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Abstract

Major genetic factors for age-related macular degeneration (AMD) have recently been identified as susceptibility risk factors,
including variants in the CFH gene and the ARMS2 LOC387715/HTRA1locus. Our purpose was to perform a case-control study
in two populations among individuals who did not carry risk variants for CFHY402H and LOC387715 A69S (ARMS2), called
‘‘study’’ individuals, in order to identify new genetic risk factors. Based on a candidate gene approach, we analyzed SNP
rs5888 of the SCARB1 gene, coding for SRBI, which is involved in the lipid and lutein pathways. This study was conducted in
a French series of 1241 AMD patients and 297 controls, and in a North American series of 1257 patients with advanced AMD
and 1732 controls. Among these individuals, we identified 61 French patients, 77 French controls, 85 North American
patients and 338 North American controls who did not carry the CFH nor ARMS2 polymorphisms. An association between
AMD and the SCARB1 gene was seen among the study subjects. The genotypic distribution of the rs5888 polymorphism was
significantly different between cases and controls in the French population (p,0.006). Heterozygosity at the rs5888 SNP
increased risk of AMD compared to the CC genotypes in the French study population (odds ratio (OR) = 3.5, CI95%: 1.4–8.9,
p,0.01) and after pooling the 2 populations (OR = 2.9, 95% CI: 1.6–5.3, p,0.002). Subgroup analysis in exudative forms of
AMD revealed a pooled OR of 3.6 for individuals heterozygous for rs5888 (95% CI: 1.7–7.6, p,0.0015). These results suggest
the possible contribution of SCARB1, a new genetic factor in AMD, and implicate a role for cholesterol and antioxidant
micronutrient (lutein and vitamin E) metabolism in AMD.
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Introduction

Age-related macular degeneration (AMD) is the most common

cause of irreversible vision loss in the elderly population in Europe

and United States [1,2]. Identification of risk factors is of major

importance for the understanding of the origins of the disorder and

for establishing strategies to prevent AMD. Risk factors for AMD

are both environmental [3–9] and genetic [10–14]. Over the past

few years, several single nucleotide polymorphisms (SNPs) have

been associated with AMD, including variants in the CFH and

ARMS2 genes [15–26,64]. The association between these polymor-

phisms and AMD risk suggests a pathway of inflammation and

oxidation in AMD. Besides these pathways, several lines of evidence

suggest a strong role of antioxidant micronutrients (xanthophylls,

vitamin E and vitamin C) and lipids in AMD [8,27–33].

Our purpose was to assess candidate genes and polymorphisms

involved in the lipid pathway among individuals harboring non-risk

alleles for CFH and ARMS2. The SCARB1 gene which encodes

SRB1, a multiligand cell surface receptor, is known to mediate

selective cholesterol uptake, and cholesterol efflux [34–37], and was

regarded as an attractive candidate gene. Furthermore, recent

studies have shown that SCARB1 is also involved in uptake of

vitamin E and lutein giving further support to a possible role of

SCARB1 in AMD [38,39]. In fact, the xanthophyll, lutein, is

recovered at high concentration in the human macula lutea and has

been associated with the risk of AMD, and vitamin E, the main

lipophilic antioxidant, is suspected to prevent oxidation of

polyunsaturated fatty acids recovered at high concentrations in

the human retina [40–42]. Several studies have suggested that

SCARB1 genotypes for the rs5888 synonymous SNP may play a role

in cholesterol homeostasis and is associated with cardiovascular

diseases [43–48]. Herein, we report a possible association between

the SCARB1 rs5888 SNP and AMD in a subgroup of French and

North American AMD patients in a case-control study.
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Results

The French cohort consisted of 1241 cases (92% exudative AMD,

5.2% geographic atrophy, 2.8% early or intermediate AMD) and

297 controls. The mean6SD age at AMD diagnosis was 78.867.5

years. The North American cohort consisted of 1732 advanced

AMD cases (72.4% exudative AMD, 27.6% geographic atrophy)

and 1257 controls. All subjects were Caucasian. The mean6SD age

at AMD diagnosis was 80.366.5 years (Table 1).

