM-2D and again rill
erodibility in LISEM.

[4] Only partial sensitivity results are available in litera-
ture on erosion models, for the relative importance of
hydrological and specific erosion parameters has not been
tested yet. The consensus is that models are more sensitive
to hydrological conditions than to specific erosion para-
meters, but Gumiere et al. [2009] suggested that reported
sensitivity indexes may be influenced by test configurations,
almost always involving strong input fluxes. Investigation
procedures combining widely varied rain intensities, runoff
conditions and erosion parameters are therefore needed and
were included in the present study.

[5] In a unified description, a causal link exists between
the input flux, precipitations P, the transmitted flux, obtained
from runoff conditions R, and the resulting soil loss, cal-
culated from specific erosion properties p. A three-category
(P, R, p) sensitivity analysis procedure seems therefore
possible and appropriate for most erosion models, its effec-
tiveness being to discriminate between the effects of “con-
trol” hydrological factors (P, R) and “descriptive” erosion
parameters (p). Focusing on erosion processes, one may
wish to estimate the sensitivity to parameters of the p cat-
egory for varied (P, R) combinations representing as many
water excess conditions.
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[6] To meet the claimed objectives at a satisfying level
of genericity, the framework has to include the maximum
possible variety of situations in terms of P, R and p values
or combinations of these values. The (P, R, p) frame-
work should certainly refer to literature to (1) exploit at best
the identified structural similarities between very different
hydrology-erosion models, to ensure a wide applicability
of the procedure; (2) define its position in the world of
sensitivity analysis as a deterministic multilocal procedure
resorting to a combination of methods to gain sensitivity
results from selected parameter arrangements; (3) prove its
usefulness in erosion modeling, through specific and justi-
fied choices for sensitivity measurement and representa-
tion, relying on common calculation devices; and (4) place
emphasis on simple tests to measure the sensitivity of an
erosion model to spatial distributions of its descriptive
parameters.

1.1. Position Regarding Hydrology-Erosion Models

[7] Sufficient complexity of underlying hydrological mod-
els is a prerequisite to accurate erosion modeling, at the risk
of degraded performances due to overparameterization [Beven,
1989], especially for models involving spatially distributed
parameters [Beven, 1993]. Additional uncertainties arise when
only few measured data are available, increasing equifinality
thus weakening the physical meaning of parameters, as
discussed by de Marsily [1994] and then Beven et al. [2001]
from a theoretical point of view. While intended to describe
a wide set of often nonobservable events, the construction of
a model is a deterministic process that relies on a limited
series of scenarios and choices. It requires a minima iden-
tification of the flowchart and slopes of the system, plus
knowledge about the nature and range of intensity of its
driving mechanisms at the nominal scale of the model. The
existence of scale effects [Bloschl and Sivapalan, 1995] and
the lack of well-established rules to perform scale aggrega-
tions [Sivapalan, 2003] both question the compatibility of
different models when reaching the limit between different
scales [Bléschl, 2001].

[8] Owing to the interdependence with hydrology [Merritt
et al, 2003] and to intrinsic strong measurement errors
[Nearing et al., 1999; Nearing, 2000], several obstacles
prevent high-performance erosion modeling and in situ
evaluation of the models [Boardman, 2006]. As a major
concern regarding land management, Jetten et al. [1999,
2003] pointed out poor predictions of the spatial pattern of
soil losses. They also reported the scale dependence of
computed soil loss to the resolution grid used, but sug-
gested that precision could be gained from an adequate
confinement of phenomena in certain cells [Jetten et al.,
2005].

[¢9] All mentioned elements plead in favor of a deter-
ministic procedure involving a reduced number of descrip-
tive parameters, whose values would be distributed on a
fixed topology and tested under the widest expected range
of precipitation intensities. The number of cells in the dis-
cretization grid should be high enough to induce noticeable
distribution effects through clearly contrasted parametric
configurations. On the other hand, the number of cells should
be small enough to induce few equifinalities and facilitate
interpretation. To decrease the number of erosion parameters
without disregarding specificities of each model or losing
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generality, one may constitute groups of parameters, thus
reducing the parameterization to the two necessary compo-
nents of any erosion model, the “equivalent slope” and
“equivalent erodibility.” The former superparameter should
thus integrate all relief or Digital Elevation Model infor-
mation. The latter should bear information relative to rill
[Knapen et al., 2007] and interrill erodibility [Gumiere
et al., 2009] as a whole or separately dealt with [Bryan,
1976; Wischmeier and Smith, 1978; Bryan, 2000; Sheridan
et al, 2000], as in physics-based models where distinct
parameter sets may be used to constitute an “equivalent rill
erodibility” and an “equivalent interrill erodibility.” What-
ever their nominal scales, the described procedure places all
models on the same starting line before the final stage of
sensitivity analysis begins, which is an indirect way of
studying scale issues: searching for sensitivity trends asso-
ciated with the nominal scales of models under examination.

1.2. Position Regarding Sensitivity Analysis Practices

[10] Regarding sensitivity analysis practices [Saltelli et
al., 2000; Frey and Patil, 2002; Pappenberger et al., 2008],
the (P, R, p) framework is a multistage procedure combining
one-at-a-time (OAT) variations and Latin Hypercube sam-
pling techniques [McKay et al., 1979]. It performs a partial
screening of the parameter space which originates in the
method exposed by Morris [1991], adapted by van Griensven
et al. [2006], also used by Mulungu and Munishi [2007] and
then renewed and improved by Campolongo et al. [2007].
The advantages of using combined methods as a surrogate
to their respective limitations have been advocated by
Kleijnen and Helton [1999] and Frey and Patil [2002].

