G. M. Barton and R. Medzhitov, Toll-like receptors and their ligands. Current topics in microbiology and immunology, vol.270, pp.81-92, 2002.

M. Chamaillard, S. E. Girardin, J. Viala, and D. J. Philpott, Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation, Cellular microbiology, vol.5, issue.9, pp.581-592, 2003.

J. H. Fritz, R. L. Ferrero, D. J. Philpott, and S. E. Girardin, Nod-like proteins in immunity, inflammation and disease, Nature immunology, vol.7, issue.12, pp.1250-1257, 2006.

E. Meylan, J. Tschopp, and M. Karin, Intracellular pattern recognition receptors in the host response, Nature, vol.442, issue.7098, pp.39-44, 2006.

J. P. Ting, R. C. Lovering, E. S. Alnemri, J. Bertin, J. M. Boss et al., The NLR gene family: a standard nomenclature, Immunity, vol.28, issue.3, pp.285-287, 2008.

F. Martinon, O. Gaide, V. Petrilli, A. Mayor, and J. Tschopp, NALP inflammasomes: a central role in innate immunity. Seminars in immunopathology, vol.29, pp.213-229, 2007.

J. Tschopp, F. Martinon, and K. Burns, NALPs: a novel protein family involved in inflammation, Nat Rev Mol Cell Biol, vol.4, issue.2, pp.95-104, 2003.

Z. B. Tong, L. Gold, K. E. Pfeifer, H. Dorward, E. Lee et al., Mater, a maternal effect gene required for early embryonic development in mice, Nature genetics, vol.26, issue.3, pp.267-268, 2000.

T. Hamatani, G. Falco, M. G. Carter, H. Akutsu, C. A. Stagg et al., Age-associated alteration of gene expression patterns in mouse oocytes, Human molecular genetics, vol.13, issue.19, pp.2263-2278, 2004.

M. Horikawa, N. J. Kirkman, K. E. Mayo, S. M. Mulders, J. Zhou et al., The mouse germ-cell-specific leucine-rich repeat protein NALP14: a member of the NACHT nucleoside triphosphatase family, Biology of reproduction, vol.72, issue.4, pp.879-889, 2005.

S. Dade, I. Callebaut, A. Paillisson, M. Bontoux, R. Dalbies-tran et al., In silico identification and structural features of six new genes similar to MATER specifically expressed in the oocyte, Biochemical and biophysical research communications, vol.324, issue.2, pp.547-553, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00086729

S. Ponsuksili, R. M. Brunner, T. Goldammer, C. Kuhn, C. Walz et al., Bovine NALP5, NALP8, and NALP9 genes: assignment to a QTL region and the expression in adult tissues, oocytes, and preimplantation embryos, Biology of reproduction, vol.74, issue.3, pp.577-584, 2006.

S. Murdoch, U. Djuric, B. Mazhar, M. Seoud, R. Khan et al., Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans, Nature genetics, vol.38, issue.3, pp.300-302, 2006.

J. Qian, C. Deveault, R. Bagga, X. Xie, and R. Slim, Women heterozygous for NALP7/NLRP7 mutations are at risk for reproductive wastage: report of two novel mutations, Human mutation, vol.28, issue.7, p.741, 2007.

P. Mcdaniel and X. Wu, Identification of oocyte-selective NLRP genes in rhesus macaque monkeys (Macaca mulatta). Molecular reproduction and development, vol.76, pp.151-159, 2009.

P. Zhang, M. Dixon, M. Zucchelli, F. Hambiliki, L. Levkov et al., Expression analysis of the NLRP gene family suggests a role in human preimplantation development, PLoS ONE, vol.3, issue.7, p.2755, 2008.

R. Dalbies-tran, P. Papillier, S. Pennetier, S. Uzbekova, and P. Monget, Bovine mater-like NALP9 is an oocyte marker gene. Molecular reproduction and development, vol.71, pp.414-421, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02673329

Z. B. Tong, C. A. Bondy, J. Zhou, and L. M. Nelson, A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development, Human reproduction, vol.17, issue.4, pp.903-911, 2002.

A. V. Evsikov, J. H. Graber, J. M. Brockman, A. Hampl, A. E. Holbrook et al., Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo, Genes & development, vol.20, issue.19, pp.2713-2727, 2006.

J. M. Grenier, L. Wang, G. A. Manji, W. J. Huang, A. Al-garawi et al., Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1, FEBS letters, vol.530, issue.13, pp.73-78, 2002.

G. A. Manji, L. Wang, B. J. Geddes, M. Brown, S. Merriam et al., PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. The Journal of biological chemistry, vol.277, pp.11570-11575, 2002.

F. Martinon, K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta, Molecular cell, vol.10, issue.2, pp.417-426, 2002.

L. Wang, G. A. Manji, J. M. Grenier, A. Al-garawi, S. Merriam et al., PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing, The Journal of biological chemistry, vol.277, issue.33, pp.29874-29880, 2002.

Y. Wang, M. Hasegawa, R. Imamura, T. Kinoshita, C. Kondo et al., PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1, International immunology, vol.16, issue.6, pp.777-786, 2004.