The genotype distributions of the rs1061170, rs10490924 and

rs5888 SNPs within the CFH, ARMS2 and SCARB1 genes,

respectively, are shown in Table 2. The genotypic distributions

of the CFH Y402H and ARMS2 SNPs were significantly different

between cases and controls in both the French and North

American series (p,0.0001 for both groups). For rs5888

genotypes, regardless of CFH or ARMS2 genotypes, no significant

association was found in the entire French population of AMD

patients (Table 2). However, the distribution of the SCARB1

rs5888 genotype was significantly different in the North American

AMD population compared to controls (p,0.004): CT heterozy-

gotes were at increased risk of AMD compared to CC subjects

(adjusted ORCT vs CC = 1.4, 95%CI 1.0–1.8), TT did not

significantly differ from CC (adjusted OR = 1.2 CI95% 0.9–

1.7).Similar results were obtained after pooling the French and the

North American population: adjusted ORCT vs CC = 1.3, 95%CI:

1.0–1.7) and adjusted ORTT vs CC = 1.2, 95%CI 0.9–1.7. Odds

Ratio were adjusted for non genetic confounders: age, gender and

smoking status.

Characteristics of subjects carrying no risk alleles at the CFH

and ARMS2 loci are shown in Table 3 (and Table S1). In the

French population, genotypic distribution of the SCARB1

polymorphism was significantly (p,0.01) different between cases

and controls: CT heterozygotes compared to CC subjects were at

increased risk of AMD. (adjusted OR 3.5, 95%CI1.4–8.9). In the

North American population, we observed a suggested increased

risk of AMD associated with heterozygocity at the rs5888 (global

test p,0.09): ORCT vs CC = 2.5; 95%CI 1.1–5.7. Similar results

were obtained when pooling French and North American

populations (global test, p,0.002), in that CT individuals were

at increased risk of AMD compared to CC genotypes: adjusted

OR = 2.9; 95%CI1.6–5.3 while TT subjects did not significantly

differ from CC subjects (Table 4).

In exudative AMD subgroups (Cases: n = 105, 55 French and

50 American; controls: n = 415, 77 French and 338 American),

Table 1. Non-genetic characteristics of the entire French and North American populations.

French population USA population

Controls Cases Controls Cases p

N 297 1241 1257 1732

Sex, men, n(%) 110 (39.4%) 415 (33.4%) #0.06 543 (43.2%) 750 (43.3%) ,0.96

Age, m (sd)* 69.2 (7.4) 78.8 (7.5) ,0.0001 75.0 (5.5) 80.3 (6.5) ,0.0001

Smoking

Current, n(%) 89 (30.1%) 106 (8.6%) ,0.0001 27 (4.6%) 98 (7.9%) ,0.005

Never, n(%) 163 (55.1%) 770 (62.1%) 251 (42.9%) 455 (36.7%)

Past, n(%) 44 (14.8%) 364 (29.3%) 307 (52.5%) 686 (55.4%)

doi:10.1371/journal.pone.0007341.t001

Table 2. Genotype distributions among the entire French and North American populations.

French population USA population

Controls Cases Controls Cases p

N 297 1241 1257 1732

CFHY402H (rs1061170)

CC 35 (11.8%) 356 (28.7%) ,0.0001 154 (12.3%) 654 (37.8%) ,0.0001

CT 146 (49.2%) 628 (50.6%) 562 (44.7%) 815 (47.1%)

TT 116 (39.0%) 257 (20.7%) 541 (43.0%) 263 (15.2%)

ARMS2 (rs10490924)

GG 195 (65.7%) 397 (32.0%) ,0.0001 799 (63.6%) 542 (31.3%) ,0.0001

GT 92 (31.0%) 577 (46.5%) 416 (33.1%) 814 (47.0%)

TT 10 (3.4%) 267 (21.5%) 42 (3.3%) 376 (21.7%)

SRB1 (rs5888)

CC 79 (26.6%) 317 (25.5%) ,0.89 376 (29.9%) 433 (25.0%) ,0.004

CT 151 (50.8%) 629 (50.7%) 585 (46.5%) 903 (52.1%)

TT 67 (22.6%) 295 (24.8%) 296 (23.6%) 396 (22.9%)

P values: global chi2 test with 2 degrees of freedom for comparison of genotype distribution between cases and controls.
doi:10.1371/journal.pone.0007341.t002
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adjusted OR after pooling both populations for CT heterozygous

individuals was: OR = 3.6, 95%CI: 1.7–7.6, p,0.0015.