[11] Our scope is to obtain sensitivity estimations near
certain nodes in the parameter space, for selected realiza-
tions of (P, R, py, p.), Where p, and p, account for hypercube
combinations of p values forming the superparameters of
equivalent slope and equivalent erodibility. Relevant values
of the equivalent parameters are sorted after initial one-at-a-
time variations in the individual p parameters, then varia-
tions in values of the equivalent parameters are tested together
(hypercubes) or separately (one at a time) for different
values of (P, R). From its construction and roles played by
(P, R) on one side, (p,, p.) on the other side, our procedure
falls in the multilocal rather than in the global sensitivity
analysis classification.

[12] Deterministic and local sensitivity information is
sought, so we leave aside the intensive but “blind” Monte
Carlo screenings [Sieber and Uhlenbrook, 2005] or variance-
based sensitivity estimations [Hier-Majumder et al., 2006;
Tang et al., 2007; Castaings et al., 2007] eventually resorting
to Sobol [1993] algorithms or conducted with the Fourier
Amplitude Sensitivity Test [Helton, 1993; Crosetto and
Tarantola, 2001]. These discarded methods yield statistical
results and perform well in verifications of model struc-
ture when no prior knowledge on the models is available.
On the contrary, the (P, R, p) framework is progressively
executed from successive sensitivity results inferring
privileged scenarios. As explained by Saltelli et al. [2004]
and Pappenberger et al. [2008], sensitivity results may also
depend on the way the analysis method is formulated.
Hypothesis of uniform distribution of parameter values sim-
ilar to these formulated by Beven and Binley [1992] are
nevertheless expected to reduce discrepancies between results
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Figure 1. Layout and connectivity in the virtual catchment
between surface units numbered 1 to 9. The one-way down-
stream hydrological and sedimentological connectivity is
indicated by flow lines numbered F1 to F5.

of the deterministic and probabilistic methods, judging from
studies conducted in other research domains [Mitchell and
Campbell, 2001; Kamboj et al., 2005].

1.3. Position Regarding Sensitivity Measure and
Representation

[13] The choice of a sensitivity measure is constrained by
that of a sensitivity analysis procedure. Local deterministic
schemes incline to intuitive definitions of sensitivity [Lions,
1968], relying on first-order Taylor developments, i.e., the
linear hypothesis. These first-order local sensitivities [Saltelli
et al., 2000] simply approximate sensitivity as the propor-
tionality between output and input variation, in absolute or
relative form. This measure was termed “clementary effect”
by Morris [1991]. It applies for displacements in parameter
space involving variations in a single parameter or in two at
once [Campolongo and Braddock, 1999], provided input
variations are not too narrow, causing roundoff or “divide
by zero” errors, or not too big, breaking the linear hypoth-
esis when confronted to nonlinear behavior of the model.

[14] When two or more parameters are varied at the same
time, it becomes a challenge to identify the individual
contribution of each parameter to the output variation. The
classical probabilistic answer in global (nonpoint) methods
is to measure linear and higher-order sensitivities as the
mean elementary effect and its standard deviation. The latter
estimates correlations and interactions between parameters,
providing the nondiagonal values in sensitivity matrixes
[see, e.g., Ronen, 1988]. But as stated by Saltelli et al. [2004]
and lonescu-Bujor and Cacuci [2004], the identification
of high-order effects is doubtful unless additional assump-
tions are available regarding pairs of nonindependent para-
meters. A convincing example is given by Knight and
Shiono [1996] scrutating complex interactions between para-
meters associated with channel and floodplain friction.
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[15] In the (P, R, p) procedure, deterministic and multi-
local sensitivity calculations are possible, starting from the
nodes of interest in parameter space. Additional assumptions
are also available to indicate relevant directions for these
multiple calculations, including combined parameter varia-
tions toward best-case or worst-case scenarios. The under-
lying concept and calculation device is that of the Gateaux
directional derivatives [Gdteaux, 1913]. It pertains in anal-
ysis of nonlinear discrete systems [Cacuci, 1981, 2003] and
generalizes the concept of elementary effect to any dis-
placement in parameter space.

1.4. Sensitivity to Spatial Distributions of Parameters

[16] Again, the purpose here is not to test the sensitivity
of a model to every spatial distribution of its descriptive
parameters or superparameters, ignoring previous knowl-
edge on the model behavior [Lilburne and Tarantola, 2009].
The analysis rather involves a limited number of very
different and contrasted spatial distributions of parameter
values, associated with expected noticeable effects on the
soil loss results. The sensitivity to spatial distributions is the
emergent property here, whereas other deterministic tech-
niques are listed in the work by Turanyi and Rabitz [2000],
yielding so-called “distributed sensitivities.” As any spatial
distribution can be seen as a disturbance of spatial homo-
geneity, the natural sensitivity measure should make refer-
ence to the result obtained in a spatially homogeneous
configuration.

[17] We propose here a sensitivity analysis framework
relying on a multistage procedure especially designed for
distributed erosion models. This procedure discriminates
between sensitivity effects due to hydrological factors and
specific erosion properties. It resorts to deterministic mul-
tilocal sensitivity calculations in which erosion parameters
are tested one at a time or many at a time for a wide set of
combined rain intensities and runoff conditions. A combi-
nation of sensitivity analysis techniques is used but this
paper does not aim at any theoretical novelty. We rather
focus on easy-to-apply sensitivity measures allowing com-
parisons between models pertaining at different scales and
appealing to different concepts. Emphasis is placed on the
estimation of the sensitivity of a model to spatial distribu-
tions of its parameters, which is calculated and illustrated
from selected contrasted configurations. All tests were per-
formed on the OpenFluid (L. I. S. A. H. Laboratory, UMR
INRA-IRD-SupAgro, Montpellier, France, 2009; available
at http://www.umr-lisah.fr/openfluid) platform, a software
environment for modeling fluxes in landscapes.

