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Purpose: We conducted a linkage analysis in high myopia families to replicate suggestive results from chromosome 7q36
using a model of autosomal dominant inheritance and genetic heterogeneity. We also performed a genome-wide scan to
identify novel loci.
Methods: Twenty-six families, with at least two high-myopic subjects (ie. refractive value in the less affected eye of −5
diopters) in each family, were included. Phenotypic examination included standard autorefractometry, ultrasonographic
eye length measurement, and clinical confirmation of the non-syndromic character of the refractive disorder. Nine families
were collected de novo including 136 available members of whom 34 were highly myopic subjects. Twenty new subjects
were added in 5 of the 17 remaining families. A total of 233 subjects were submitted to a genome scan using ABI linkage
mapping set LMSv2-MD-10, additional markers in all regions where preliminary LOD scores were greater than 1.5 were
used. Multipoint parametric and non-parametric analyses were conducted with the software packages Genehunter 2.0 and
Merlin 1.0.1. Two autosomal recessive, two autosomal dominant, and four autosomal additive models were used in the
parametric linkage analyses.
Results: No linkage was found using the subset of nine newly collected families. Study of the entire population of 26
families with a parametric model did not yield a significant LOD score (>3), even for the previously suggestive locus on
7q36. A non-parametric model demonstrated significant linkage to chromosome 7p15 in the entire population (Z-
NPL=4.07, p=0.00002). The interval is 7.81 centiMorgans (cM) between markers D7S2458 and D7S2515.
Conclusions: The significant interval reported here needs confirmation in other cohorts. Among possible susceptibility
genes in the interval, certain candidates are likely to be involved in eye growth and development.

Myopia is currently divided into low to moderate myopia
(refractive values between −0.5 and −5 diopters [D]) and high
myopia (beyond −5 D). The prevalence of myopia varies
moderately in Western countries, ranging from 16% in
Australia and 18% in the Netherlands, to an average value of
25% in the USA in adults between 40 and 80 years old [1].
The Asian population seems to be more affected than Western
populations. The prevalence of myopia ranges from 16% in
Australia and 18% in the Netherlands to 25% in the United
States in adults aged 40–80 years [1] to much higher values
in Eastern Asian countries. Over 38% of urban Singaporean
Chinese adults [2] and up to 80% of teenagers (16–18 years
old) in urban Taiwan [3] are affected. For high myopia, the
prevalence is 4.5% in populations of Western European origin
[1] as compared to the 8%–9% [2,4] observed in Eastern Asian
adults over the age of 40. Laser refractive surgery as a myopia-
related cost was estimated to be 4.6 billion dollars for the
United States alone in 1990 [5]. Stambolian et al. [6] estimated
that by 2005 this cost had doubled.

Correspondence to: Patrick Calvas,INSERM, U563 - CPTP,
Bâtiment B, BP 3028, Place du Dr Baylac, 31024, Toulouse cedex
3, France; Phone: +33(0)5 61 77 90 79; FAX: +33(0)5 61 77 90 73;
email: calvas.p@chu-toulouse.fr

Increasing prevalence and associated health costs [5,6]
make myopia an important public health problem [7,8]. High
myopia predisposes patients to premature cataracts and an
increased risk for retinal detachment, glaucoma, macular
degeneration, and blindness [9]. It is one of the major causes
of legal blindness worldwide [10,11]. No one certain cause of
myopia has yet been identified. Several family and twin
studies have shown the role of genetics in the etiology of
myopia [12-16]. Different inheritance models have been
proposed [14,17]. It is mostly thought that myopia results from
interactions between genetic and environmental factors. For
example, close vision and near-work activities increase
myopia prevalence (for review, see Gilmartin [18] and
Morgan and Rose [19]).Different chromosomal localizations
for high myopia have been reported in linkage analyses over
the last decade. To date, syndromic and isolated forms of X-
linked high myopia have been respectively associated with
Xq28 [20] and Xq23–25 [21,22]. Larger autosomal regions
have been reported for non-syndromic high myopia. Some
were identified in single large families [23-26] or in subsets
of families [27-30]. Low and moderate myopia has also been
linked to different regions [31-34]. Candidate genes have also
been suggested [35-39]. For instance, the 5′ region of HGF
(hepatocyte growth factor) in mouse [40] and man may
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contain a polymorphism associated with early-onset extreme
myopia (beyond −10 D) in the Han Chinese population [41].

