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Abstract
Background: The Nme family, previously known as Nm23 or NDPK, is involved in various
molecular processes including tumor metastasis and some members of the family, but not all,
exhibit a Nucleoside Diphosphate Kinase (NDPK) activity. Ten genes are known in humans, in
which some members have been extensively studied. In non-mammalian species, the Nme protein
family has received, in contrast, far less attention. The picture of the vertebrate Nme family remains
thus incomplete and orthology relationships with mammalian counterparts were only partially
characterized. The present study therefore aimed at characterizing the Nme gene repertoire in
vertebrates with special interest for teleosts, and providing a comprehensive overview of the Nme
gene family evolutionary history in vertebrates.

Results: In the present study, we present the evolutionary history of the Nme family in vertebrates
and characterize the gene family repertoire for the first time in several non-mammalian species.
Our observations show that vertebrate Nme genes can be separated in two evolutionary distinct
groups. Nme1, Nme2, Nme3, and Nme4 belong to Group I while vertebrate Nme5, Nme6, Nme7,
Nme8, and Nme9 belong to Group II. The position of Nme10 is in contrast more debatable due to
its very specific evolutionary history. The present study clearly indicates that Nme5, Nme6, Nme7,
and Nme8 originate from duplication events that occurred before the chordate radiation. In
contrast, Nme genes of the Group I have a very different evolutionary history as our results suggest
that they all arise from a common gene present in the chordate ancestor. In addition, expression
patterns of all zebrafish nme transcripts were studied in a broad range of tissues by quantitative
PCR and discussed in the light of the function of their mammalian counterparts.

Conclusion: This work offers an evolutionary framework that will pave the way for future studies
on vertebrate Nme proteins and provides a unified vertebrate Nme nomenclature that is
consistent with the nomenclature in use in mammals. Based on protein structure and expression
data, we also provide new insight into molecular functions of Nme proteins among vertebrates and
raise intriguing questions on the roles of Nme proteins in gonads.

Background
The first descriptions of Nucleoside Diphosphate Kinase
(NDPK) activity, that corresponds to the phosphoryl

transfer from a nucleoside triphosphate to a nucleoside
diphosphate, were made in pigeon breast muscle [1] and
yeast [2]. Sequences encoding for proteins with putative
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[3] or experimentally validated [4-6] NDPK activity were
subsequently identified. These proteins, originally named
NDPK based on their NDPK activity, belong to the Nme
protein family according to current official gene nomen-
clature [7-10]. These proteins "expressed in non-meta-
static cell", and thus named Nme, were also previously
known as Nm23 proteins. In humans, the NME family is
composed of ten genes and some of the proteins, but not
all, exhibit NDPK activity.

Nme genes were first identified in mouse [11] and in the
fruit fly Drosophila melanogaster [12] in which they drew
attention for their surprising implication in tumor metas-
tasis process [11] and in normal fly development [12]
respectively. Soon, several orthologs of these genes were
identified in other organisms ranging from the bacteria
Escherichia coli [13] to humans [14]. They were subse-
quently studied for their role as tumor metastasis suppres-
sor or enhancer depending on the cancer type. To date, ten
genes displaying partial or complete NDPK domains have
been identified in humans (reviewed in [15]). Proteins of
this family were classified into two groups based on
sequence characteristics and NDPK activity [15]. Group I
Nme proteins (Nme1 to 4) display a particularly well con-
served domain and active site, whereas Group II Nme pro-
teins (Nme5 to 10) display highly divergent domains and
all of them, except Nme6, lack NDPK activity [15]. In fish
and amphibians, proteins of the Nme family have been
implicated in key developmental processes in the oocyte
or embryo [16-18]. However, the Nme proteins repertoire
remains uncharacterized in almost all non-mammalian
vertebrates. In teleost fish, only two Nme sequences were
reported [18,19]. In non-mammalian species, the picture
of the Nme family remains fuzzy and the orthology rela-
tionships of reported Nme proteins with their mamma-
lian counterparts were only partially characterized
[18,20]. Therefore, the evolutionary process which gave
rise to such a complex gene family remains poorly under-
stood and requires a complete characterization that will
pave the way for future investigations of the roles of Nme
proteins in vertebrates.

In the present study, we describe the evolutionary history
of the Nme gene family in chordates and provide, for the
first time, a comprehensive characterization of the Nme
gene repertoire in vertebrates.

Results and Discussion
Evolutionary history of Nme gene family in vertebrates
Nucleoside disphosphate (NDP) kinase activity is ubiqui-
tously found in organisms from bacteria to humans. In
humans, ten NME genes exist that have been separated in
two groups based on their amino-acid sequence [15].
These two groups originate from a gene duplication of a
single NDPK ancestor gene that probably occurred before

or around the metazoan radiation [21]. As indicated
above, the evolutionary history of vertebrate Nme pro-
teins has received very little attention as most existing
studies focused on mammalian proteins or on specific
members of the family [15,18,20,21]. Some information
is however available in cellular slime molds [22], dro-
sophila and C. elegans [21]. In contrast, available data in
chordates and non-mammalian vertebrate species are
extremely limited apart from the report of several Nme
sequences [18-20].

A two group classification
The phylogenetic analysis of Nme proteins (Fig. 1) shows
two strongly supported distinct clusters. Nme1, Nme2,
Nme3, and Nme4 belong to the Group I cluster while
Nme5, Nme6, Nme7, Nme8 and Nme9 belong to the
Group II cluster. Within each group, all Nme subtypes are
also distinctly separated from each other, with the excep-
tion of Nme9 sequences that are only found in eutherians
and appear to be closely related to Nme8 sequences (Fig.
1). The analysis of the domain structure of Nme proteins
using the NCBI Conserved Domain Database [23] clearly
demonstrates the existence of two distinct groups among
Nme1 to 9 proteins (Fig. 2) that clearly possess distinct
domains. Proteins of the Group I (Nme1 to 4, Table 1)
display a single type NDPk_1 domain while proteins of
the Group II (Nme5 to 9, Table 2) display a single or sev-
eral NDPk domains of different types, associated or not
with extra-domains. For all Nme, the sequence structure,
including domain(s) nature(s), length or position in the
sequence, as well as the exon-intron structure (Fig. 3A
&4), is highly conserved between human and zebrafish
(Danio rerio) proteins. Together, our results on exon-
intron structure, protein domains, and phylogenetic anal-
ysis, clearly indicate that the separation of vertebrate
Nme1 to Nme9 proteins in two groups that has been pro-
posed in mammals [15] is also valid for all vertebrates.

Nme10, the outgroup of the family
Nme10 protein, previously named X-linked Retinitis Pig-
mentosa 2 (XRP-2), is the most recently identified member
of the Nme family and vertebrate Nme10 proteins form a
specific group as shown by the phylogenetic analysis (Fig.
1). It is also noteworthy that sequence identities between
prochordates and vertebrates range from 34.5% to 58.2%,
indicating a high divergence between prochordate and
vertebrate proteins in comparison to the high sequence
identity observed among vertebrates species (i.e. 60.9% to
93%) [See Additional file 1]. The protein domain analysis
reveals that all vertebrate Nme10 only possess a partial
NDPk domain (Fig. 2), which is not present in either
Ciona (Ciona intestinalis) or lancelet (Branchiostoma flori-
dae) Nme10 proteins (data not shown). The comparison
of the exon-intron structure of the Nme10 gene between
lancelet and vertebrates (Fig. 4E) clearly shows that the
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Localisation Position

9 Chr 8q 5,908,347-5,908,808
4 Chr 2q 7,888,026-7,888,562

Chr Un 116,102,546-116,104,838
Chr Un 116,092,575-116,094,429

Contig24671 6,345-8,952

Chr 17 46,585,919-46,594,449
0 Chr 11 93,820,547-93,829,574
4 Chr 19 36,634,791-36,645,841
50 Chr 2 184,090,725-184,104,175
28 SuperContig 18222 1,054-2,769
1 Chr18 9,930,932-9,933,309
767 Scaffold_268 1,710,978-1,717,896

Chr 17 46,598,821-46,604,103
7 Chr 11 93,811,130-93,817,195

Chr 19 36,625,295-36,629,092
3† Chr 2 184,076,307-184,081,978

29 SuperContig 18222 6,818-8,864
8 Chr18 5,062,096-5,064,054
779 Scaffold_268 1,724,830-1,729,637
4 Scaffold_673 77,640-81,451

Chr 17 49,230,997-49,249,103
7 Chr 17 50,152,238-50,171,443
5† Chr 11 26,692,478-26,707,469
6 Chr 19 36,625,292-36,645,867

SuperContig18222 1057-8751
1 Scaffold_268 1,706,438-1,729,637

8 Chr 20 5,310,868-5,319,057
9 Chr 19 21,821,808-21,827,808
7 Scaffold_48 706,609-708,477

0 Chr Un_random 34,843,841-34,848,064
0 Scaffold_29 678,695-680,960
Table 1: Group I Nme proteins: names and symbols by species, accession numbers and corresponding chromosomal loca

Species Name Other names GenBank Acc # Ensembl Acc #

C. intestinalis NmeGp1CiA NDK B XP_002123476 ENSCINP0000001161
C. intestinalis NmeGp1CiB XP_002121438 ENSCINP0000000219

NmeGp1 B. floridae NmeGp1BfA XP_002206993
B. floridae NmeGp1BfB XP_002206992
P. marinus Nme2 FD722053*
P. marinus Nme3/4 FD718234*

H. sapiens NME1 NDK A; NM23-H1; GAAD NP_937818 ENSP00000337060
M. musculus Nme1 NDK A; Nm23-M1 NP_032730 ENSMUSP0000002122
B. taurus Nme1 NDK A; NDKA2; NBR-A NP_991387 ENSBTAP0000000610