J. M. Bruey, N. Bruey-sedano, R. Newman, S. Chandler, C. Stehlik et al., PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages, The Journal of biological chemistry, vol.279, issue.50, pp.51897-51907, 2004.

L. Fiorentino, C. Stehlik, V. Oliveira, M. E. Ariza, A. Godzik et al., A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta, The Journal of biological chemistry, vol.277, issue.38, pp.35333-35340, 2002.

A. Fontalba, O. Gutierrez, and J. L. Fernandez-luna, NLRP2, an inhibitor of the NF-kappaB pathway, is transcriptionally activated by NF-kappaB and exhibits a nonfunctional allelic variant, J Immunol, vol.179, issue.12, pp.8519-8524, 2007.

T. Kinoshita, Y. Wang, M. Hasegawa, R. Imamura, and T. Suda, PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1beta secretion, The Journal of biological chemistry, vol.280, issue.23, pp.21720-21725, 2005.

R. Slim and A. Mehio, The genetics of hydatidiform moles: new lights on an ancient disease, Clinical genetics, vol.71, issue.1, pp.25-34, 2007.

X. Gu, K. Velden, and . Vander, DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family, Bioinformatics, vol.18, issue.3, pp.500-501, 2002.

M. Halpern, The organization and function of the vomeronasal system, Annual review of neuroscience 1987, vol.10, pp.325-362

E. B. Keverne, The vomeronasal organ. Science, vol.286, pp.716-720, 1999.

P. Shi, J. P. Bielawski, H. Yang, and Y. P. Zhang, Adaptive diversification of vomeronasal receptor 1 genes in rodents, Journal of molecular evolution, vol.60, issue.5, pp.566-576, 2005.

R. V. Samonte and E. E. Eichler, Segmental duplications and the evolution of the primate genome, Nature reviews, vol.3, issue.1, pp.65-72, 2002.

E. Darbo, E. G. Danchin, M. Dermott, M. F. Pontarotti, and P. , Evolution of major histocompatibility complex by "en bloc" duplication before mammalian radiation, Immunogenetics, vol.60, issue.8, pp.423-438, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02664403

J. A. Bailey and E. E. Eichler, Primate segmental duplications: crucibles of evolution, diversity and disease, Nature reviews, vol.7, issue.7, pp.552-564, 2006.

M. E. Johnson, L. Viggiano, J. A. Bailey, M. Abdul-rauf, G. Goodwin et al., Positive selection of a gene family during the emergence of humans and African apes, Nature, vol.413, issue.6855, pp.514-519, 2001.

Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood. Molecular biology and evolution, vol.24, pp.1586-1591, 2007.

L. Duret and D. Mouchiroud, Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate, Molecular biology and evolution, vol.17, issue.1, pp.68-74, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00427068

E. E. Winter, L. Goodstadt, and C. P. Ponting, Elevated rates of protein secretion, evolution, and disease among tissue-specific genes, Genome research, vol.14, issue.1, pp.54-61, 2004.

L. Zhang and W. H. Li, Mammalian housekeeping genes evolve more slowly than tissue-specific genes, Molecular biology and evolution, vol.21, issue.2, pp.236-239, 2004.

R. S. Singh, Patterns of species divergence and genetic theories of speciation, Topics in Population Biology and Evolution Edited by: Wohrmann K, Jain S, pp.231-265, 1990.

W. J. Swanson and V. D. Vacquier, The rapid evolution of reproductive proteins, Nature reviews, vol.3, issue.2, pp.137-144, 2002.

D. G. Torgerson, R. J. Kulathinal, and R. S. Singh, Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes, Molecular biology and evolution, vol.19, issue.11, pp.1973-1980, 2002.

D. G. Torgerson and R. S. Singh, Rapid evolution through gene duplication and subfunctionalization of the testes-specific alpha4 proteasome subunits in Drosophila, Genetics, vol.168, issue.3, pp.1421-1432, 2004.

G. H. Westerveld, C. M. Korver, A. M. Van-pelt, N. J. Leschot, . Veen-f-van-der et al., Mutations in the testis-specific NALP14 gene in men suffering from spermatogenic failure, Human reproduction, vol.21, issue.12, pp.3178-3184, 2006.

L. Huminiecki and K. H. Wolfe, Divergence of spatial gene expression profiles following species-specific gene duplications in human and mouse, Genome research, vol.14, issue.10A, pp.1870-1879, 2004.

Z. Gu, S. A. Rifkin, K. P. White, and W. H. Li, Duplicate genes increase gene expression diversity within and between species, Nature genetics, vol.36, issue.6, pp.577-579, 2004.

S. Freilich, T. Massingham, E. Blanc, L. Goldovsky, and J. M. Thornton, Relating tissue specialization to the differentiation of expression of singleton and duplicate mouse proteins, Genome biology, vol.7, issue.10, p.89, 2006.

A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, vol.151, issue.4, pp.1531-1545, 1999.