Our previous studies analyzed the inheritance of high
myopia, suggested an autosomal dominant model with weak
penetrance [42], and found a suggestive linkage to high
myopia on chromosome 7q36 [28]. To confirm the previous
linkage peak and to look for other loci involved in high
myopia, a novel study was conducted in an extended
population. We were able to collect nine additional families.
In this study, our goal is to perform a genome-wide scan
(GWS) on these nine new families as well as the combined
linkage analysis on the full sample of families.

METHODS
Subjects: Volunteers received information about the study in
agreement with the Helsinki Declaration principle.
Participants were included according to the French laws
governing participation in biomedical research and with
approval of the local ethics committee. Each participant
provided written, informed consent. Families of high myopia
were enrolled through a proband affected with non-syndromic
high myopia (refractive value, RV≤ −5 D, axial
length>26 mm). The family was retained for the study if it
included at least two high myopic members and if at least three
members on two generations agreed to participate. Exclusion
criteria were myopia in prematurity retinopathy, Marfan’s
syndrome, Stickler’s syndrome, Wagner’s disease, retinitis
pigmentosa, corneal dystrophy, keratoconus, myopia
secondary to cataract, or any developmental genetic disorder.
In addition, families with unilateral high myopia and families
with X-linked compatible high myopia were excluded.

Twenty-six families were included in this study (nine new
families and 17 previously studied families [28]). The new
families (16, 18, 20–26) were constituted by 136 persons (34
high myopic subjects). Among the 17 previously studied
families, five (1, 4, 10, 12, and 14) had a total of 20 new
participants with one to eleven additional individuals per
family. All the members in these families under 20 years of
age at the time of the first evaluation [28] were phenotypically
re-evaluated, and it was found that a total of five persons in
four families (individual 15 [ID15] in family 5 [F5], ID4 in
F11, ID6 in F17, ID4 and ID7 in F19) who had moderate
myopia became high myopic. Age at recruitment was between
5 and 95 years old.
Clinical examination: Refractive values (RVs) were
measured using standard autorefractometry after dilation. In
patients under 16 years old, three instillations of 1%
cyclopentolate at 0 min, 5 min, and 10 min were performed
and RVs were measured 45–60 min after the last instillation.
In patients over 16 years old, dilation was induced with 1%
tropicamide at 0 min, 5 min, and 10 min, and the RV measured
30–45 min later. Tropicamide (1%) was instilled every 5 min
three times, and then measurement is performed. Axial length

was evaluated by A-scan ultrasonography. A total of three
readings were taken for each eye, and the average value was
recorded. Astigmatism was assessed by autorefractometer.
The included patients had minimal astigmatism, indicating
that bias was avoided. Each proband had a complete ocular
examination including visual acuity, intraocular pressure, and
fundus, to confirm that the high myopia was a primary finding
and in completion of a general physical examination to avoid
recruitment of syndromic myopia patients. For the probands’
relatives, ophthalmologists of their choice were asked to
examine subjects according to the standard protocol above. In
the case of cataract surgery, only the ocular measurement
before surgery was considered.
Genotyping: DNA extraction from venous blood was
performed according to standard phenol-chloroform
extraction procedure [43]. For genotyping, four DNA size
references were added to standardize size-calling between
runs according to the manufacturer’s procedure (Applied
Biosystems, Foster City, CA). The average spacing distance
between markers was 9.1 centiMorgan (cM), and the average
heterozygosity was 0.78. The reduction of the detected
chromosomal locus was made by genotyping of highly
heterozygous microsatellites as per the UniSTS (NCBI) and
GDB databases.