Nme1 M. domestica Nme1 LOC100012868 XP_001363771 ENSMODP000000157
O. anatinus Nme1 ENSOANP000000186
G. gallus Nme1 Nm23A XP_420097 ENSGALP0000001181
A. carolinensis Nme1 ENSACAESTP00000008

H. sapiens NME2 NDK B; NM23-H2; PUF NP_001018149 ENSP00000376888
M. musculus Nme2 NDK B; Nm23-M2 NP_032731 ENSMUSP0000002121
B. taurus Nme2 NDK B; PUF NP_001069844

Nme2 M. domestica Nme2 NDK B XP_001363684 ENSMODP0000001574
O. anatinus Nme2 ENSOANP000000186
G. gallus Nme2 CNDPK; NDK_CHICK NP_990378 ENSGALP0000003407
A. carolinensis Nme2 ENSACAESTP00000008
X. tropicalis Nme2 NME1 NP_001005140 ENSXETP0000002476

H. sapiens NMELV NME1-NME2 NP_001018146 ENSP00000376894
P. troglodytes NmeLV NME1-NME2 XP_511889 ENSPTRP0000004465

Nme-LV E. caballus NmeLV NME1-NME2 XP_001499951 ENSECAP0000001917
B. taurus NmeLV NDKB-BOVIN ENSBTAP0000004106
O. anatinus NmeLV NME1-NME2 XP_001515701
A. carolinensis NmeLV ENSACAP0000000216

D. rerio Nme2a NM23B; nme2l NP_956264 ENSDARP0000006433
O. latipes Nme2a ENSORLP0000001842

Nme2a G. aculeatus Nme2a ENSGACP0000002011

T. nigroviridis Nme2a CAF90396† ENSTNIP0000000573
T. rubripes Nme2a ENSTRUP0000001452

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002123476
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002121438
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002206993
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002206992
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FD722053
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FD718234
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_937818
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_032730
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_991387
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_001363771
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_420097
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001018149
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_032731
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001069844
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_001363684
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_990378
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001005140
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001018146
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_511889
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_001499951
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_001515701
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_956264
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAF90396
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ARP00000074169† Scaffold Zv7_NA1913 1,772-2,772
Nme2b Scaffold Zv7_NA1913 8,750-9,346

RLP00000023099 Scaffold1014 323-3,121
RUP00000001870 Scaffold_307 158,498-160,002

SP00000219302 Chr 16 1,760,323-1,761,711
USP00000024978 Chr 17 25,033,459-25,034,448
ALP00000003531 Chr 14 13,989,877-13,991,647
CAP00000003455 Scaffold_1065 123,674-128,641

Nme3 ETP00000022770 Scaffold_27 933,363-937,018
ARP00000075112 Chr 3 13,184,712-13,194,308
RLP00000014699 Chr 8 15,106,871-15,109,573
ACP00000017241 GroupXI 12,674,486-12,677,154
RUP00000011464 Scaffold_294 107,469-108,977
NIP00000014528 Chr Un_random 6,812,965-6,814,848

SP00000219479 Chr 16 387,193-390,754
USP00000025007 Chr 17 26,228,682-26,232,433

Chr 14 13,763,108-13,764,673
CAP00000016602 scaffold_1361 31,704-32,514

Nme4 ETP00000022726 Scaffold_27 1,305,654-1,312,714
ARP00000060403 Chr 3 14,178,447-14,192,697
RLP00000014089 Chr 8 14,902,635-14,905,718
ACP00000016999 GroupXI 12,533,938-12,535,079
RUP00000012573 Scaffold_112 81,060-82,895
NIP00000022136 Chr Un_random 7,826,243-7,828,703

Protein name e browser, or by UCSC Genome Bioinformatics BLAT when not available on 
Ensembl. *, s

Table 1: Gro omosomal location (Continued)
D. rerio Nme2b1 nme2; nme1; ndpkz1; NM23B NP_571001 ENSD
D. rerio Nme2b2 Ndpkz2 NP_571002
O. latipes Nme2b NDKA; GAAD; NME1-NME2 ENSO
T. rubripes Nme2b NDKA; GAAD ENST

H. sapiens NME3 NDPKC; DR-nm23; NM23-H3 NP_002504 EN
M. musculus Nme3 NDPKC; DR-nm23; Nm23-M3 NP_062704 ENSM
G. gallus Nme3 NDPKC; DR-nm23 XP_414714 ENSG
A. carolinensis Nme3 NDPKC; NDK 3; DR-nm23 ENSA
X. tropicalis Nme3 MGC89980 NP_001005115 ENSX
D. rerio Nme3 ndpkz3; NDPK-Z3 NP_571003 ENSD
O. latipes Nme3 NDK 3; NDPKC; DR-nm23 ENSO
G. aculeatus Nme3 NDK 3; NDPKC; DR-nm23 ENSG
T. rubripes Nme3 NDK 3; NDPKC; DR-nm23 ENST
T. nigroviridis Nme3 NDK 3; NDPKC; DR-nm23 CAG02649 ENST

H. sapiens NME4 NDPKD; NM23-H4 NP_005000 EN
M. musculus Nme4 NDPKD; Nm23-M4 NP_062705 ENSM
G. gallus Nme4 NDPKD AAB99857
A. carolinensis Nme4 ENSA
X. tropicalis Nme4 NP_001039239 ENSX
D. rerio Nme4 zgc:56482 NP_957489 ENSD
O. latipes Nme4 NDPKD ENSO
G. aculeatus Nme4 NDPKD ENSG
T. rubripes Nme4 NDPKD ENST
T. nigroviridis Nme4 NDPKD CAG12673 ENST

s were retrieved from Genbank, Ensembl, iHOP and ZFIN. Location was obtained using Ensembl genom
equence is an EST. †, incomplete sequence.

up I Nme proteins: names and symbols by species, accession numbers and corresponding chr

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_571001
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_571002
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_002504
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_062704
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_414714
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001005115
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_571003
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAG02649
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_005000
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_062705
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAB99857
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001039239
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_957489
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAG12673
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addition of the partial NDPk domain in vertebrates is
associated with a different number of exons in the 3' end
of the gene. Together, these observations suggest that a
partial NDPk domain was inserted in the Nme10 gene
before the gnathostome radiation. As the current status of
the lamprey genome preliminary assembly did not allow
us to identify any Nme10-related gene in lamprey we are
currently unable to provide a better evaluation of the tim-
ing of the insertion of this NDPk fragment into the Nme10
gene in the vertebrate lineage. In summary, our observa-
tions clearly show that Nme10, in contrast to all other ver-
tebrate Nme proteins, is characterized by a recent
incorporation of an NDPk domain. However, because of
the gene nomenclature used in mammals [24], we suggest
to name this gene Nme10 in vertebrates. In contrast, the
classification of this gene in the Group II is more debata-
ble in the light of its totally different evolutionary history.

Nme5, Nme6, Nme7 and Nme8 originate from duplication events 
that occurred prior to the chordate radiation
We have been able to identify Nme5, Nme6, Nme7, and
Nme8 proteins in ciona and lancelet as well as in all inves-
tigated vertebrate species, with the exception of the lam-
prey in which Nme7 and Nme8 could not be found in the
current genome preliminary assembly. While we cannot
rule out that Nme7 and Nme8 have been lost in lamprey,
it is also possible that the preliminary status of the
genome assembly and the relatively low sequencing cov-
erage (5.9X) can explain why we have been unable to
identify these genes. It should however be stressed that
both domain (Fig. 2) and exon-intron structure (Fig. 4A-
D) of Nme5, Nme6, Nme7, and Nme8 are particularly well
conserved among chordates, with the exception of lance-
let Nme6 gene that displays a very specific exon-intron
structure. In addition, Nme5, Nme6, Nme7 and Nme8
proteins exhibit high degree of identity among chordates
[See Additional files 1, 2, and 3]. In addition, the orthol-
ogy relationships among species are also clearly supported
by the phylogenetic analysis for each protein subtype (Fig
1). Together with existing data on the origin of Group II
Nme proteins [21], our observations indicate that Nme5,
Nme6, Nme7, and Nme8 genes originate from duplication
events that occurred before the chordate radiation.

Nme9, a novel eutherian Nme8-related protein
The Nme9 protein was recently characterized and classi-
fied as a member of Group II [24,25]. Thus far, Nme9 has
only been found in human, mouse and cow databases but
not in any non-mammalian vertebrate species (Table 2).
The human NME9 protein contains a Thioredoxin
domain (TRX_NDPk) and an NDPk_TX domain that are
also found in the N-terminus region of the human NME8
protein (Fig. 2). Similarly, NME8 and NME9 display a
similar exon-intron structure in the 5'-region of the gene
(Fig. 4D). It is also noteworthy that Nme8 and Nme9 genes

are located on different chromosomes in both humans
and mice. Based on these observations, we hypothesize
that Nme9 originates from an incompletely translocated
duplication of the Nme8 gene. The position of human and
mouse Nme9 sequences in the phylogenetic analysis sup-
port the strong relationship between Nme9 and Nme8
(Fig. 1). The position of Nme9 sequences within the
Nme8/Nme9 subtree is in contrast inconsistent with the
above hypothesis. The possibility that prochordate, tele-
ost, and amphibian Nme8 proteins would be more
closely related to mammalian Nme9 proteins than to
mammalian Nme8 proteins can however be ruled out by
the highly conserved exon-intron structure (Fig. 4D) and
domain organization (Fig. 2) of the Nme8 gene among
chordates. Altogether, these results clearly indicate that
Nme9 belongs to the Group II of the Nme proteins. Given
that Nme9 gene could only be found in eutherians our
data suggest that Nme9 arose from a duplication event
that occurred after the separation of eutherian and
metatherian groups.