X. She, Z. Cheng, S. Zollner, D. M. Church, and E. E. Eichler, Mouse segmental duplication and copy number variation, Nature genetics, vol.40, issue.7, pp.909-914, 2008.

B. S. Emanuel and T. H. Shaikh, Segmental duplications: an 'expanding' role in genomic instability and disease, Nature reviews, vol.2, issue.10, pp.791-800, 2001.

S. Giglio, K. W. Broman, N. Matsumoto, V. Calvari, G. Gimelli et al., Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements, American journal of human genetics, vol.68, issue.4, pp.874-883, 2001.

G. Saglio, C. T. Storlazzi, E. Giugliano, C. Surace, L. Anelli et al., A 76-kb duplicon maps close to the BCR gene on chromosome 22 and the ABL gene on chromosome 9: possible involvement in the genesis of the Philadelphia chromosome translocation, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.9882-9887, 2002.

C. J. Shaw, W. Bi, and J. R. Lupski, Genetic proof of unequal meiotic crossovers in reciprocal deletion and duplication of 17p11.2. American journal of human genetics, vol.71, pp.1072-1081, 2002.

L. Armengol, T. Marques-bonet, J. Cheung, R. Khaja, J. R. Gonzalez et al., Murine segmental duplications are hot spots for chromosome and gene evolution, Genomics, vol.86, issue.6, pp.692-700, 2005.

Z. Jiang, H. Tang, M. Ventura, M. F. Cardone, T. Marques-bonet et al., Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution, Nature genetics, vol.39, issue.11, pp.1361-1368, 2007.

N. L. Clark, J. E. Aagaard, and W. J. Swanson, Evolution of reproductive proteins from animals and plants. Reproduction (Cambridge, England), vol.131, pp.11-22, 2006.

M. Osawa, H. Horiuchi, W. Tian, and M. Kaneko, Divergent evolution of the prolactin-inducible protein gene and related genes in the mouse genome, Gene, vol.325, pp.179-186, 2004.

Z. Birtle, L. Goodstadt, and C. Ponting, Duplication and positive selection among hominin-specific PRAME genes, BMC genomics, vol.6, p.120, 2005.

A. S. Mclellan, W. Zimmermann, and T. Moore, Conservation of pregnancy-specific glycoprotein (PSG) N domains following independent expansions of the gene families in rodents and primates, BMC evolutionary biology, vol.5, p.39, 2005.

M. Jackson, A. J. Watt, P. Gautier, D. Gilchrist, J. Driehaus et al., A murine specific expansion of the Rhox cluster involved in embryonic stem cell biology is under natural selection, BMC genomics, vol.7, p.212, 2006.

R. C. Karn, N. L. Clark, E. D. Nguyen, and W. J. Swanson, Adaptive evolution in rodent seminal vesicle secretion proteins. Molecular biology and evolution, vol.25, pp.2301-2310, 2008.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic acids research, vol.25, issue.17, pp.3389-3402, 1997.

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic acids research, vol.22, issue.22, pp.4673-4680, 1994.

K. Tamura, J. Dudley, M. Nei, and S. Kumar, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular biology and evolution, vol.24, pp.1596-1599, 2007.

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology, vol.52, pp.696-704, 2003.

J. Felsenstein and . Phylip, Phylogeny Inference Package) version 3.6. Distributed by the author Department of Genome Sciences, 2004.

J. Felsenstein, Confidence limits on phylogenies: An approach using the bootstrap, vol.39, pp.783-791, 1985.

X. Gu, Maximum-likelihood approach for gene family evolution under functional divergence. Molecular biology and evolution, vol.18, pp.453-464, 2001.

X. Gu, Statistical methods for testing functional divergence after gene duplication. Molecular biology and evolution, vol.16, pp.1664-1674, 1999.

M. Suyama, D. Torrents, and P. Bork, PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic acids research, pp.609-612, 2006.

R. Nielsen and Z. Yang, Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene, Genetics, vol.148, issue.3, pp.929-936, 1998.

Z. Yang, R. Nielsen, N. Goldman, and A. M. Pedersen, Codon-substitution models for heterogeneous selection pressure at amino acid sites, Genetics, vol.155, issue.1, pp.431-449, 2000.

W. J. Swanson, R. Nielsen, and Q. Yang, Pervasive adaptive evolution in mammalian fertilization proteins. Molecular biology and evolution, vol.20, pp.18-20, 2003.

M. Anisimova, R. Nielsen, and Z. Yang, Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites, Genetics, vol.164, issue.3, pp.1229-1236, 2003.

Z. Yang, W. S. Wong, and R. Nielsen, Bayes empirical bayes inference of amino acid sites under positive selection, Molecular biology and evolution, vol.22, issue.4, pp.1107-1118, 2005.

A. Doron-faigenboim and T. Pupko, A combined empirical and mechanistic codon model. Molecular biology and evolution, vol.24, pp.388-397, 2007.

A. Stern, A. Doron-faigenboim, E. Erez, E. Martz, E. Bacharach et al., Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach, Nucleic acids research, pp.506-511, 2007.