2. Materials and Methods

2.1. Virtual Catchment

[18] In the (P, R, p) procedure, the virtual catchment is
the topographical entity on which soil loss and sensitivity
calculations are performed. Its principal features are shown
in Figure 1. Its topology is fixed. Flow paths F1 to F5 stay
unaffected by the driving rain conditions and are the only
connectivity lines between cells in the catchment, regarding
hydrological and sedimentological processes. If not bridged
by a flow line, two adjacent cells have no interactions. For
simplicity, all cells are arbitrarily represented by squares
but their length and width may vary, if distance to the
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Figure 2. Model response M in the first stage of the (P, R, p)
procedure. Unit increments separate consecutive values of
P, R, and p on each axis.

drainage line or streamwise distance has to be introduced to
fit requirements of a given model. Conversely, the surface
area of the elements should be kept constant, in accordance
with the nominal spatial scale of the model.

[19] Only spatially homogeneous values of the hydro-
logical factors accounting for precipitations P and runoff
conditions R are considered here. Asymmetry is thus pro-
vided by the flow network. This very simple nine-cell set-
ting introduces differences between the five equivalent
upstream cells (1, 2, 3, 6, 9) and higher-order cells (4, 5,
8, 7), sorted here by increasing numbers of drained cells.
Five different levels of flow aggregation exist thus in the
virtual catchment, tested for multiple pairs of hydrolog-
ical conditions (P, R). A wide data set of local (cell) and
global (virtual catchment) soil loss results is thus created.
It spans over the entire phenomenological range of the
model, from very weak erosion in upstream cells under low
water excess conditions to very strong erosion in down-
stream cells under high water excess conditions.

[20] The same number of data set entries could have been
obtained from a more complicated flowchart involving a
higher number of cells and less pairs of (P, R) values, but
would have represented a different variety in situations. We
preferred testing more (P, R) values on a reduced 3 x 3
setting for graphical simplicity and to better analyze the
contribution of interrill (or diffuse) erosion. When separately
computed in a model, interrill erosion does not depend on
flow aggregations but is governed by local rain intensity,
thus is better studied when considering more P values.

[21] The advantages of more complex flow networks a
priori remains that of more diverse patterns of flow aggrega-
tions or embranchments, occurring at more varied positions
along the linear network, this time concerning rill (linear)
erosion. But even with the simple 3 x 3 setting, the virtual
catchment partly remedies the expected drawbacks: flow
aggregations are made in two different manners, either
streamwise (1 — 4) or by embranchments (2&3 — 5,
5&6&9 — 8, 4&8 — 7). The (P, R, p) procedure tests the
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way a model performs these aggregations at different flow
strengths, depending on their position in the network and
on the imposed (P, R) values.

[22] As we focus on the role played by specific erosion
parameters, both spatially homogeneous and distributed
configurations of the descriptive parameters p are tested. In
the former case, asymmetry is only due to the flowchart,
five different and increasing soil loss results are expected at
the outlet of cells (1, 4, 5, 8, 7), involving four aggrega-
tions, for any pair of (P, R) values. In the latter case, het-
erogeneity in values of p between cells is superimposed to
asymmetry created by the flowchart.

2.2. Classification of the Parameters

[23] The (P, R, p) procedure distinguishes between the
P, R and p categories on phenomenological criteria. Input
fluxes given as rain intensities are termed ‘“precipitations”
and placed in the P category. Parameters describing slope
or taking part in the definition of an equivalent erodibility
fall in the p category. The remaining parameters, neither
directly related to erosion processes nor being input fluxes,
are termed “runoff conditions,” coded R. Though this def-
inition aims at unambiguously discriminating between R
and p parameters, it is adaptable to specificities of any
model. A general strategy regarding parameterization of all
compared models is nevertheless intended and desirable. If
for example a given parameter switches from the p to the R
category when testing a different model, the corresponding
sensitivity is recorded as a sensitivity to R and not anymore
to p values, which complicates comparative analyses.

[24] As parameters are dispatched into three independent
categories without interactions, these categories may be seen
in Figure 2 as orthogonal axis bearing values of P, R and p.
The gradation along each axis is made of unit increments:
the range of variation for “real” P, R and p values is reduced
to a certain number of segments of unit length. As references
to a central point in parameter space are made, an odd
number of values should preferentially be used in each
category, finding the same number of values on both sides
of the central position on each axis. Depending on allow-
ances of each model or on user-defined options a different
number of P and R conditions may be tested, but further
steps in the procedure impose the same number of values
for all parameters in the p category. The (P, R, p) proce-
dure requires at least three values for P and R but needs at
least five for p. Three values for P and R represent low,
median and high precipitation intensities or runoff condi-
tions, for which at least five p values are needed to draw
possible inflexions in the model response.

[25] In an event-based erosion model, one may thus have
five rain intensities corresponding to precipitations of 20,
35,50, 65 and 80 mm h ™! coded 1, 2,3,4 and 5 as P values.
In a large-scale model, if rain intensities appear as a monthly
average with a given standard deviation and additional
information on the number of rainy days, the user must
create undoubtedly “increasing” P conditions. This opera-
tion requires a minimum knowledge of the model as well as
clear modeling objectives. The simplest way to achieve the
choice in P values is to freeze all R and p values before
testing combinations of parameters intended to form the P
values, then to sort these P values by increasing calculated
soil losses.
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Figure 3. Spatially distributed B configurations used in
testing specific erosion parameters. Light, medium, and dark
gray cells receive values associated with minimum, median,
and maximum soil loss, respectively.

[26] The problem is similar in the definition of runoff
conditions. Let us consider for illustration a process-based
model where runoff is governed by the saturated hydraulic
conductivity K and initial water content 6; of the topsoil
layers. If three values are available for each, the natural
choice to form R values is to combine K and 6; in increas-
ingly favorable runoff conditions R = 1 (K; max, 6; min),
R =2 (K, median, #; median) and R = 3 (K, min, §; max).