Vertebrate Nme proteins of the Group I
In mammals, the Group I Nme is composed of Nme1,
Nme2, Nme3 and Nme4 and orthologs could be identi-
fied in both anole lizard and chicken. The situation is in
contrast much more complex for amphibians, teleosts,
lamprey and prochordates as discussed below.

Gnathostome Nme3 and Nme4 originate from an Nme3/4 
vertebrate ancestor
In Xenopus tropicalis, as well as in all studied teleost,
orthologs of amniotes Nme3 and Nme4 proteins could be
identified (Fig. 1). The phylogenetic analysis of Group I
Nme proteins reveals a strongly supported divergence of
Nme4 from other Nme of the Group I (Fig. 1). At the
amino-acid level, Nme4 proteins exhibit sequence identi-
ties ranging from 40.2 to 85.1% among vertebrates [See
Additional file 2]. Nme4 protein domain structure is also
very well conserved between human and zebrafish as the
domain size is equal in both species (130 aa) even though
some minor differences exist in pre- and post-domain
length (Fig. 2). Similarly, Nme4 exon-intron structure is
also very well conserved in Xenopus, zebrafish and
human, and differences only concern exon size in the pre-
domain coding region (Fig. 3A). The phylogenetic analy-
sis also suggests that Nme3 proteins are divergent from
Nme1/Nme2 (Fig 1). Nme3 proteins display sequence
identities ranging from 58.4 to 84.1% among vertebrates
[See Additional file 2]. The Nme3 protein domain struc-
ture (Fig. 2) is identical in humans and zebrafish. Simi-
larly an identical exon-intron structure (Fig. 3A) was
observed in Xenopus tropicalis, human and zebrafish nme3
genes. Together, these observations strongly suggest that
despite the low support values of the Nme3 branch on the
phylogenetic tree (Fig. 1), orthologs of mammalian Nme3
Page 5 of 25
(page number not for citation purposes)



B
M

C
 E

vo
lu

tio
na

ry
 B

io
lo

gy
 2

00
9,

 9
:2

56
ht

tp
://

w
w

w
.b

io
m

ed
ce

nt
ra

l.c
om

/1
47

1-
21

48
/9

/2
56

Pa
ge

 6
 o

f 2
5

(p
ag

e 
nu

m
be

r n
ot

 fo
r c

ita
tio

n 
pu

rp
os

es
)

tion

Localisation Position

54† Chr 7q 1,031,987-1,036,756
Chr Un 731,166,868-731,169,160

Contig18268 2,311-13,400
1 Chr 5 137,478,761-137,503,031
269 Chr 18 34,722,295-34,738,760
919 Chr 13 14,517,448-14,548,478
699 Scaffold_29 3,794,500-3,804,710
322 Scaffold_65 2,613-8,494
997 Chr 14 55,814,542-55,821,523
672 Chr 10 13,043,372-13,046,033
932 GroupIV 11,477,537-11,479,481
405 Scaffold_126 261,197-263,042
421 Chr 1 943,305-945,715

45† Scaffold_1779 5,509-6,021
Chr Un 307,935,668-307,942,172

5 Chr 3 48,310,595-48,317,852
053 Chr 9 109,735,308-109,745,475
875 Chr 1 96,907-98,947
165 Scaffold_2735 3,138-10,113
257 Scaffold_857 287,305-293,502
574 Chr 20 19,668,343-19,681,489
366 Chr 24 13,630,759-13,633,495
120 GroupXVIII 10,683,098-10,684,634
600 Scaffold_72 321,734-323,012
439 Chr 14 5,693,013-5,693,908

29† Chr 1p 3,423,461-3,424,231
Chr Un 788,282,087-788,292,883

5 Chr 1 167,368,399-167,603,810
862 Chr 1 166,237,803-166,334,805
531 Chr 1 87,015,645-87,088,484

165 Scaffold_2735 3,138-10,113
150 Scaffold_169 1,646,165-1,680,298
091 Chr 6 20,659,126-20,718,810
661† Chr 4 29,680,976-29,697,346
067 GroupVIII 17,708,704-17,717,807
937 Scaffold_13 352,791-361,358
782 Chr 1 10,762,024-10,774,089
Table 2: Group II Nme proteins: names and symbols by species, accession numbers and corresponding chromosomal loca

Species Name Other names GenBank Acc # Ensembl Acc #

C. intestinalis Nme5 ci-ndk/dpy26 NP_001154961 ENSCINP000000089
B. floridae Nme5 XP_002211295
P. marinus Nme5 DW023083*
H. sapiens NME5 NDK-H5; NM23-H5; IPIA-β NP_003542 ENSP0000026519
M. musculus Nme5 NDK-M5; Nm23-M5 NP_542368 ENSMUSP00000078

Nme5 G. gallus Nme5 NDP kinase homolog 5; IPIA-β XP_414687 ENSGALP00000022
A. carolinensis Nme5 NDP kinase homolog 5; IPIA-β ENSACAP00000016
X. tropicalis Nme5 NDPK homolog 5; IPIA-β NP_001072619 ENSXETP00000008
D. rerio Nme5 zgc:92812 NP_001002516 ENSDARP00000060
O. latipes Nme5 NDP kinase homolog 5; IPIA-β ENSORLP00000006
G. aculeatus Nme5 NDP kinase homolog 5; IPIA-β ENSGACP00000023
T. rubripes Nme5 NDP kinase homolog 5; IPIA-β ENSTRUP00000001
T. nigroviridis Nme5 NDP kinase homolog 5; IPIA-β CAG01205 ENSTNIP00000013

C. intestinalis Nme6 NDK 6; IPIA-α XP_002129729 ENSCINP000000279
B. floridae Nme6 XP_002217997
P. marinus Nme6 EE741045*
H. sapiens NME6 IPIA-α; NDK-H6; NM23-H6 NP_005784 ENSP0000030712
M. musculus Nme6 NDK-6; Nm23-M6 NP_061227 ENSMUSP00000035

Nme6 G. gallus Nme6 NDK 6; IPIA-α XP_424474 ENSGALP00000015
A. carolinensis Nme6 NDK 6; IPIA-α ENSACAP00000008
X. tropicalis Nme6 NDK 6; IPIA-α NP_001123709 ENSXETP00000034
D. rerio Nme6 Ndpkz6 NP_571672 ENSDARP00000094
O. latipes Nme6 NDK 6; IPIA-α ENSORLP00000020
G. aculeatus Nme6 NDK 6; IPIA-α ENSGACP00000014
T. rubripes Nme6 NDK 6; IPIA-α ENSTRUP00000019
T. nigroviridis Nme6 NDK 6; IPIA-α CAG09120† ENSTNIP00000019

C. intestinalis Nme7 NDK/DM44 NP_001155162 ENSCINP000000251
B. floridae Nme7 XP_002244666
H. sapiens NME7 NDK-7; NM23-H7 NP_037462 ENSP0000035678
M. musculus Nme7 NDK-7; Nm23-M7 NP_612187 ENSMUSP00000027
G. gallus Nme7 NDK-7 ENSGALP00000024

Nme7 A. carolinensis Nme7 NDK-7 ENSACAP00000008
X. tropicalis Nme7 MGC75677 NP_988903 ENSXETP00000005
D. rerio Nme7 Ndpkz4; Ndpkz7 NP_571004 ENSDARP00000073
O. latipes Nme7 DK039970* ENSORLP00000019
G. aculeatus Nme7 NDK 7 ENSGACP00000018
T. rubripes Nme7 NDK 7 ENSTRUP00000012
T. nigroviridis Nme7 NDK 7 ENSTNIP00000004

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001154961
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002211295
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DW023083
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_003542
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_542368
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_414687
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001072619
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001002516
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAG01205
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002129729
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002217997
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EE741045
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_005784
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_061227
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_424474
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001123709
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_571672
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAG09120
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001155162
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002244666
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_037462
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_612187
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_988903
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_571004
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DK039970
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CINP00000013583 Chr 9q 3,694,058-3,703,935
Chr Un 302,074,149-302,085,811

SP00000199447 Chr 7 37,854,724-37,906,525

MUSP00000089358 Chr 13 19,736,950-19,789,629
GALP00000019704 Chr 2 46,221,676-46,240,899

Nme8 ACAP00000017404 Scaffold_28 5,222,555-5,265,400
XETP00000002355 Scaffold_664 444,670-467,036

Chr13 17,124,355-17,152,394
ORLP00000020619 Chr 21 22,030,361-22,038,307
GACP00000008024 GroupXVI 11,682,650-11,688,299
TRUP00000026461 Scaffold_46 902,376-907,179
TNIP00000019567 Chr 2 14,973,997-14,979,390

SP00000321929 Chr 3 137,980,279-138,048,205
Nme9 Chr 9 99,360,108-99,371,350

BTAP00000017071 Chr 1 132,828,887-132,856,623

CINP00000026020 Chr 14q 3,012,876-3,017,751
Chr Un 778,883,396-778,885,823

SP00000218340 Chr X 46,696,347-46,741,793
MUSP00000111049 Chr X 19,941,607-19,982,781
GALP00000026942 Chr 1 134,314,101-134,332,289

Nme10 ACAP00000011842 Scaffold_571 329,765-343,988
XETP00000008933 Scaffold_253 956,431-969,596
DARP00000065116 Chr 6 40,312,188-40,323,321
ORLP00000020082 Chr 4 30,358,786-30,362,942