Amplifications of microsatellites were performed in 10 µl
total volume, with 1X GoTaq PCR buffer (Promega, Madison,
WI), 2.0–2.5 mM MgCl2, 200 µM each dNTP, 250 nM
specific primer to each marker, 0.28 U/µl GoTaq DNA
polymerase (Promega), and 25 ng of genomic DNA.
Fluorescent labeled amplification products were
electrophoresed on an ABI PRISM® 3100 Genetic Analyzer
with GeneScan 500HD ROX standard size label (Applied
Biosystems) and analyzed with Genescan 3.5 software
(Applied Biosystems). Alleles were analyzed with Genotyper
3.6 program (Applied Biosystems).
Statistical analyses: Familial relationship inconsistencies and
genotyping error checking and cleaning were performed with
the Merlin 1.0.1 program [44,45]. Marker allele frequencies
were estimated from the founders of the pedigrees. Sex-
average genetic distances were taken from the Marshfield
Center for Medical Genetics. The order consistency was
compared to the NCBI physical map (Build 36.2). The effects
of ethnic origin, sex, and age were compared between affected
and unaffected individuals using a Fisher’s exact and
student’s t-tests with a level of significance below the p value
of 0.01. In this study, RV is a spherical equivalent (the
correlation between RV and spherical equivalent was 0.76 and
0.85 for the right and the left eye, respectively). The RV
correlation between right and left eye was equal to 0.95. The
RV mean was used for status qualification and as the trait in
quantitative trait loci (QTL) analyses. Subjects with a RV
mean of less than or equal to −5 D were considered to be
affected. The others persons were classified as unaffected.
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Multipoint parametric linkage (PL) and non-parametric
linkage (NPL) analyses were performed under multiple
models with Genehunter 2.0 [46] and Merlin 1.0.1 programs
[44]. A total of eight parametric models with different
inheritance model, genotype penetrance, and phenocopy rates
were tested with a frequency of the susceptibility allele of
0.013 (Table 1). For each model, the hypothesis of genetic
heterogeneity was also tested, and Heterogeneity Log of the
Odd (HLOD) was calculated.

Myopia was also treated as a quantitative trait. The RV
mean was transformed to reach normality [47]. A QTL
analysis was conducted with Merlin 1.0.1 using the regression
option. The sex, age, and ethnic origin were included as
covariates.

RESULTS
Population characteristics: A total of 26 families and their
DNAs were collected from all over France. Twenty-five
families were of French origin and one family (of 13
members) was of Algerian origin. The entire cohort included
347 individuals. The population characteristics are shown in
Table 2 and Figure 1.

Clinical data were collected for the 233 genotyped
individuals. Among them, 45% were men and 55% women.
Age distribution was similar in both genders (78% of men and
75% of women were older than 20 years). Eighty-one adults
over 20 years old (32 men and 49 women) and 17 patients
under 20 years old (6 boys and 11 girls) had high myopia. The
unaffected group was formed by 97 adults over the age of 20
years (49 men and 48 women) and 38 individuals under the
age of 20 years (16 boys and 14 girls). No significant effect

TABLE 1. PARAMETRIC MODELS USED IN THE PARAMETRIC MULTIPOINT GENOME-WIDE LINKAGE ANALYSIS.