Discussion

Here we report for the first time a possible association between a

polymorphism in the SCARB1 gene and AMD, in two distinctly

different Caucasian populations.

AMD is a multifactorial disorder including both environmental

and genetic factors. Among the long list of genes potentially

involved in AMD [49], two major genes have been recently

associated to AMD: CFH and ARMS2 [15–26,64]. Because, double

homozygosity for the CFH and ARMS2 risk alleles account for more

than 50% in the pathology of AMD [50,51], we hypothesized that

candidate gene screening in a subgroup of AMD patients and

controls homozygous for CFH and ARMS2 wild-type alleles may

help in identifying novel and independent genetic risk factors. One

limit of our study is the sample size of our populations without the

CFH and/or the ARMS2 at-risk alleles. Only 61/1241 (4.9%) of

AMD French patients and 85/1732 (4.9%) of American AMD did

not carry one of these at-risk alleles. Thus, it requires large series of

patients in order to assure that some patients without the CFH and/

or the ARMS2 at-risk alleles are present in the final sample.

Heterozygosity for the rs5888 SNP of the SCARB1 gene (CT) may

be associated with an increased risk of AMD in the French and North

American populations, respectively. Nevertheless, our findings have to

be interpreted very cautiously. Heterozygosity was found significantly

associated to AMD in wild-type individuals for CFH and ARMS2 in

the French group (p,0.01), and in the same direction but not

significant in the North American population (p,0.09). Heterozygos-

ity at the rs5888 was also found to be significantly associated with

AMD when all North American individuals, regardless of their

genotypes at the CFH and ARMS2 loci, were considered (p,0.004),

but not in the French population. This discrepancy might be

explained by the low number of French controls, compared to the

North-American sample. However the number of French AMD

patients and controls (respectively 1241 and 297) was evaluated in

order to obtain similar number of AMD patients and controls in wild-

types groups with no risk alleles for CFH and ARMS2 (respectively 61

and 77). An association between rs5888 of SCARB1 and the exudative

type of AMD was observed (OR: 3.6, 95%CI: 1.7–7.6; p,0015). We

enrolled a large number of exudative forms of AMD because patients

with neovascular AMD are most often referred to our specialized

retina departments than atrophic forms of AMD.

SCARB1 gene is located in 12q24.31, in a region of interest

pointed by linkage analysis [52,53]. SCARB1 gene encodes a

multiligand cell surface receptor that mediates selective cholesterol

uptake, and cholesterol efflux [34–37]. Reverse cholesterol

transport, is a major pathway for the clearance of excess

cholesterol from the body. Several studies have reported that the

SCARB1 rs5888 SNP is associated with the development of

coronary heart disease [44], and lipid profile [45–48]. Indeed,

epidemiological studies in Caucasian populations have shown that

the rs5888 is associated with increased HDL cholesterol and lower

LDL cholesterol, and rs5888 has been reported to be associated

with a greater risk of developing coronary heart disease in males

[44]. Because AMD and cardiovascular diseases share common

pathways [54–56], we decided to analyze genes involved in lipid

homeostasis. Furthermore, it is known that SCARB1 is also

expressed in the retinal pigment epithelium [57], and could

interact with APOE, another gene which some groups but not all

have reported to be involved in AMD [58,59]. Besides the

pathway of lipids, SCARB1 is also involved in the metabolism of

lutein and vitamin E [60]. Lutein, obtained from foods, is a

member of the carotenoid family, more specifically the xantho-

phyll family. Lutein protects the photoreceptors against light-

Table 3. Non-genetic characteristics of the French and North American populations with no risk alleles for CFH and ARMS2.