GACP00000018275 GroupVIII 18,001,999-18,006,009
TRUP00000027655 Scaffold_13 677,342-680,474
TNIP00000013571 Chr 1 11,019,475-11,022,175

Protein nam  browser, or by UCSC Genome Bioinformatics BLAT when not available on 
Ensembl. *, 

Table 2: Gr mosomal location (Continued)
C. intestinalis Nme8 TXNDC3; CiIC3 NP_001027618 ENS
B. floridae Nme8 XP_002217610
H. sapiens NME8 TXNDC3; CILD6; NM23-H8; 

SPTRX2
NP_057700 EN

M. musculus Nme8 Txndc3; Sptrx2 NP_853622 ENS
G. gallus Nme8 TXNDC3 XP_426021 ENS
A. carolinensis Nme8 TXNDC3; Sptrx-2 ENS
X. tropicalis Nme8 TXNDC6; Txl-2 NP_001121456 ENS
D. rerio Nme8 zgc:162216 NP_001082944
O. latipes Nme8 TXNDC6; Txl-2 ENS
G. aculeatus Nme8 TXNDC6; Txl-2 ENS
T. rubripes Nme8 TXNDC6; Txl-2 ENS
T. nigroviridis Nme8 TXNDC6; Txl-2 CAG09297 ENS

H. sapiens Nme9 TXNDC6, TXL-2 NP_835231 EN
M. musculus Nme9 TXL-2 XP_893103
B. taurus Nme9 TXNDC6 NP_001069083 ENS

C. intestinalis Nme10 XRP2 XP_002121234† ENS
B. floridae Nme10 XP_002243612
H. sapiens NME10 RP2; TBCCD2 NP_008846 EN
M. musculus Nme10 Rp2h NP_598430 ENS
G. gallus Nme10 RP2; XRP2_CHICK NP_001008680 ENS
A. carolinensis Nme10 XRP2 ENS
X. tropicalis Nme10 XRP2 ENS
D. rerio Nme10 RP2 NP_998611 ENS
O. latipes Nme10 XRP2 ENS

G. aculeatus Nme10 RP2 ENS
T. rubripes Nme10 XRP2 ENS
T. nigroviridis Nme10 XRP2 CAG01390 ENS

es were retrieved from Genbank, Ensembl, iHOP and ZFIN. Location was obtained using Ensembl genome
sequence is an EST. †, incomplete sequence.

oup II Nme proteins: names and symbols by species, accession numbers and corresponding chro

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001027618
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002217610
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_057700
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_853622
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_426021
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001121456
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001082944
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAG09297
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_835231
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_893103
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001069083
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002121234
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_002243612
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_008846
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_598430
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001008680
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_998611
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAG01390
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Phylogenetic reconstruction of the Nme protein family in chordatesFigure 1
Phylogenetic reconstruction of the Nme protein family in chordates. The phylogenetic tree was constructed from a 
single multiple alignment. Bootstrap values for neighbor joining, maximum parsimony, and maximum likelihood methods, 
respectively, are indicated for each node. * indicates that the node does not exist in the corresponding tree. The consensus 
tree was calculated with the FIGENIX [87] automated phylogenomic annotation pipeline. Nme1-Nme2 subtree was removed 
from the main tree and studied separately (see Figure 5) for tetrapods and teleosts because of high sequence similarity and dif-
ferent evolutionary history. For each sequence, NCBI or Ensembl accession number and species are shown.
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proteins can be found in teleosts and amphibians. This
conclusion is further supported by the phylogenetic anal-
ysis carried out using all available teleost Nme sequences
regardless of the genome sequencing status of the species
[See Additional file 4] in which high bootstrap values sup-
port the Nme3 branch.

In contrast to teleosts, amphibians and mammals, only
one Nme3/Nme4-related sequence could be found in
lamprey. Interestingly, the phylogenetic analysis suggests
that this sequence is related to both Nme3 and Nme4
groups (Fig. 1). The exon-intron structure of this Nme3/
Nme4-related lamprey gene reveals similarities with both
Nme3 and Nme4 genes (Fig. 3A). Interestingly, when add-
ing non-coding and coding parts, the size of the second
exon of the lamprey Nme3/Nme4-related gene is exactly
the same as the size of the second exon of Xenopus Nme3,

zebrafish Nme3, human Nme3, and zebrafish Nme4. It
should also be noted that for both Nme3 and Nme4, the
first intron is inserted after the first base of a codon.
Finally, it is noteworthy that Nme3 and Nme4 genes are
always located on the same chromosome (Table 1) at very
close locations in mammals, chicken, Xenopus and tele-
osts. Altogether, these observations suggest that, in the
vertebrate ancestor, for whom the lamprey is the most
closely related descendant, only one Nme3/Nme4-related
gene existed. We hypothesize that this ancestor Nme3/
Nme4 gene gained a start codon in the first exon after the
separation of cyclostomes and gnathostomes lineages.
Nme3 and Nme4 subsequently arose from a cis-duplica-
tion of this gene that occurred before or around teleost
radiation. The Nme3/Nme4-related gene found in lamprey
was thus named Nme3/4 to reflect its phylogenetic rela-
tionship with Nme3 and Nme4 genes.

Proteins domains of human and zebrafish Nme proteinsFigure 2
Proteins domains of human and zebrafish Nme proteins. The Genbank Conserved Domain Database was used for 
protein domain characterization [23]. Amino acid numbers corresponding to the beginning and the end of each domain are 
indicated and the total amino acid length number of the protein is shown at the end of each protein.
Page 9 of 25
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Intron-Exon structure of Group I Nme genes in chordatesFigure 3
Intron-Exon structure of Group I Nme genes in chordates. (A) Intron-Exon structure and evolutionary depiction of 
Group I Nme gene structure among chordate lineage. (B) Intron-Exon structure of human NMELV transcript compared to 
Intron-Exon structure of human NME1 and NME2. Intron-exon structure was obtained using Ensembl database, or, when no 
information was available, by Blat of protein and cDNA sequences on genomes assemblies. Boxes correspond to exons. Non-
coding exons are shown in grey. The size of introns and exons in nucleotides is shown. Introns are not drawn to scale.
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Intron-Exon structure of Group II Nme genes in chordatesFigure 4
Intron-Exon structure of Group II Nme genes in chordates. Intron-Exon structure of Nme5 (A), Nme6 (B), Nme7 (C), 
Nme8/NME9 (D), and Nme10 (E) genes structure among chordates. Intron-exon structure was obtained using Ensembl data-
base, or, when no information was available, by Blat of protein and cDNA sequences on genomes assemblies. Boxes corre-
spond to exons. Non-coding exons are shown in grey. The size of introns and exons in nucleotides is shown. Introns are not 
drawn to scale.



BMC Evolutionary Biology 2009, 9:256 http://www.biomedcentral.com/1471-2148/9/256
An amniote specific cis-duplication of Nme1/2 ancestor gene
In contrast to Nme3 and Nme4, orthologs of both human
NME1 and NME2 can only be found in amniotes and
form two clusters corresponding to Nme2 and Nme1 pro-
teins respectively (Fig. 5A). In Xenopus tropicalis and lung-
fish (Protopterus dolloi), only one Nme1/Nme2-related
protein was identified as shown by the phylogenetic anal-
ysis. No Nme1-like cDNA was found among the 1.2 mil-
lion Xenopus tropicalis ESTs available in public databases
(August 2009). Within amniotes, Nme1 and Nme2 are
always located on the same chromosome (Table 1). Fur-
thermore, in mammals and lizard, Nme1 and Nme2 are
always located next to each other (Fig. 6). In addition, the
synteny analysis of Nme1 and Nme2 in tetrapods demon-
strated that conserved genes in the vicinity of human
NME1 and NME2 genes could be identified among all
studied amniote species (Fig. 6). In chicken, we hypothe-
size that a chromosomal inversion of the chromosomic
part located between Nme1 and Myadl2 resulted in the
separation of the two genes. In amniotes, Nme2 and Nme1
are always linked to Mbtd1 and Spag9. In Xenopus tropicalis,
the synteny conservation in the vicinity of Nme2 is less
clear (Fig. 6). Nevertheless, note that Dusp14 is in the
vicinity of Nme2 among all tetrapods with the exception
of chicken and anole lizard. Altogether, these observa-
tions suggest that, in all studied amniote species, Nme1
and Nme2 are co-orthologs of Xenopus tropicalis Nme1/
Nme2-related gene, and that a cis-duplication event of the
ancestor gene occurred before or around amniote radia-
tion. This observation is in total agreement with the con-
clusions made by Ishikawa and coworkers [21] indicating
that rat and human NME1 and NME2 resulted from a cis-
duplication of a common ancestor gene. This is also con-
sistent with the previously made hypothesis of a duplica-
tion of the ancestor gene that occurred after the separation
of tetrapods and fish lineages and after amphibians and
amniotes divergence [18,20]. However, we cannot rule
out that the cis-duplication of Nme1/Nme2-ancestor gene
occurred before amphibian radiation. In that case, the
duplication would have been followed by the loss of
Nme1 in amphibians. However, no trace of an Nme1 gene
could be found on Xenopus tropicalis genomic sequence
between Nme2 and Dusp4 genes (Fig. 6). This observation
would thus be in favor of the hypothesis of duplication of
the Nme1/Nme2 ancestor gene after amphibian radiation.