Phenocopy rates and penetrances DD Dd dd Model
Autosomal recessive models 0 0 0.58 Model 1
 0 0 0.9 Model 2
Autosomal dominant models 0 0.58 0.58 Model 3
 0 0.9 0.9 Model 4
Autosomal additive models 0.1 0.58 0.58 Model 5
 0.1 0.9 0.9 Model 6
 0.2 0.58 0.58 Model 7
 0.2 0.9 0.9 Model 8

Based on the postulation of a single, two-allele gene in which “d” would be the disease-causing allele, eight parametric models
have been tested. Models one and two assume an autosomal recessive mode of inheritance. Models three and four assume an
autosomal dominant mode of inheritance. Models six to eight assume autosomal additive transmission as per Chen et al. [30].
In all models, penetrances of the genotype of 0.58 and 0.90 were used according to those reported respectively by Naiglin et al.
[28] or Young et al. [23,27]. In addition, models five to eight consider ten or twenty percent phenocopy rates.

TABLE 2. DEMOGRAPHIC CHARACTERISTICS.

Demographic characteristics
Number of families analyzed 26
Number of individuals 347
Total number of affected individuals 98
Total number of low and moderate myopia 47
Total number of individuals genotyped 233
Average number of generations (range) 3.35 (2 to 4)
Average number of individuals per family (range) 13 (5 to 24)
Average number of affected individuals per family (range) 4 (2 to 10)
Average number of genotyped individuals per family (range) 9 (3 to 22)
Average age, in years, of examined individuals (range) 37 (5 to 95)
Average spherical equivalence (range) −4.84±6.19 (−25 to 4.5)

A summary of the population characteristics is given including average data of the ophthalmological evaluations. Affected
subjects are high myopes with refractive errors beyond −5 diopters (D). Low and moderate myopes have refractive errors between
−0.5 D and −5 D. The mean values and the range of age variation (in years) and spherical equivalent (in diopters) are given
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Figure 1. Genealogical trees of the 26 pedigrees. Black squares and circles denote subjects affected with high myopia (refractive value [RV]
beyond −5 diopters [D]). Half-black squares and circles denote individuals with a RV between −0.5 and −5 D. The asterisks denote genotyped
individuals.

Molecular Vision 2008; 14:2566-2574 <http://www.molvis.org/molvis/v14/a295> © 2008 Molecular Vision

2569

http://www.molvis.org/molvis/v14/a295


of sex (p=0.02), age (p=0.03), or ethnic origin (p=1) between
affected and unaffected persons was observed.
Linkage analysis of the nine new families: No significant or
suggestive linkage was observed in parametric linkage (PL)
and non-parametric linkage (NPL) analyses of the nine novel
families in any model tested. No significant (p-value less than
or equal to 0.000049) or suggestive (p-value greater than or
equal to 0.000048 but less than or equal to 0.0017) [48]
linkage.
Linkage analyses in 26 families: The PL analysis did not show
any suggestive or significant linkage to any locus. Results of
the NPL analysis are summarized in Table 3 and Figure 2. A
significant NPL score of 3.74 (p=0.00002) and Z-NPL score
of 4.07 (p=0.00002) was observed for markers D7S529 and
D7S516 (Table 3 and Table 4). The region identified covers
7.81 cM between D7S2458 and D7S2515 (Table 4 and Figure
3). A weak signal was observed on chromosome 1p31, 6q15,
and 9q21-q22 (Table 3).

Definition of high myopia phenotype: The definition of high
myopia threshold is to some extent arbitrary. Thus, we
examined the influence of the threshold used to define high
myopia on the non-parametric results. Moderate myopic
persons (with RV between −3 and −5 D) were considered
affected in PL and NPL analysis. A suggestive linkage in
7p15.2–15.3 region was observed when the myopic threshold
was equal to −6 D (p=0.0006), −3 D (p=0.00003), −2 D
(p=0.00004), and −1.5 D (p=0.0006).
QTL analysis on the 26 families: The RV mean for the entire
cohort was considered for a QTL analysis but did not give any
significant or suggestive linkage. Merlin 1.0.1 gave an
estimation of heritability of 10% for the RV mean. The axial

Figure 3. Non-parametric multipoint LOD score in 26 French
families with myopia less than or equal to −5D for chromosome 7.
LOD scores were plotted by Merlin 1.0.1 against marker distance
given in centiMorgans (cM).

length was only available for 122 subjects with clinical
examination, thus this trait was not used in the QTL analysis.