French population USA population

Controls Cases Controls Cases p

N 77 61 338 85

Sex, men, n(%) 23 (31.9%) 16 (26.2%) ,0.48 144 (42.6%) 39 (45.9%) ,0.59

Age, m (sd)* 70.3 (7.2) 77.9 (9.8) ,0.0001 74.8 (5.6) 79.0 (8.0) ,0.0001

Smoking

Current, n(%) 19 (24.7%) 10 (16.4%) ,0.50 8 (5.0%) 8(14.3%) ,0.062*

Never, n(%) 46 (59.7%) 41 (67.2%) 72 (45.0%) 20 (35.7%)

Past, n(%) 12 (15.6%) 10 (16.4%) 80 (50.0%) 28 (50.0%)

doi:10.1371/journal.pone.0007341.t003

Table 4. Adjusted Odds ratio for rs5888 of SCARB1 gene in
patients with no risk alleles for CFH and ARMS2.

CC CT TT

OR [CI95%] OR [CI95%] P*

France 1 (ref) 3.5 [1.4–8.9] 1.0 [0.3–3.2] ,0.01

USA 1 (ref) 2.5 [1.1–5.7] 2.0 [0.8–5.2) ,0.09

Pooled 1 (ref) 2.9 [1.6–5.3] 1.6 [0.8–3.3] ,0.002

Gender-Pooled

Men 1 (ref) 4.3 [1.5–11.9] 1.8 [0.5–6.3] ,0.02

Women 1 (ref) 2.5 [1.2–5.5] 1.7 [0.7–4.3] ,0.07

Exudative forms

France 1 (ref) 3.6 [1.3–10.0] 1.1 [0.3–4.0] ,0.02

USA 1 (ref) 3.5 [1.1–10.5] 2.2 [0.6–8.0] ,0.09

Pooled 1 (ref) 3.6 [1.7–7.6] 1.6 [0.7–4.0] ,0.0015

Adjustment for non genetic confounders: age, sex, and cigarette smoking.
For table 4, OR are estimated by genotype (CT vs CC and TT vs CT) but the p
values are global p values (with 2 degrees of freedom) for estimates a global
effect of genotype (is at least one of the genotypes (CT or TT) significantly
associated with increased rik of AMD).
*Interaction with center; p,0.29, interaction with sex (in pooled population),
p,0.48.
Sample size: France: 61 cases and 72 controls – USA: 56 cases and 160 controls.
doi:10.1371/journal.pone.0007341.t004

SCARB1 Gene and AMD
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initiated oxidative damage. Furthermore, epidemiologic studies

based on diet questionnaires or serum levels of lutein revealed that

high levels of lutein are associated with a decreased risk of AMD

[8,61]. Vitamin E acts as an antioxidant, protecting the retina

against oxidative stress, with possible preventive and therapeutic

effects [33,40,41]. SCARB1 is involved in the metabolism of three

key molecules involved in the etiology of AMD: cholesterol, lutein

and vitamin E, all supported by fundamental and epidemiological

studies. For these reasons based on gene function and gene

location, we considered SCARB1 as a good candidate gene for

AMD. The greater risk of AMD found in CT individuals

heterozygous at rs5888 has already been reported in peripheral

arterial disease [43]. The rs5888 SNP is a coding-synonymous

polymorphism (A350A). This polymorphism may nevertheless be

in linkage disequilibrium with a functional sequence change as

recently demonstrated with the identification of the rs10490924

polymorphism in the ARMS2 gene which results in instability of

the transcript [62]. To evaluate this hypothesis, we sequenced the

13 SCARB1 exons (in 8 patients: 3 patients TT, 2 patients CC and

3 patients CT) and 200 kb of the 59UTR in 92 wild-type

individuals patients and controls, but we did not found any

anomalies in the gene sequence, neither insertions or deletions

such as the one described in the SCARB1 promotor [63]. The

relatively small sample size in some of the subgroup analyses could

also explain some of the findings. On the other hand, it is also

possible that the rs5888 polymorphism has a functional effect

through a mechanism involving splicing regulatory system. From

this point of view it is worth noting that it has been shown that

SCARB1 mRNA expression is significantly decreased in heterozy-

gous individuals compared to homozygous CC or TT [43]. ‘‘A

dominant-negative effect can be suggested.’’ Further studies will

hopefully bring insights into this intriguing question.

In conclusion, our results suggest that the SCARB1 polymor-

phism is associated with AMD. This genetic finding is consistent

with basic and epidemiological studies underlying the role of

cholesterol, lutein and vitamin E in AMD. Additional studies

including correlations with serum analysis and larger samples sizes

are needed to confirm this finding.