Mammalian Nme2 is most closely related to the Nme1/Nme2 
ancestor gene
Comparison of the primary structure of Nme1 and Nme2
reveals that both proteins are highly conserved among
amniotes with mean amino-acid (aa) sequence identities
of 83,1% and 88.5% respectively [See Additional file 5]. It
is also noteworthy that Nme2 is more conserved than
Nme1 among vertebrates. The phylogenetic analysis sug-
gests that both lungfish (Protopterus dolloi) and Xenopus

Nme1/Nme2-related proteins would be more closely
related to amniote Nme2 than to Nme1 (Fig. 5A). In addi-
tion, the exon-intron structure of Xenopus Nme1/Nme2-
related gene is highly similar to human NME2 exon-
intron structure (Fig. 3A). This highly conserved exon-
intron structure is also found in zebrafish (Fig. 3A). In
contrast, human NME1 exon-intron structure is different
from human NME2 and Xenopus sequences as it exhibits
an additional exon at the 5' end of the gene. Together,
these observations indicate that NME2 is most similar to
the ancestor gene while NME1 exhibits a different exon-
intron structure. For this reason, the Xenopus tropicalis
Nme1/Nme2-related gene was named Nme2. This name
was thus also used for Nme1/Nme2-related genes found in
teleosts and lamprey.

The NmeLV form
Using the different sequence databases available in amni-
otes, a long variant transcript, corresponding to a read-
trough transcript of Nme1 and Nme2 genes can be found
in human, chimpanzee, horse, cow, platypus, and anole
lizard (Table 1). In contrast, this read-through transcript
could not be found in chicken in which a chromosomal
inversion resulted in the separation of Nme1 and Nme2
genes on the chromosome. Interestingly, the human tran-
script is composed of the first four exons of NME1 and all
NME2 exons (Fig. 3B). To date, the corresponding pro-
tein, Nme Long Variant (NmeLV) has only been studied in
humans [26] and no information is available in other spe-
cies.

Nme2a and Nme2b in teleosts probably emerged from 3R genome 
duplication and Nme2a is most similar to the vertebrate ancestor
In studied teleost species, the number of Nme1/2-related
genes varies from 1 to 3 depending on the species (Fig.
5B). As indicated above, these genes have been named
nme2 because they are most similar to the Nme2 gene (Fig.
2 &3A). The phylogenetic analysis revealed that nme2a is
present in the five teleost species with complete genome
sequence, whereas nme2b genes could not be found in
stickleback and tetraodon (Fig. 5B). In contrast, a single
Nme2b protein was found in medaka (Oryzias latipes),
and fugu (Takifugu rubripes) while, the phylogentic tree
clearly indicates a further duplication of the nme2b gene in
zebrafish resulting in two distinct proteins termed
Nme2b1 and Nme2b2. The phylogenic analysis also sug-
gests that Nme2a and Nme2b are co-orthologs of the lam-
prey Nme2. This further confirms that the lamprey Nme2
gene could be a direct descendant of the Nme2 ancestor
gene (Fig. 5B). In addition, zebrafish Nme2a, Nme2b1,
and Nme2b2 have exactly the same protein domain struc-
ture, with the same total length and the same NDPk_1
domain located at the same position (Fig. 2). Similarly,
zebrafish nme2a, nme2b1, and nme2b2 have exactly the
same coding exon structure (Fig. 3A). As previously indi-
Page 12 of 25
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cated, the exon-intron structure is well conserved among
vertebrate Nme2 genes and clearly distinct from the Nme1
gene. Conserved genes in the vicinity of nme2a gene in tel-
eosts were identified among studied species by a synteny
conservation study (Fig. 7). For medaka, stickleback (Gas-
terosteus aculeatus), tetraodon (Tetraodon nigroviridis), and
fugu, the synteny is well conserved and the mbtd1 gene
was found in the vicinity of the nme2a gene in agreement
to what is observed in tetrapods (Fig. 7). Interestingly,
Nakatani et al [27], demonstrated that medaka chromo-
some 19, on which is located nme2a, is orthologous to a
part of human chromosome 17, on which NME1 and
NME2 are located. In addition, the primary structure
appears to be more conserved for Nme2a in comparison
to Nme2b as they display 73.9 and 67.7% mean aa iden-
tities respectively [See Additional file 5]. Altogether, these
observations suggest that among teleost nme2 genes,
nme2a is most similar to the ancestor gene. In teleost, the
nme2b gene was not found in tetraodon and stickleback,
thus indicating a possible loss of this gene in both species.
Furthermore, for all studied teleosts displaying nme2a and
nme2b, the two paralogous genes are always located on
different chromosomes or scaffolds (Table 1). Interest-
ingly, the fugu nme2b gene is associated to a paralog of
mbtd1 (data not shown), suggesting that the duplication
event from which nme2a and nme2b arose in teleost is
linked to the teleost-specific third round of whole genome
duplication (3R). The phylogenetic analysis performed
using all available Nme2 sequences in teleosts [See Addi-
tional file 6] would be in favor of this hypothesis as
numerous other teleost species from different genders
such as seabream (Sparus aurata), pike (Esox lucius), sea-
bass (Dicentrarchus labrax), black cod (Anoploma fimbria),
and grouper (Epinepheles coioides) exhibit nme2a and
nme2b genes. Finally, it is noteworthy that, in contrast to
nme2, gene duplicates resulting from 3R whole genome
duplication were not retained for other teleost nme genes.

nme2b1 and nme2b2 emerged from a cis-duplication of nme2b
In contrast to nme2a, very little information is available on
the position of nme2b genes in teleosts as they are all
located on scaffolds. In zebrafish, it should nevertheless
be noted that nme2b1 and nme2b2 genes are located in
tandem on the same scaffold (Table 2). This suggests a cis-
duplication event of zebrafish nme2b ancestor gene from
which nme2b1 and nme2b2 genes arose.

The Nme gene repertoire in the vertebrate ancestor
In order to better characterize the putative Nme gene rep-
ertoire of the vertebrate ancestor, we have analyzed Nme-
related sequences available in the two prochordate Ciona
intestinalis and Branchiostoma floridae. As discussed above,
orthologs for Nme5, Nme6, Nme7, Nme8 and Nme10
could be identified, thus indicating that these genes
emerged before chordate radiation (Fig. 1). Concerning

Group I Nme, two sequences could be found in both spe-
cies. In the lancelet, the genome second assembly availa-
ble from the Joint Genome Institute [28], clearly shows
that only two Group I Nme genes are present in the lance-
let genome. The phylogenetic analysis (Fig. 5A), clearly
indicates that the two lancelet sequences are closely
related to each other but clearly divergent from Ciona
intestinalis, lamprey and tetrapod Nme1/Nme2 sequences.
Similarly, the two Ciona intestinalis sequences are closely
related to each other but highly divergent from other
Nme1/Nme2 sequences. In this species, both genes are
located on different chromosomes whereas in the lancelet
they are located in tandem on the same chromosome.
Altogether, these observations suggest that the Group I
Nme gene pair arose from a cis-duplication of an ancestor
gene in lancelet, whereas emergence of the two Group I
Nme genes in ciona is more likely to be explained by a
duplication followed by a translocation event. We thus
hypothesize that in each species, the two genes result from
an independent duplication event of an ancestor gene
common to all chordates. This would be consistent with
the number of Group I Nme genes in lamprey, as genera-
tion of Nme2 and Nme3/4 can be explained by the first
round of whole genome duplication (1R) which occurred
early in the vertebrate lineage [27]. The ancestor gene,
from which emerged all Group I Nme, was thus named
NmeGroupI (NmeGp1) (Fig. 8).

Expression and putative functions of Nme proteins
Nme1/2-related proteins
Given its role in metastatic dissemination, the Nme1 pro-
tein, has been extensively studied in humans and rodents
[15,24]. A significant amount of data is also available for
Nme2 [29]. Homologs of human genes were identified in
several vertebrate species, such as rodents [6,30], cow
[31], Xenopus laevis [20], zebrafish [19], salmon [18]; and
non-vertebrate species such as scallop [32], drosophila
[33], Dictyostelium discoideum [5], Myxococcus Xanthus [3],
Schizosaccharomyces pombe [34] and various plants [35].
The orthology relationship of these Nme1/2-related pro-
teins with human counterparts was not, however, always
thoroughly characterized. Nme1/2-related proteins, as all
Group I Nme, display a single NDPk_1 domain (Fig. 2),
and various enzymatic assays demonstrated its kinase
activity in different species [4,20,30-32,36]. According to
our observations (Fig. 9A), the zebrafish Nme2 proteins
display all the key residues for enzyme structure and activ-
ity [37,38] thus suggesting that Nme2 protein could
exhibit a NDPK activity. Nme2 is widely expressed in
adult tissues as shown in rat [39] and mouse [40,41]. Dur-
ing mouse embryogenesis, Nme2 protein accumulation is
coincident with the functional differentiation of multiple
organs [42]. No data are available about tissue expression
of Nme2 in adult Xenopus. During Xenopus laevis early
development, Nme2 transcripts cannot be detected before
Page 13 of 25
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:256 http://www.biomedcentral.com/1471-2148/9/256
mid-blastula transition (MBT) but are expressed in differ-
entiating tissues at later stages, thus suggesting an implica-
tion in cell differentiation and proliferation [17]. Our
tissue distribution study has shown that the three nme2
zebrafish genes have very different tissue expression pat-
terns (Fig. 10). In a previous study, an nme2 homolog was
cloned in zebrafish [19]. This transcript, initially named
nme23-b, corresponds to nme2b1 and was found to be
expressed in hepatopancreas, head, ovary, and intestine
by northern blot analysis. These observations are in total
agreement with the broad tissues distribution of nme2b1

with a predominant expression in ovary and gills (Fig. 10)
reported in the present study. In contrast to what is
observed for nme2b1, zebrafish nme2a and nme2b2 have
very specific tissue distributions (Fig. 10). It should how-
ever be stressed that, despite the extremely high expres-
sion in muscle, nme2b2 is also significantly expressed in
all assayed tissues. Similarly nme2a expression is also
weakly detected in all tissues in addition to the strong
expression observed in eyes and testis. In Atlantic salmon,
an nme2-related mRNA, belonging to the nme2a sub-fam-
ily [See Additional file 6], is highly expressed in brain, and