DISCUSSION
The aim of this study was to confirm previously reported
linkage positions. The results of the genome wide scan (GWS)
linkage study on the nine new families or on all 26 families
together do not support the suggestive linkage to 7q36 region.
The inclusion of new families and the enlargement of
previously recruited families considerably modified the
structure of the cohort. Although these data do not formally
exclude the linkage of a high myopia locus on chromosome
7q36, it is likely that other myopia susceptibility loci play a
more important role in the families that we studied. Our
inability to confirm the previously identified position
probably reflects the inclusion of more families with a larger
sample size and of additional markers. Genotyping errors in
the samples might vary between the study conducted by
Naiglin et al. [28] and the current study. Such errors can
influence linkage results by inflating recombination fraction
estimates in linkage analysis. Replication of GWS studies for
complex traits is difficult [48,49].

Another interesting finding is on chromosome 7p15
because linkage signal was detected in NPL analysis even
when applying different definitions of the myopic phenotype.
However, no significant linkage result in this region was
found in any of the PL models used even under the hypothesis
of genetic heterogeneity. Even if the NPL approach is robust
in the face of uncertainty about the mode of inheritance [48,
49], the new interval we have identified at 7p15.2-p15.3 needs
to be confirmed. However, the same locus has also been
highlighted in a Ashkenazi Jewish cohort [32]. Klein et al.
[50] have also found a nearby region at 7p21.

The qualification of quantitative RVs as myopia,
emmetropia, or hyperopia is to some extent arbitrary. A
quantitative trait analysis was performed. This approach is
generally more informative and powerful because continuous
data on refractive errors (e.g., RV or axial length) provide
more information than discrete trait data (e.g., affected and
unaffected). In our cohort, the QTL analysis did not confirm
the NPL result. The weak signal of the NPL analyses of binary
traits may be due to low power. This paper highlights the
complex heredity of high myopia and the great difficulty of
replicating mapping results.

Sixty-seven genes or putative coding sequences are
contained in the significant 7p15 region detected in this study
(about 7.81 cM long). Candidate genes could be similar in
function or structure to genes in other loci intervening in high
myopia. Neurotransmitters can modulate experimental
myopia [51]. A neuropeptide gene (NPVF) lies in our
candidate region on 7p15.2-p15.3. The molecule encoded by
this gene belongs to the family of neuropeptides with the Arg-
Phe-amide motif at their C-termini (RF-amide peptides)
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involved in various neurotransmission/neuromodulation
processes and muscle contraction control. It is expressed in
the rat and human central nervous system [52] and in the retina
[53]. Interestingly, it can inhibit GABAergic
neurotransmission [54]. Gamma-aminobutyric acid (GABA)
is an inhibitory neurotransmitter in adults but plays a
neurotrophic role in the embryo. Stone et al. [54] have
demonstrated that GABA receptor agonists and antagonists
affect eye growth and modulate experimental myopia in
chicken. The ability of NPVF to interact with the GABAergic
system would be in accordance with both the strong effect of
neurotransmitter modulation in experimental myopia and the
role of heredity, which makes it a candidate gene for high
myopia susceptibility. Similarly, other neurotransmitters that

can be involved in experimental myopia such as neuropeptide
Y (NPY) are encoded by genes present within the interval
[55]. Recently, Han et al. [41] demonstrated the association
of a hepatocyte growth factor (HGF) polymorphism with high
myopia. The overexpression of SNX15 leads to decreased
cleavage of both insulin and HGF receptors [56], thereby
highlighting a link between HGF and the sorting nexin family.
Interestingly, our interval includes a member of the SNX
family, SNX10. Further studies will be needed to determine
putative association between such genes and the myopia
phenotype within these families.
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