2.3. Spatial Distributions of the Parameters

[27] Parameters of the p category should not raise defi-
nition issues, as they are tested for themselves though in
various spatial patterns, either homogeneous (4) or distrib-
uted (B). In 4 configurations, the tested parameter has the
same value in all cells and at least five levels of values are
needed: five is the minimum to correctly draw the form of
the model response in one-at-a-time variations.

[28] When designing B configurations, we opted for a
limited number of contrasted configurations, in terms of
spatial distributions and parameter values involved, as can
be seen in Figure 3. Several arguments explain this choice:
(1) the deterministic logic followed throughout this study
appeals to a small number of easily identifiable cases and
results; (2) only limited-precision data are available in
hydrology or erosion science, pleading for tests involving
contrasted data that could be related to field conditions; and
(3) these sensitivity tests do not aim at complete examina-
tion of a model but rather at identifying its behavior in the
more or less risky situations present among the proposed
heterogenous settings.

[29] For comparison purposes between homogeneous and
distributed settings, configuration B1 was chosen identical
to the median A case: when compared to Bl, other B con-
figurations could also be compared to any of the A cases.
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We then imposed three very different and simple patterns:
(1) the first subfamily of B configurations includes B2 to B5
and simulates a gradation of values by stripes, involving
only the minimal, median and maximal values among the
eleven allowed values; (2) the second subfamily includes B6
to B9 where a stripe of maximal values is placed between
two stripes of minimal values or vice versa; and (3) the last
subfamily (B10, B11) proposes gradations of values
approximately superimposed to the flowchart.

2.4. Resolution Scheme

[30] The predefined parametric configurations can be
processed in the model under control of the SENSAN
[Doherty, 2004] sensitivity analysis tool as depicted in
Figure 4. A line in the parameter variation file contains all
user-defined values of the tested descriptive parameter in the
nine cells of the virtual catchment, as well as indications of
the P and R values. Consequently, the parameter variation
files has as many lines as the number of parametric con-
figurations to be tested. Once numerical and graphical
posttreatments have been completed and the parameter
variation file has been entirely read, SENSAN’s execution
normally terminates. To keep it running on several param-
eter files in a row, i.e., for each descriptive parameter, we
used additional automation scripts.

2.5. Sensitivity Calculations

[31] When considering a single parameter, the intuitive
definition of sensitivity is a first-order approximation:

M(p) — M(po) = %—fuo p-p)=Sp-p) (1)

where M(p) is the output obtained from a certain p param-
eter value, M(p,) is the output obtained from the p starting
parameter value. S is the local sensitivity of the model,
accounting for the derivative of M(p) with respect to p and
calculated at py. In this formulation, S is implicitly constant
on [po, p], which questions the relevant size of the [py, p]
interval, especially for models associated with local non-
linear behaviors or threshold effects.
[32] According to the previous developments:

M(P)R,R - M(PO)P,R = Spr (6p) (2)

where model outputs and the associated sensitivity calcu-
lation hold for the given (P, R) values and for any (suffi-
ciently small) dp = p — po displacement in parameter space
involving one or more descriptive parameters.

[33] Using unit increments as gradations of the axis of
p values and only taking discrete values of p as multiples
of the unit increments, Spz is de facto estimated as an
approximate Gateaux directional derivative [Gdteaux, 1913;
Cacuci, 2003; Behmardi and Nayeri, 2008]:

_ M(po+Aop)pr — M(po)p 3)
B A

Sp.r

where A is a (sufficiently small) real number and dp has not
to be small anymore, provided py + dp is a point still inside
or at least on the boundaries of the parameter space.

[34] In such conditions, Sp should be termed ‘“sensi-
tivity at po in the direction of dp.” More than a formal
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MODEL Input Files MODEL Output Files
MODEL
1 HYDROLOGY |
File Formatting EROSION Numerical Treatment
| | | |
|
‘SENSAN Control File ’» SENSAN ﬂ SENSAN Output Files ‘
| |

‘ Param. Variation File ‘ ‘

Automation File

‘ ‘ Graphical Treatment ‘

|

|

Co:flg. Runoff Conditions Soi Losi LA
B 1 Precipitations s _~B
2 1 /
/\ 3 2 7
\ 3 ;
{1,23,456,7,8} 4 - .
Descriptive Parameters 5 Configurations

Figure 4. Resolution scheme proposing a coupling between the tested model, the sensitivity analysis
tool, and auxiliary programs involved in posttreatments. Represented here in bold is the run series for
the fourth precipitation value (P = 4) in strong runoff conditions (R = 3) where the tested parameter
(fourth among eight p parameters) takes spatially distributed values in the set of B configurations.

remark, it refers to a crucial property of the Gateaux deriv-
ative. We make use of it when directing the dp increment
from any chosen point toward points corresponding to best-
case or worst-case scenarios, i.c., points located at the
“hypercorners” of the parameter space, corresponding to
minimum or maximum values of P, R and p at a time.

[35] To achieve complete generality of sensitivity calcu-
lations, one has indeed to consider the local model response
as a function M(P, R, p). Using integer values for P and R
on unit-gradated axis, we may calculate sensitivities with
the formalism inherited from the Gateaux derivative for
changes in P or R values, or in both P and R values, or even
in P, R and p values at a time.

2.6. Sensitivity to Spatial Distributions

[36] The previous sensitivity calculations refer to spatially
homogenous py and p values for variations in a single or
multiple descriptive parameters. But such quantities have
no equivalent when considering spatial distributions which
need a specific sensitivity measure.