Phylogenetic analysis of Nme1 and Nme2 proteinsFigure 5
Phylogenetic analysis of Nme1 and Nme2 proteins. Tetrapods Nme1 and Nme2 (A) and teleost Nme2 (B) phylogenetic 
trees were constructed from separate multiple alignments. Bootstrap values for neighbor-joining, maximum parsimony, and 
maximum likelihood methods, respectively, are indicated for each node. * indicates that the node does not exist in the corre-
sponding tree. The consensus tree was calculated with the FIGENIX automated phylogenomic annotation pipeline [87]. For 
each sequence, accession number and species name are shown.
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during early development it could not be detected before
the end of gastrulation [18]. Altogether, the tissue distri-
bution of the three zebrafish nme2 genes suggests that
nme2a and nme2b genes have undergone specialization
after duplication of a common ancestor nme2 gene [43].
Interestingly, Cañestro et al [44] recently demonstrated
that in the case of the loss of one paralog after a duplica-
tion event, the surviving paralog can display combined
expression pattern of both paralogs kept in another spe-
cies. In the light of this conclusion, it would be interesting
to study nme2 expression in species that lack the nme2b

copy. Human NME2 was first identified as the PuF tran-
scription factor that recognizes a nuclease hypersensitive
site (NHE) motif in the c-myc promoter and stimulates
transcription [29,45,46]. NME2 transcriptional activation
of c-myc gene by binding to its promoter was confirmed in
mouse [47] and Xenopus laevis [20]. Furthermore, Awd,
the drosophila NME2 homolog, is required for proper dif-
ferentiation and tissues morphology [12]. Thus, NME2
expression pattern during embryogenesis is consistent
with implication in cell proliferation and differentiation.
In addition, human NME2 may associate with estrogen

Conserved synteny around Nme1 and Nme2 loci in tetrapodsFigure 6
Conserved synteny around Nme1 and Nme2 loci in tetrapods. The syntenic relationships of genes in the vicinity of 
human NME1 and NME2 linked genes were established using CASSIOPE. For clarity reasons, only selected genes are shown. 
(A) Graphical view of syntenic relationships in chicken, human, mouse, cow, opossum, and anole lizard Nme1 and Nme2 loci 
vicinity. Only one Nme2 was found in Xenopus tropicalis (B) Location of each marker on the corresponding numbered chromo-
some or scaffold.
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receptor-β and is able to modulate estrogen-induced gene
transcription [48]. Implication of NME2 in regulation of
gene expression has also been demonstrated for other
genes implicated in several biological processes including
nuclease activity (for review see [49]). Altogether, availa-
ble data suggest that vertebrates Nme2 proteins are
involved in a wide variety of cellular processes that require
further investigations.

Nme3
The Nme3 protein has been characterized in humans [50-
52] and mice [53]. Nme3, as all the proteins of the Group
I, displays a single NDPk_1 domain (Fig. 2). In humans,
enzymatic activity could not be measured using the full
length recombinant protein [36], but a truncated recom-

binant protein displayed kinase activity similar to that of
the NME1 and NME 2 proteins [52]. We show here that
zebrafish Nme3 possesses all the residues necessary for
enzyme structure and activity [37,38] (Fig. 9A). Together,
these observations would suggest an NDPk activity of the
zebrafish Nme3. Zebrafish tissue distribution analysis
showed that nme3 is expressed in all studied tissues with
the strongest expression in the ovary, and a lower, but sig-
nificant, expression in testis, eye and gills (Fig. 10). To our
knowledge, the strong ovarian expression of nme3 has
never been reported in vertebrates in a non-malignant
context. In contrast, existing data indicate that human
NME3 is ubiquitously expressed in non-metastatic tissues
with a particularly strong expression in specific structures
of the brain [15]. During mouse organogenesis, Nme3 is

Conserved synteny around the nme2a locus in teleost fishFigure 7
Conserved synteny around the nme2a locus in teleost fish. Syntenic relationships of genes in the vicinity of nme2a gene 
was established using Ensembl orthology informations [83]. (A) Graphical view of syntenic relationships in zebrafish, medaka, 
stickleback, tetraodon and fugu nme2a locus vicinity. (B) Location of each marker on the corresponding numbered chromo-
some or scaffold.
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preferentially expressed in the nervous and sensory system
[54], whereas in adult mouse, transcripts are found ubiq-
uitously distributed with higher expression in brain and
liver [53]. During Xenopus laevis embryogenesis, it was
shown that Nme3 was predominantly expressed in the
head region [55]. To date, very little is known about
NME3 function in a non-malignant context. It was shown
that over-expression of NME3 gene in 32Dc13 peripheral
blood cells inhibited differentiation into granulocytes and
caused apoptosis [50], without requiring NDPk enzy-
matic activity [56]. In addition, it was shown that NME3
induces morphological changes associated with neural
differentiation in neuroblastoma cells [57] and that it
could act on cell motility by enhancing the amount of
integrin β [58]. In the Xenopus laevis it was shown that
Nme3 was highly expressed in the ciliary marginal zone of
the retina and involvement of Nme3 in cell fate determi-
nation during retinogenesis was therefore suggested [55].
It was also shown that NME3 was an estrogen-responsive

gene in the context of mammary tumors [59]. To date, no
information is available on the physiological or cellular
functions of Nme3 in teleosts. However, an implication in
cell differentiation, proliferation and apoptosis can be
hypothesized.

Nme4
Nme4 protein has been characterized in humans [60],
mouse [53], pigeon [61] and Xenopus laevis [55]. Nme4, as
all Group I Nme, is composed of a single NDPk_1 domain
(Fig. 2). Zebrafish Nme4 possesses all the residues neces-
sary for enzyme structure and kinase activity [37,38] (Fig.
9A). In humans, the enzymatic activity of NME4 was
experimentally confirmed [36,62]. As reported here (Fig.
9C), all studied Nme4 tetrapod proteins naturally display
a serine residue at position 129, equivalent to the lethal
Killer of prune (K-pn) mutation of the drosophila [12]. It
was previously shown that the presence of Serine129 resi-
due has local structural effects that weaken subunit inter-

Schematic depiction of Nme genes repertoire in chordatesFigure 8
Schematic depiction of Nme genes repertoire in chordates. For each species, the repertoire of Nme genes is shown 
with the exception of lamprey in which Nme7, Nme8, and Nme10 could not be found in the genome preliminary assembly. 
These three genes were thus shaded in grey.
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actions and decreases hexamer stability [62]. Strikingly,
teleost Nme4 sequences do not display the Serine129, but
display the Proline129 shared by all other Group I Nme
members (Fig. 9C). The presence of this mutation in tetra-
pod proteins that cannot be found in any studied teleost
species suggests that this mutation appeared just after the
sarcopterigian radiation. It was recently shown that
human NME4 binds the inner mitochondrial membrane
and couples nucleotide transfer with respiration [63]. The
binding property to mitochondrial membranes is due to
electrostatic interactions between the central Arginine90 of
a triad of basic residue and anionic phospholipids [63]. A
basic residue equivalent to Arg90 can also be found in
mouse, Xenopus tropicalis and zebrafish Nme4 (Fig. 9B).
Tetraodon Nme4 possesses a hydrophobic methionine
and might be able to electrostatically interact with anionic
phospholipids too. In contrast, chicken and other studied
teleost Nme4 sequences display a hydrophilic residue in
position 90. This could suggest that these Nme4 are una-
ble to interact with anionic phospholipids. It has been
shown that pigeon Nme4, also displaying a hydrophilic
90-residue, is located in the mitochondrial matrix [61].
Many functions such as nucleotide supply, functional
interactions with Krebs cycle succinyl thiokinase, catabo-
lism of short chain fatty acids [64,65] and, more recently,
GTP synthesis in relationship with iron homeostasis [66]
have been proposed. In the present study, we report that
zebrafish nme4 is highly and predominantly expressed in
gonads, weakly expressed in gills, and barely detectable in
other studied tissue (Fig. 10). In contrast, human NME4
was shown to be widely distributed and expressed in a tis-
sue-dependant manner with a moderate expression in
liver, muscle and ovary and a low expression in testis and
brain [60]. In mouse, Nme4 was only detectable in heart,
liver and kidney [53]. In Xenopus laevis, Nme4 is predomi-
nantly expressed in the head region and an indirect regu-
lation of retinal gliogenesis by Nme4 was demonstrated
[55]. The gonad-predominant expression of nme4
reported here, if confirmed in other teleost species, could
suggest a different function of fish Nme4 in gonads in
comparison to mammalian Nme4. However, a Relative
Rate Test [67] did not reveal a significantly different evo-
lutionary rate between tetrapods and fish (p = 0.70). This
suggests that observed differences in expression patterns
reported above are not linked to different evolutionary
rates.

Nme5
Nme5 sequences have been characterized in humans [68]
and mouse [69]. The zebrafish Nme5, as human NME5, is
composed of an NDPk5 domain followed by a Dpy-30
domain (Fig. 2). In agreement with previous observations
made in human and mouse [69], the zebrafish NDPk5
domain also lacks three of the eleven residues deemed
crucial for enzyme structure and activity [37,38] (Fig. 9A).