Methods

French Populations
Patients. Written informed consent was obtained, as required

by the French bioethical legislation and local ethic committee

(CCPPRB Henri Mondor), in agreement with the Declaration of

Helsinki for research involving human subjects.

A total of 1241 French AMD patients were recruited in 4

French Ophthalmologic Centres, at the Ophthalmology Eye

Clinic of Créteil in collaboration with the Pellegrin Hospital, the

Quinze-Vingts Hospital and the Centre of Imaging and Laser of

Paris, between November 2005 and July 2007. Inclusion criteria of

the AMD patients were (1) women or men aged 55 or older, and

(2) with exudative AMD, atrophic AMD or with early or

intermediate AMD (also called Aged-Related Maculopathy) in at

least one eye. Exclusion criteria were presence of other retinal

disease (e.g. diabetic retinopathy, high myopia, or macular

dystrophies). Patients underwent a complete ophthalmologic

examination including best corrected visual acuity measurement,

fundus examination, and retinal photographs. Fluorescein angi-

ography (Topcon 50IA camera, Tokyo, Japan)- and if needed

indocyanine green angiography (HRA, Heidelberg, Germany)-

and Optical Coherence Tomography (Carl Zeiss Meditec, Inc)

were performed. A questionnaire about medical history and

smoking was completed.

Controls. A total of 297 French women or men over 55 years

with a normal fundus examination and a normal aspect of fundus

photography were also recruited at the Ophtalmology Eye Clinic

of Créteil between 2002 and 2008. Information about their

medical history including smoking, was obtained.

Genotyping Methods. Genomic DNA was extracted from

10 mL blood leukocytes using the IllustraH kit according to the

manufacturer protocol (GE Healthcare). The SCARB1 rs5888 CFH

Y402H and ARMS2 rs10490924 SNPs were genoyped by quantitative

PCR allelic discrimination using reagents and conditions from

Custom Taqman SNP Genotyping Assays (Applera Corp., France),

using ABI 7900HT (Applied Biosystems) [24].

North American Populations
Patients. Subjects and methods of diagnosis and enrollment

have been previously described [64]. All patients had advanced

age-related macular degeneration, either exudative or geographic

atrophy, and diagnosis was based on ocular examination and

fundus photography. They were all Caucasian and unrelated

(Table 1).

Controls. Caucasian individuals without AMD who were

unrelated to the cases and to other controls were enrolled. Absence

of AMD was based on ocular examination and grading of fundus

photographs [64] (Table 1). All cases and controls signed a written

informed consent form.

Genotyping Methods. DNA samples were evaluated for the

rs5888 SNP using either the Affymetrix 6.0 platform as part of our

genome-wide association study (under review) or the Sequenom

platform. Genotyping was performed at the Broad Institute in

Cambridge, MA, USA.

Statistical Analysis. Hardy-Weinberg assumption was

assessed by the standard method comparing the observed

numbers of subjects in different genotype categories with the

expected number under Hardy-Weinberg equilibrium for the

estimated allele frequency, and testing with a Pearson goodness-of-

fit statistic with the x2 with 1 degree of freedom.

x2 test was used to compare categorical allelic and genotype

distributions between cases and controls (table 1). General linear

models were used to compare means between cases and controls.

Logistic regression models were used to estimated odds ratio (OR)

with 95% confidence interval (95%CI) for AMD risk. OR’s were

adjusted for age, gender and smoking status. Significance levels

were set at p,0.05. Analyses were performed with the SAS

software release 9.01 (SAS Institute INC, Cary, NC).

Homogeneity between the 2 populations was tested by

introduction of interaction terms with study center in the models

(1rst test), by Breslow-day Test for homogeneity of the odds ratio

(2nd test) and by I2 ( = % of heterogeneity). I2 has been estimated

by the software Review Manager 5. I2 and Breslow-Day test have

been made without adjustment.

Supporting Information

Table S1 Genotype distribution for SCARB1 (rs5888) in the

French and North American individuals with no risk alleles for

CFH (rs1061170) and ARMS2 (rs10490924). P values: global chi2

test with 2 degrees of freedom for comparison of genotype

distribution between cases and controls.

Found at: doi:10.1371/journal.pone.0007341.s001 (0.03 MB

DOC)
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