[37] We define the E(Bi) efficiency of a Bi configuration
as

M(Bi)p 5
M(BD)p s

>

E(Bi)pp= , Vie{l,, 11} (4)

where M(Bi)p x is soil loss obtained in the Bi configuration
for a given pair of (P, R) hydrological conditions and M(B1)
is that obtained in the median homogeneous case.

[38] Accordingly, we define the [SB] sensitivity of a model
to the eleven spatial distributions as the simplest measure
of dispersion of the eleven soil loss results:

SBpp = max [E(Bi)PAR] — min [E(Bi)P’R} vie {l,.,11} (5)

where the sensitivity of SB to displacements along the P and
R axis may also be studied with the formalism inherited
from the Gateaux directional derivative.

2.7. Sensitivity to Flow Aggregations

[39] Asymmetry in the flowchart of Figure 1 was intended
to create heterogeneity in soil loss results between cells,
even for spatially homogeneous values of the descriptive
parameters. The nine-cell virtual catchment exhibits five
flow aggregation levels, associated with positions of the
cells in the network. Flow aggregations occur either in a
streamwise (or longitudinal) manner or by embranchments,
with lateral inflows. The purpose of this section is to elu-
cidate the behavior of a model at the nodes of the flow
network, under varied (P, R) hydrological conditions, for
spatially homogeneous p values. Do flow aggregations have
a linear effect on soil loss? Is this effect affected by the
hydrological conditions, and how? What are the sensitivity
trends?

[40] These issues should be addressed in sensitivity anal-
ysis because they refer to constitutive elements of a model,
to its inner structure. The sensitivity to flow aggregations is
certainly not disconnected from the sensitivity of a model
to its parameters: its analysis is rather a complementary
approach. In the virtual catchment, such an analysis requires
soil loss results at the outlet of the involved cells (1, 4, 5,
8, 7) to be recorded, whereas other sensitivity results concern
soil losses at the global outlet. As any network integrates both
longitudinal and lateral flow aggregations: results obtained in
our very simple pattern (but for many hydrological conditions)
may be extrapolated to much more complicated patterns. They
may also be extrapolated to other water excess conditions,
once known sensitivity trends appearing with varied (P, R)
values.
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Figure 5. Candidate p parameters are extracted from the innate parameterization of the model, tested
one at a time (section 2.8.3) under indicated precipitation P and runoff R conditions, and then sorted
by increasing soil loss order in as many values of the superparameter p, termed equivalent erodibility.

[41] The model response is M(P, R, p) and we consider
here the spatially homogeneous case for hydrological con-
ditions (P, R) and all descriptive parameters contained in p.
Changing variables, we introduce M(X, p) where X is an
unknown function X(P, R) representing the amount of water
flowing out of a given cell. Consequently, X depends on
local (P, R) values in a cell as well as on the inflow provided
by immediate upstream cells. X can therefore be expressed
as a function of the local runoff x and the incoming
upstream flow y. With these notations X becomes X(x, y).

[42] For illustration, let us describe flow aggregation
between cells 1 and 4.

[43] 1. For example, soil loss at the outlet of cell 1 is
M(X,, p) with indicial notation X, (x;, y;) for local cell values.
But no incoming upstream flow y; must be considered as
cell 1 itself is an upstream cell. We may thus express soil
loss at the outlet of cell 1 as M(x;, p).

[44] 2. Passing downstream to the next cell, soil loss at the
outlet of cell 4 is M(Xy, p), with X4(x4, y4) and y, = x;. We
may now write M(x4, x1, p). Introducing 6x = x, — x|, we use
the equivalent expression M(6x, p) which relates soil loss at
the outlet of cell 4 to the streamwise flow aggregation Ox
between cells 1 and 4.

[45] 3. It is then possible to test the sensitivity of this
quantity to different levels of P, R and p by comparing
M(6x, p) with 6M = M(X,, p) — M(X,, p). The same calcu-
lation pertains for lateral aggregations.

2.8. Stages of the Procedure

2.8.1. Objectives

[46] This section deals with construction of the multi-
stage (P, R, p) procedure, describing a progressive and
orientated exploration of parameter space. A combination of
OAT and LH sampling methods is applied, which reduces
the parameterization to superparameters accounting for

equivalent slope (py) and equivalent erodibility (p.). These
essential components of any erosion model are then tested
individually and together to yield final sensitivity results
prone to graphical representation. The following paragraphs
enumerate the stages of the procedure for spatially homo-
geneous configurations of the descriptive p parameters. A
last item indicates adaptations to the case of spatially dis-
tributed p values.
2.8.2. Preliminary Stage

[47] The already-described preliminary stage is the clas-
sification of fluxes and parameters into the independent P, R
and p categories. A further subdivision of the p category
is needed for models that distinguish between linear (rill)
and diffuse (interrill) erosion processes, before building the
equivalent erodibility from the “equivalent linear erodibil-
ity” and “equivalent diffuse erodibility.” If a parameter
is called in both erosion processes, the best solution when-
ever possible is to separately test its values in both pro-
cesses under two different names. When no distinction exists
between linear and diffuse erosion, for example in regional-
scale models, the procedure simply aims at building an
equivalent erodibility.
2.8.3. Individual One-at-a-Time Tests

[48] Figure 5 depicts the situation where candidate descrip-
tive parameters of the model are erodibility, rooting depth
and soil texture. OAT tests are performed on each of them
under three combinations of P and R values, namely the
less, median and most prone to soil loss. These tests involve
at least five parameter values covering the entire nominal
range of variation. Useful representations of the results are
“spider diagrams” plotting the relative output variation in
y ordinate versus the relative input variation in x ordinate,
the center of the diagram being the (0, 0) reference point.
When testing a parameter, all others are held at their refer-
ence (median) values.
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Figure 6. Exploration of superparameter space involving
one-at-a-time (OAT, black circles) and Latin Hypercube
(LH, white circles) displacements in values of the equivalent
slope p, and equivalent erodibility p.. Best-case and worst-
case scenarios are the less and most risky situations regard-
ing erosion, respectively.