The lack of kinase activity was confirmed using human
recombinant proteins [36,68]. However, a pronounced
3'→ 5' exonuclease activity was measured for human
NME5 [36]. In zebrafish, nme5 was predominantly
expressed in testis and detected at low levels in brain and
ovary (Fig. 10). Our results are in total agreement with
data obtained in humans [68] and mouse [69] in which a
predominant testis expression was observed. Low expres-
sion levels were also detected in human brain and kidney
[68] while a low expression of the mouse transcript was
detected in ovary, heart, kidney, and brain [69]. In human
testis, NME5 gene expression is located in spermatogonia
and early spermatocytes [68], whereas expression appears
at pachytene stages in mouse [69]. A marked delay in pro-
tein expression can be observed as Nme5 protein is only
found in the flagella of spermatids and spermatozoa,
adjacent to the central pair and outer doublets of axone-
mal microtubules [70]. Functionally, murine Nme5 pro-
tein might be involved in late spermiogenesis by
increasing the ability of late-stage spermatids to eliminate
reactive oxygen species [69,71]. Together, our observa-
tions suggest that, within Group II, the Nme5 protein of
vertebrates probably lacks NDPK activity and might have
evolved towards testicular functions, possibly in germ
cells.

Nme6
To date, NME6 has only been sequenced and character-
ized in humans [72,73]. Zebrafish Nme6 displays a single
NDPk6 domain, also found in the human protein [72,73]
(Fig. 2). In contrast to human NME6, the zebrafish Nme6
lacks one of the eleven residues deemed crucial for
enzyme structure and activity, i.e. Phenylalanine58, but
display a Phe in position 59 [37,38](Fig. 9A)., Using E. coli
recombinant proteins, it was shown that human NDPk6
domain exhibited a kinase activity [73]. This observation
was, however, not confirmed in another study [36].
Zebrafish nme6 is expressed in all studied tissues apart
from hepatopancreas and intestine, and the highest
expression levels were observed in ovary and gills (Fig.
10). Our results are consistent with previous RT-PCR
results showing that NME6 was expressed in every human
tissue, with strongest expression in ovary/placenta, mus-
cle and intestine [72,73]. Very little is known about NME6
function or expression in a non-malignant context. How-
ever, it has been hypothesized that NME6 protein was par-
tially colocalized with mitochondria and that over
expression in SAOS2 cells resulted in growth suppression
and generation of multinucleated cells. Thus, NME6 may
play a role in regulation of cell growth and cell cycle pro-
gression [73]. All together, our results suggest that
zebrafish Nme6 could possess kinase activity and might
have conserved a crucial role in cell cycle, growth or devel-
opment.
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Nme7
To date, very little is known about human NME7 [15]. The
zebrafish Nme7, as human NME7, contains a DUF1126
domain, belonging to the DM10 family, and an NDPk_7A
and an NDPk_7B domain (Fig. 2). Very little is known
about the function of DUF1126 domain and its DM10
family. However, it was suggested that this domain family

may act as flagellar NDPk regulatory modules or as units
specifically involved in axonemal targeting or assembly
[74]. In contrast to the human NDPk_7A domain, the
zebrafish domain displays all the residues deemed crucial
for enzyme structure and activity [37,38] (Fig. 9A). In
addition, human and zebrafish NDPk_7B domain respec-
tively lack 3 and 5 residues deemed crucial for enzyme

Sequence alignment of zebrafish and human Nme protein domains and highlight on Nme4 specificityFigure 9
Sequence alignment of zebrafish and human Nme protein domains and highlight on Nme4 specificity. (A) Nme 
protein domains were identified using NCBI Conserved Domain Database [23]. Domains were aligned using MUSCLE [86], and 
graphic view was generated using BioEdit V. 7.0.9 software. Residues identified as important for kinase function catalytic mech-
anism are indicated by an * according to X-ray structure information on human NME2 [37] and Lascu and Gonin review [38] 
on the catalytic mechanism of NDP Kinase. (B) Mitochondrial membrane linkage triad with central Arginine90. (C) Proline to 
Serine mutation restricted to tetrapods. Sequences accession numbers are listed in Tables 1 and 2.
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structure and activity [37,38](Fig. 9A). Yoon et al [36] con-
firmed the lack of kinase activity in human NME7 but
reported a marked exonuclease activity. Zebrafish nme7 is
predominantly expressed in gonads and only a weak
expression can be found in other studied tissue (Fig. 10).

Our results are consistent with human NME7 expression
which is predominantly expressed in testis and expressed
at significant levels in ovary and brain [15].

Nme8 and Nme9
To date, Nme8 protein has only been described in
humans and mice and was called SPTRX2 for its resem-
blance with another protein, SPTRX1, also displaying a
thioredoxin domain [25,75]. An orthologous gene was
also characterized in Ciona intestinalis [76]. Proteins of this
family are made of one thioredoxin domain (TRX_NDPK)
followed by three tandemly repeated NDP kinase
domains (NDPk_TX) (Fig. 2). Nme8 protein domain
structure is very well conserved between human and
zebrafish, with the exception of the third zebrafish NDPk-
TX domain which is truncated. NME9 protein was also
only described in humans [77] and displays a thioredoxin
domain associated to a NDPk_TX domain (Fig. 2).
Despite their thioredoxin domain, no thioredoxin activ-
ity, corresponding to a general protein-disulfide reduct-
ase, could be detected neither in Nme8 [24] nor in Nme9
[77]. Our results also show that the zebrafish NDPk_TX
domains lacks crucial amino acids for kinase activity
[37,38] (Fig. 9A) and are consistent with several enzy-
matic studies [25,36,77]. Similarly to NME5 and 7,
human NME8 exhibits exonuclease activity [36].
Zebrafish nme8 is highly and predominantly expressed in
testis and significantly detected in gills in comparison to
all other tissues (Fig. 10). This observation is in complete
agreement with existing data in mammals [15,25,75]. As
previously reported, NME8 protein have domain arrange-
ment similarities with sea urchin IC1, a member of the
dynein intermediate chain [25,76,78]. The functional
implication of NME8 in sperm axonemal organization
was suggested [75,76] and key role of NME8 in flagellar
anomalies and primary ciliary dyskinesia was disclosed
[79]. Human NME9 was also described as highly
expressed in testis but also in lung and other ciliated cell
containing tissue and able to associate with microtubules
[77]. Together, these observations suggest that zebrafish
Nme8 might also be implicated in testicular function,
possibly in axonemal organization.

Nme10
Nme10, also called XRP2, is the most recently described
member of the Nme family and was only characterized in
human and mouse [80]. Vertebrate Nme10 proteins dis-
play a TBCC (Tubulin-specific chaperone protein co-fac-
tor C) domain and a partial NDPk domain (Fig. 2). The
TBCC domain acts as a GTPase activating protein (GAP)
for β-tubulin [24]. The zebrafish partial NDPk domain
lacks many crucial amino acids for kinase activity, in par-
ticular the catalytic histidine [37,38]. The lack of NDPk
activity in human NME10 was confirmed by enzymatic
assay [80]. Similarly to NME5, 7 and 8, NME10 exhibits
exonuclease activity [80]. Zebrafish nme10 is predomi-

Tissue distribution of zebrafish nme mRNAsFigure 10
Tissue distribution of zebrafish nme mRNAs. Tissue 
expressions of zebrafish nme2a, nme2b1, nme2b2, nme3, 
nme4, nme5, nme6, nme7, nme8, and nme10. Real-time PCR 
analysis was conducted using total RNA originating from the 
following tissues sampled in three different sexually-mature 
females: brain (Bra), eyes (Eye), gills (Gil), hepatopancreas 
(Liv), intestine (Gut), muscle (Mus), ovary (Ova), and three 
different mature males: testis (Tes). For each tissue, three 
separate reverse transcription (RT) reactions were carried 
out using separate RNA samples originating from three dif-
ferent fish. RT reactions were pooled and use to run real-
time PCR in quadruplicates. Mean and SD are shown (n = 4). 
#, Expression levels not significantly different from back-
ground signal at p < 0.05. For all genes, relative abundance is 
expressed in percentage of highest tissue expression after 
signal normalization by 18S gene expression.
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nantly expressed in the ovary and only a weak expression
can be found in other studied tissue (Fig. 10). In humans
and mice, Nme10 was found to be expressed in a wide
variety of tissues [81]. Strong ovarian expression was how-
ever never reported as no study used ovarian tissue to
study Nme10 expression. In humans, mutation in the
NME10 gene induce Retinitis Pigmentosa, the major form
of heritable blindness [80]. Interestingly, the partial
NDPk domain of NME10 protein may have important
function as most disease-related mutations of the NME10
gene concern this part of the protein [81]. Furthermore,
the human NME10 protein, shown to be mainly located
into the cytoplasm, undergoes re-localization into the
nucleus when cells are treated with DNA damaging agent
inducing oxidative stress, thus suggesting a participation
in DNA repairing reactions [80]. The roles of Nme10 in
fish and all other non-mammalian species are currently
unknown and deserve specific studies. The ovarian-pre-
dominant expression, if confirmed in other species, is
rather intriguing as it could suggest a major role of Nme10
in oogenesis.

Conclusion
In the present study, we provide a comprehensive over-
view of the evolutionary history of the Nme family in ver-
tebrates (Fig. 8). We also provide a characterization of the
Nme gene repertoire in several vertebrate species including
non-mammalian species and propose a gene nomencla-
ture that is consistent with existing mammalian nomen-
clature. Our observations show that vertebrate Nme genes
can be separated in two evolutionary distinct groups.
Nme1, Nme2, Nme3, and Nme4 belong to the Group I
while vertebrate Nme5, Nme6, Nme7, Nme8, and Nme9
belong to the Group II. The position of Nme10 in the
Group II is in contrast more debatable due to its very spe-
cific evolutionary history and the recent incorporation of
an NDPk domain, before or around the gnathostome
radiation. The present study clearly indicates that Nme5,
Nme6, Nme7, and Nme8 originate from duplication events
that occurred before the chordate radiation. Finally, we
show that Nme9 is a mammalian-specific protein closely
related to Nme8 that arose from the cis-duplication of the
Nme8/Nme9 ancestor gene after the separation of euthe-
rians and metatherians. In contrast to the Group II, Nme
genes of the Group I have a totally different evolutionary
history. Our observations suggest that a single Group I
gene ancestor was present in the chordate ancestor
genome. The first round of whole genome duplication
(1R) then resulted in two distinct genes named Nme2 and
Nme3/4 that can be found in the lamprey genome. In con-
trast, no duplicates seem to have been retained after the
second round of whole genome duplication (2R). We pro-
vide evidence that the Nme3/4 gene was cis-duplicated,
thus resulting in Nme3 and Nme4 genes that can be found
in all investigated gnathostome genomes. Our analyses
also suggest that the Nme1 gene found in mammals,

chicken and lizard results from the duplication of the
Nme2 gene that occurred after amphibian radiation. In
teleosts, the third round of whole genome duplication
(3R) resulted in the apparition of two paralogous genes,
nme2a and nme2b. While nme2a could be found in all tel-
eost genomes, nme2b underwent different fates depending
on the species. Finally, based on protein structure and tis-
sue expression of zebrafish nme genes, we provide new
insights in tissue specificity and molecular functions of
Nme proteins in vertebrates and raise intriguing questions
on the role of Nme protein in the vertebrate gonads.

Methods
Sequence analysis
All Nme sequences were identified using the following
genome assemblies: zebrafish (Danio rerio, Assembly
ZV7), medaka (Oryzias latipes, Assembly MEDAKA1),
stickleback (Gasterosteus aculeatus, Assembly BROAD S1),
tetraodon (Tetraodon nigroviridis, Assembly V.7), fugu
(Takifugu rubripes, Assembly V.4), Xenopus (Xenopus tropi-
calis, Assembly V.4.1), anole lizard (Anolis carolinensis,
AnoCar1.0 Assembly), chicken (Gallus gallus, Assembly
V.2.1), mouse (Mus musculus, Assembly NCBI m37),
human (Homo sapiens, Assembly NCBI 36), lamprey
(Petromyzon marinus, Preliminary assembly 5.9X), Ciona
intestinalis (Assembly V.2.0) and lancelet (Branchiostoma
floridae, Assembly V.2.0). A large number of sequences
were obtained from NCBI NR database using human or
zebrafish protein sequence as a query [82]. When more
than one sequence was obtained, the RefSeq and/or the
longest one were preferentially selected. When sequences
were not available in NR database, BLASTP on Ensembl
database [83], BLAT on UCSC Genome Bioinformatics
[84,85] and TBLASTN on EST_OTHERS database on Gen-
bank [82] were used. For cow (Bos Taurus, Assembly
Btau_4.0), opossum (Monodelphis domestica, Assembly
MonDom5) and platypus (Ornithorhynchus anatinus,
Assembly Ornithorhynchus_anatinus-5.0) only
sequences corresponding Nme1 and Nme2 proteins were
searched for. In mammalian species, a read-through tran-
script over Nme1 and Nme2 genes, named NmeLV, was
recently identified [26]. Protein sequences corresponding
to this transcript were not kept in the phylogenetic recon-
struction as they displayed in their sequence the complete
Nme2 protein sequence, thus leading to uninformative
additional information. However, sequences from
human, chimpanzee (Pan troglodytes), horse (Equus cabal-
lus), cow, platypus and anole lizard were found as
reported in Table 1. Chromosomal localization of Nme
genes was performed using Ensembl genome browser, or
with UCSC Genome Bioinformatics BLAT when not avail-
able on Ensembl. Sequences for each Nme family were
aligned by using MUSCLE [86] with default multiple
alignment parameters and identity matrix were obtained
with BioEdit 7.0.9 software. Intron-exon structure was
obtained through Ensembl database, or, when no infor-
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mation was available, by species genome assembly Blat of
protein and RNA sequences to get coding and non-coding
intron-exon structure. The protein domain structure of
Nme proteins was compared between human and
zebrafish using Genbank Conserved Domain Database
[23]. Domains defined by GenBank Conserved Domain
Database were extracted from total protein sequence and
aligned using MUSCLE.

Phylogenetic analyses of Nme proteins
Phylogenetic reconstructions were performed using the
automated genomic annotation platform FIGENIX [87].
All protein sequences of the Nme family were added to a
single multiple alignment to assess their phylogenetic
relationships. Sequence alignment was performed auto-
matically by FIGENIX pipeline using MUSCLE. Alignment
of sequences of different length and repeated domains
present some difficulties due to domains similarities.
Therefore, concerning sequences displaying repeated
domains, alignment was performed using the part of the
sequence showing the highest homology with sequences
displaying a single domain. The sequence alignment used
for phylogenetic analysis of the whole family is given in
Additional file 7. The pipeline used is based on three dif-
ferent methods of phylogenetic tree reconstruction, i.e.
Neighbour Joining, Maximum Parsimony, and Maximum
likelihood and a midpoint-rooted consensus tree was
built. Bootstrapping was carried out with 1000 replica-
tions. Bootstrap values are reported for each method
when a node exists as identical in the three trees. How-
ever, sometimes a node only exist in one or two methods,
and therefore * indicates that this node does not exist in
the corresponding tree. The Nme1-Nme2 subtree was
removed from the main tree and studied separately
between tetrapods and teleosts because of different evolu-
tionary history and high similarities leading to non-usable
phylogenetic reconstruction.

Relative Rate Test
For Nme4, a higher evolutionary rate between tetrapods
and teleost was hypothesized according to major differ-
ences in expression patterns. A Relative Rate Test was
therefore performed using the Plasmodium falciparum Nme
protein [GenBank: XP_001350376] as an outgroup and
using the RRTree software [67]. Input alignment file was
generated using MUSCLE. RRTree is a user-friendly pro-
gram for comparing substitution rates between lineages of
protein or DNA sequences, relative to an outgroup.
Genetic diversity is taken into account through the use of
sequences from several species.

Synteny analysis
The synteny relationships of Nme1 and Nme2 members
over tetrapods genomes were analyzed using CASSIOPE
(Clever Agent System for Synteny Inheritance and Other
Phenomena in Evolution) [88]. Briefly, CASSIOPE inte-

grates two important steps in a single automated process:
(1) the phylogeny: orthologous/paralogous genes are
determined by the aggregation of three phylogenetic
methods using the Figenix plateform [87]. Additionally,
phylogenetic information allows reconstruction of the
evolutionary history and thereby a more accurate ances-
tral genome reconstruction (2) a statistical test: CASSIOPE
therefore utilizes a specific statistical test to assess the sig-
nificance of the predicted, conserved gene clusters on
chromosomes. CASSIOPE does not perform synteny anal-
ysis on Scaffolds. As most teleost nme2 genes are located
on Scaffolds, synteny analyses of nme2a and nme2b mem-
bers in fish was thus conducted manually using Ensembl
database putative orthology relationships [89].

Zebrafish tissues sampling
Investigations were conducted according to the interna-
tional guiding principles for the use and care of laboratory
animals and in compliance with French and European
regulations on animal welfare (DDSV approval #35-31).
Three mature female zebrafish were obtained from the
fish rearing facilities at INRA-SCRIBE (Rennes, France),
over anesthetized and tissues immediately sampled, snap-
frozen in liquid nitrogen and conserved at -80°C until
RNA extraction. Testis samples were also obtained from
three different males.

Real-Time PCR analyses
For each tissue sample, total RNA was isolated using Tri-
Reagent® (Molecular Research Center, Cincinnati, OH)
according to the manufacturer's instructions. Reverse tran-
scription (RT) was performed as previously described [90]
using 2 μg of RNA for each sample with M-MLV enzyme
and Random Primers (Promega, Madison, WI). For each
studied tissue, cDNA originating from three individual
fish were pooled and subsequently used for real-time
PCR. Control reactions were run without reverse tran-
scriptase and used as negative control in the real-time PCR
study. Quantitative RT-PCR experiments were performed
using an Applied Biosystems StepOnePlus. RT products,
including control reactions, were diluted to 1/25, and 4 μl
was used for each real-time PCR. All q-RT-PCR reactions
were performed in quadruplicates. Real-time PCR was
performed using a real-time PCR kit provided with a Fast-
SYBR® Green fluorophore (Applied Biosystems) with
either 200 or 300 nM of each primer. In order to avoid
genomic DNA contamination bias, primers were designed
on exon junctions. Primer sequences are listed in Addi-
tional file 8. The relative abundance of target cDNA within
a sample set was calculated from serially diluted cDNA
pool (standard curve) using Applied Biosystem StepOne™
V.2.0 software. After amplification, a fusion curve was
obtained to validate the amplification of a single PCR
product. The fusion curves obtained showed that each
primer pair used was specific of a single nme transcript.
Normalization of gene expression by 18S and ef1a
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resulted in similar results. Before further analysis, real-
time PCR data were normalized using 18S transcript
abundance in samples diluted to 1/2000 and with 100
nM of each primer. The control reactions were used to cal-
culate background expression level for each gene to iden-
tify tissues exhibiting expression levels significantly higher
than background.
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