[49] If the model is proven to be insensitive to a candidate
parameter under varied hydrological conditions, this param-
eter is excluded from the procedure. We discard the prob-
lematic though improbable case where a parameter has no
influence if tested alone but a strong influence if tested in
correlation with some other parameters. The choice we
make here is coherent with the fact that prior knowledge is
available on tested models. Moreover, such problematic
behaviors should have been removed or smoothened during
construction of the models.

[50] If the model is sensitive to a candidate parameter, the
sign of the sensitivity is checked for: is it a positive one, an
increase in parameter value causing an increase in model
response, or a negative one? For parameters showing a
negative sensitivity, the list of values is re-sorted in opposite
order, so that progressing inside this list finally gives
increasing soil loss values. In the chosen example, erod-
ibility values are certainly already sorted in the right order,
whereas rooting depth values probably need re-sorting. The
trend is a priori uncertain for soil texture values and may
even depend on (P, R) conditions.

2.8.4. Rules to Form Superparameters

[51] In the next step, superparameters are formed by
assembling values of each of the retained candidate para-
meters into increasing p, values. Figure 5 shows five tested
values coded 1 to 5 for erodibility (el to e5), rooting depth
(r1 to 5) and soil texture (¢1 to #5). In addition, soil texture
was supposed here to have a positive sensitivity. Then five
combinations of values are available to form the equivalent
erodibility, which are (el, r5, t1), (€2, r4, 12), (€3, 3, 3),
(e4, 12, t4) and (e5, rl, £5) in increasing soil loss order.
Depending on specificities of the models, at least two super-
parameters are built: equivalent slope (p;) and equivalent
erodibility (p.). The latter is subdivided into equivalent
linear erodibility and equivalent diffuse erodibility only in
detailed models.
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[52] Through options retained in the construction of super-
parameters, the procedure follows an imaginary line between
best-case and worst-case scenarios. This strategy of an ori-
entated exploration must be related to what is expected
from erosion models: identifying risky situations or changes
in parameter values leading to progressively more risky
situations. Consequently a similar but enriched approach is
maintained in exploration of superparameter space, where
trajectories are still centered on the best-case—worst-case axis.
2.8.5. Exploration of Superparameter Space

[53] Shown in Figure 6 is the coverage of superparameter
space from values of the equivalent slope p, and equivalent
erodibility p.. The minimum grid of five by five values is
presented in the background. Two types of explorations are
clearly visible, involving OAT displacements between black
circles and Latin Hypercube (LH) samples between white
circles. The first diagonal is the axis linking the best-case to
the worst-case scenarios, for any given (P, R) conditions.
The second diagonal is a transverse axis of lesser impor-
tance but whose points are needed to complete sensitivity
maps in the (p,, p.) plane.

[s4] All sensitivity calculations resort to equation (3). The
default algorithms perform sensitivity calculations between
two successive points on the OAT or LH axis. They could
be easily extended to displacements between any two circles
but were found sufficient to obtain relevant sensitivity
information in the (py, p.) plane. As the general expression
for soil loss is M(P, R, p,, p.), local sensitivity results are
available for variations in P, R, p, p. and for any displace-
ment involving one or more arguments of the M function.
2.8.6. Adaptations for Spatially Distributed
Configurations

[55] Figure 7 is the adaptation of Figure 5 to the case of
spatially distributed parameters. Each one of the candidate
descriptive parameters takes the eleven spatial distributions
of Figure 3. All configurations are then sorted by increasing
efficiencies relative to the reference configuration B1. In this
example, the least “productive” configuration (in terms of
calculated soil loss) for e is B3 and the most productive is
BS8. Bl is near the beginning of the list, which means that
many spatially distributed configurations yield more soil
loss than the median homogeneous case. Depending on
models and hydrological conditions, the position of Bl in
the list may drastically vary between simulations.

[56] Gathering results for all descriptive parameters, B,
values are assembled exactly like p, values. If B3, B6 and
B9 are the least productive configurations for e, » and ¢
respectively, then B,1 is the combination (eg3, g, ?go)
representing the lesser risk among tested spatial distributions
of the superparameter p,. At the other end of the list, in the
fictitious situation of Figure 7 the higher risk B.11 is
reached when parameters e, » and ¢ take the B8, B5 and B6
patterns, respectively. The logic is still to draw the line from
best-case to worst-case scenarios, for each of the super-
parameters p, and p,, then for both.

[57] Figure 8 is the adaptation of Figure 6 and describes
how B, and B, values associated with p, and p, are arranged
into OAT and LH samples. In the suggested exploration of
superparameter space, B.6 plays the role of the median p.3
value in Figure 6. Again, the diagonal of primary interest
joins the (B1, B.1) and (Bs11, B,11) points at the lower left
and upper right of the (B, B,) plane. Directional sensitivity
calculations along OAT and LH axis allow comparisons

8 of 13



W08508 CHEVIRON ET AL.: SENSITIVITY ANALYSIS OF DISTRIBUTED EROSION MODELS WO08508
Candidate parameters tﬂ B1}/ =
for equivalent erodibility ¢ B1 4 71

e : erodibility
r : root depth
t: soil texture
@ ref. value

Soil Loss

fictitious results fore
(Pmax,Rmax)

(Pmed,Rmed)
(Pmin,Rmin)

for e,rt
B3... B1 B9 B11 B6 B10... B8

B configurations sorted
by increasing soil loss

Depending
on results

TB11

r

B1

B1 B11
o—ec—>

Super-parameter of
equivalent erodibility

Best Case Worst Case
1 11

L | | Ly
f T T 1L

(e3:rsertae) (epssras:tae)

B,1 B, 11

Figure 7. Spatial distributions of the candidate p parameters are tested individually and then gathered
and sorted by increasing soil loss order in as many values of the superparameter B, termed spatially dis-

tributed equivalent erodibility.

between effects of the distributions of the p, and p, para-
meters. Sensitivity maps discussed in the next section plot
this information obtained from both model responses (black
and white circles) and sensitivity calculations (displacements
between circles).

3. Results and Representation

3.1. Spatially Homogeneous Configurations

[58] In the final stages of the (P, R, p) procedure, the innate
parameterization of the tested model has been altered at the

/75
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Figure 8. Exploration of superparameter space involving
one-at-a-time (OAT, black circles) and Latin Hypercube
(LH, white circles) displacements in distributed configura-
tions of the equivalent slope p, and equivalent erodibility p..

benefit of a M(P, R, p,, p.) description where M is model
response, P accounts for rain intensity, R for runoff condi-
tions, p, is the superparameter of equivalent slope and p,
that of equivalent erodibility. Like P and R values, both p,
and p, values are coded into unit increments along the cor-
responding axis (Figure 5).

[59] The description involves five quantities: the problem
has five dimensions but only a planar representation allows
sufficiently detailed information to be plotted. Figure 9
indicates how dimensionality may be reduced by placing
on the x ordinate the arguments of the M function and on
the y ordinate its values. The arguments are sorted by
increasing P, R, p; and/or p, values. For a given (P, R)
hydrological condition, there are as many curves in Figure 9
as trajectories explored in the (py, p.) superparameter space.
Shown in Figure 9 is the case where only p, is varied.

[60] A complete model response is shown in Figure 10a.
It was obtained from early tests performed during devel-

<=1

M(P3,R1,p.4)

M(P3,R3,p.2) M(P3,R5,p3)
Figure 9. Two-dimensional representation of the 5-D
problem in (M, P, R, p,, p.) used for spatially homogeneous
parametric configurations: P, R, p, and/or p, values are placed
on the x ordinate, and only M appears in the y ordinate.
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Figure 10. Dashboard used to represent (a) soil loss results and (b) directional sensitivities of a model
when dealing with spatially homogeneous parameters. Eleven values of the slope parameter were tested
with other descriptive parameters all held at their reference spatially homogeneous values. G,,, Gp, and
G are Gateaux derivatives indicating variations in model response for unit increments along the
axis of p, P, and R values. These results were obtained during development of the physics-based erosion

model “MHYDAS-Erosion.”

opment of the physics-based erosion module relying on
the existing hydrological model “MHYDAS” [Moussa
et al., 2002]. In MHYDAS-Erosion (S. J. Gumiere et al.,
MHYDAS-erosion: A physically based spatially-distributed
erosion model for agricultural catchment application, submitted
to Hydrological Processes, 2010), the slope parameter is
identical to the equivalent slope. Precipitation intensities P1
to P5 were 20, 35, 50, 65 and 80 mm /! during two hours.
Runoff conditions Rl to RS were formed from combina-
tions of saturated hydraulic conductivity and initial surface
water content as indicated at the end of paragraph 2.2.
Eleven slope values pl to pl1 between 1% and 30% were
available, so that model response is plotted from 5 x 5 x
11 = 275 points. Apart for slight anomalies in response to
the (P1, R3) and (P2, R2) hydrological conditions and a low
point in the (P4, R1) series, the expected “triple” soil loss

increase for increasing values of P, R and p is simulated as
expected.

[61] Multilocal sensitivity results (Figure 10b) also depend
on P, R, and p, values. They are represented using the same
graphical device as for model responses, which composes a
dashboard to summarize a model’s behavior (Figure 10).
Directional sensitivities G,, Gp and Gy are approximate
Gateaux derivatives calculated from equation (3), using sepa-
rate unit increments in p, P and R. They give sensitivity
results as absolute algebraic variations in the same unit as
the model response, which is part of their relevancy and
facilitates analysis. We also chose to represent G,, before Gp
and Gy for an easier visual interpretation, especially when
comparing magnitudes of the function and its derivatives.

[62] Missing points in the curves of Figure 10b are con-
sequences of the “positive unit increment” option used to
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Figure 11. Dashboard used to represent soil loss results and multilocal sensitivity of a model when

dealing with spatially distributed superparameters. Tested here were the eleven spatially distributed con-
figurations B, of the equivalent erodibility. These results were obtained during development of the

physics-based erosion model MHYDAS.

calculate sensitivities. For example, sensitivity results Gp(P,
R, p) represented in the P4 column address variations from
M(PA, R, p) to M(P5, R, p) and no such results are given for
variations from P5 to P6 because P6 does not exist. The
same applies here when values p = 10 and R = 4 are reached.

[63] Sensitivity results show here noticeably high points
in the G, curve corresponding to transitions between the
first (1%) and second (3%) slope values which resulted in
threshold effects, more pronounced for median (P, R) values
near the middle of the curve. The Gp curve rises with
increasing (P, R) conditions then stabilizes, indicating a
near-linear effect of P values for high water excess condi-
tions. The sensitivity to an increase in runoff conditions is
somewhat different. Whatever the P value, Gy strongly
decreases when R is increased, the effect being again more
pronounced for median P values.

3.2. Spatially Distributed Configurations

[64] Figure 9 is easily adaptable to the case of spatially
distributed parameters, where B, 1 to B.11 play the same role
as p,.l to p,5. The expression for model response M(P, R,
By, B,) is unambiguous only when accompanied by indica-
tions on the trajectory in superparameter space, either ver-
tical, horizontal or diagonal in Figure 8.

[65] Figure 11 shows a dashboard obtained from tests
with spatially distributed values of the descriptive para-
meters, during development of MHYDAS-Erosion. By con-
struction, the equivalent erodibility superparameter integrates
soil cohesion in rills, rill erodibility, Manning coefficient,
sediment size, streamwise length of a plot, number of rills,
interrill erodibility and a coefficient accounting for effi-
ciency of interrill transport. From preliminary individual
OAT tests the number of rills was found by far the most

sensitive parameter and strongly influences the overall
sensitivity results. In such a case, the most productive spatial
configurations are always the same when increasing (P, R)
values, which would not be true for models governed by
many parameters of varying sensitivity.

[66] The SB sensitivity measure (equation (5)) reports the
dispersion of model responses obtained from all configura-
tions, normalized by the response in the reference configu-
ration. Consequently, SB has a unique value for the tested
set of spatially distributed configurations of p, and/or p,
under given (P, R) conditions.

[67] Three tokens of convergence are visible on the right
of Figure 11, for increasing (P, R) water excess conditions
corresponding to more risky situations for erosion: (1) the
model has predicted soil losses which do not exponentially
increase, (2) SB reaches a quite high but asymptotic value
and (3) values of Gp and Gy come close to zero, indicating
progressively smaller changes of SB with increments of P
and R values.

3.3. Sensitivity Maps

[68] A more focused representation is sensitivity maps.
They express the behavior of a model in the (p;, p.) plane,
i.e., when scanning values of the equivalent slope and
equivalent erodibility, for given (P, R) conditions. Figure 12
was obtained from the MESALES model whose responses
are discrete classes of erosion risks. The corresponding
integer values are placed at the nodes of superparameter
space and curves of isovalues yield a clearly understandable
result. For this test on MESALES, P values were chosen
identical to the innate “ih” values accounting for rain
amount and intensity in the model. Runoff conditions were
formed by combination of a value of crusting and indication
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Figure 12. Sensitivity map obtained in the final stage of
the analysis, describing the behavior of a model for tested
values of its two superparameters of equivalent slope p;
and equivalent erodibility p,.. This representation pertains
to spatially homogeneous or distributed cases and holds
for given (P, R) hydrological conditions. Shown here is a
test in strong (P, R) conditions on the MESALES model,
whose responses are integers representing discrete classes
of erosion risks. Curves of isovalues are traced, and regions
of high sensitivity are identified by close isovalues.

of a land use. Rather erosive climatic conditions were used
to plot Figure 12, obtained for P = 4 whereas the maximum
P value was 5. A near-maximum crusting value was chosen
for the “vineyards” land use, resulting in very contrasted
erosion risks, ranging from the minimum (one) to the
maximum (five) possible values.

[69] In this example, p. dominates over p, as curves of
isovalues tend to be parallel to the x axis but hypercube
(combined) effects are nonnegligible, both near best-case
and worst-case scenarios. Isovalues slightly resemble circles
centered on the lower left and upper right of the graph and
asymmetry exists between results on the vertical and hori-
zontal OAT axis. Strictly speaking, segments of high sen-
sitivity are identified when crossing several isovalues in a
small displacement on any one of the four sensitivity axis:
other results require interpolation methods and minimal
prior knowledge on the behavior of the model.

4. Conclusion

[70] The formal and theoretical work presented here aims
at establishing a framework suitable for sensitivity analysis
of spatially distributed models and graphical representation
of the results. It relies on the causal link existing between
hydrology and erosion. This link is exploited in the (P, R, p)
procedure distinguishing between input fluxes (precipita-
tions P), propensity to surface flows (runoff conditions R)
and specific erosion processes (descriptive parameters p).
The latter convert driving phenomena into particle detach-
ment and soil loss, expressed as the discrete nonlinear model
response M(P, R, p).

[71] As many descriptive parameters may be included
in the innate parameterization of the model, the relevant
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general form is M(P, R, p) where p is the vector whose
components are the spatially homogenous parameter values
on the nine-cell virtual catchment designed for the simu-
lations. When spatially distributed values of the descrip-
tive parameters are considered, the model response is
termed M(P, R, B) where B refers to any of the eleven very
contrasted configurations used to produce significant deter-
ministic results.

[2] To reach sufficient genericity and allow further
comparisons between models on a common basis, the dimen-
sionality of parameter space is reduced as superparameters
accounting for equivalent slope (p;) and equivalent erod-
ibility (p.) are obtained from selected combinations of all
intrinsic parameters. These superparameters are tested one
at a time then together, resulting in Latin Hypercube sam-
ples, in both spatially homogeneous and distributed cases.

[73] At this stage, model responses are transformed into
M(P, R, p,, p.) and M(P, R, B, B.), where B, and B, are
spatially distributed values of the superparameters sorted by
increasing soil loss. Throughout its successive develop-
ments, the deterministic sensitivity estimation procedure
always relies on a limited series of cases, orientated from
best-case to worst-case scenarios.

[74] Directional sensitivity calculations are performed:
the evolution of model responses is followed for any dis-
placement in superparameter space involving variations
in one or more arguments of the M function. The SB sen-
sitivity of a model to the tested spatial distributions of its
descriptive parameters is defined and its evolution also
tracked for variations in the driving (P, R) hydrological
conditions. For given (P, R) conditions, sensitivity maps are
plotted in the (py, p.) plane to estimate relative importance of
the equivalent slope and equivalent erodibility.

[75] Finally, the (P, R, p) procedure yields multilocal
and risk-orientated deterministic sensitivity results, placing
emphasis on trajectories in parameter space corresponding
to increasing erosion risks. Facilities for graphical representa-
tions are also proposed here. Further developments will be
an application to comparative sensitivity analyses involving
erosion models pertaining at different scales and appealing
to different concepts.

[76] Acknowledgments. The authors are indebted to three anony-
mous peer reviewers for the quality and exhaustivity of their recommenda-
tions. This study is part of the ANR-MESOEROS21 project, granted by the
French National Agency for Research.
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