rs5888 variant of SCARB1 gene is a possible susceptibility factor for age-related macular degeneration

To cite this version:
Jennyfer Zerbib, Johanna M. Seddon, Florence Richard, Robyn Reynolds, Nicolas Leveziel, et al.. rs5888 variant of SCARB1 gene is a possible susceptibility factor for age-related macular degeneration. PLoS ONE, 2009, 4 (10), pp.e7341. hal-02664177

HAL Id: hal-02664177
https://hal.inrae.fr/hal-02664177
Submitted on 31 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
rs5888 Variant of SCARB1 Gene Is a Possible Susceptibility Factor for Age-Related Macular Degeneration

Jennyfer Zerbib1,2, Johanna M. Seddon3, Florence Richard4, Robyn Reynolds3, Nicolas Leveziel1,7, Pascale Benlian5, Patrick Borel6, Josué Feingold2, Arnold Munnoch2, Gisèle Soubrane1, Josseline Kaplan2, Jean-Michel Rozet3, Eric H. Souied1,7,8

1 Creteil University Eye Clinic, Faculte de Medecine Henri Mondor, Creteil, France, 2 Genetics Service, INSERM U781, Hopital Necker Enfants Malades, Paris, France, 3 Tufts University School of Medicine and Ophthalmic of Epidemiology and Genetics Service, Tufts Medical Center, Boston, Massachusetts, United States of America, 4 Université Lille Nord de France, INSERM, UMR744, Institut Pasteur de Lille, Lille, France, 5 Université Pierre et Marie Curie, Paris 6, Department of Molecular Biology and Biochemistry, Hopital Saint-Antoine, Paris, France, 6 INRA, UMR1260 « Nutriments Lipidiques et Prévention des Maladies Métaboliques », Marseille, France, 7 Unite Fonctionnelle de Recherche Clinique, Creteil, France

Abstract

Major genetic factors for age-related macular degeneration (AMD) have recently been identified as susceptibility risk factors, including variants in the CFH gene and the ARMS2 LOC387715/HTRA1 locus. Our purpose was to perform a case-control study in two populations among individuals who did not carry risk variants for CFHY402H and LOC387715 A69S (ARMS2), called “study” individuals, in order to identify new genetic risk factors. Based on a candidate gene approach, we analyzed SNP rs5888 of the SCARB1 gene, coding for SRBI, which is involved in the lipid and lutein pathways. This study was conducted in a French series of 1241 AMD patients and 297 controls, and in a North American series of 1257 patients with advanced AMD and 1732 controls. Among these individuals, we identified 61 French patients, 77 French controls, 85 North American patients and 338 North American controls who did not carry the CFH nor ARMS2 polymorphisms. An association between AMD and the SCARB1 gene was seen among the study subjects. The genotypic distribution of the rs5888 polymorphism was significantly different between cases and controls in the French population (p<0.006). Heterozygosity at the rs5888 SNP increased risk of AMD compared to the CC genotypes in the French study population (odds ratio (OR) = 3.5, CI95%: 1.4–8.9, p<0.001) and after pooling the 2 populations (OR = 2.9, 95% CI: 1.6–5.3, p<0.002). Subgroup analysis in exudative forms of AMD revealed a pooled OR of 3.6 for individuals heterozygous for rs5888 (95% CI: 1.7–7.6, p<0.0015). These results suggest the possible contribution of SCARB1, a new genetic factor in AMD, and implicate a role for cholesterol and antioxidant micronutrient (lutein and vitamin E) metabolism in AMD.

Editor: Lyle Konigsberg, University of Illinois at Champaign-Urbana, United States of America

Received June 3, 2009; Accepted September 11, 2009; Published October 5, 2009

Copyright: © 2009 Zerbib et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by a French National Grant, from the ministry of Health (PHRC National 2004, from the Fondation pour la Recherche Medicale and the Association DMLA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: eric.souied@chicreteil.fr

Introduction

Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the elderly population in Europe and United States [1,2]. Identification of risk factors is of major importance for the understanding of the origins of the disorder and for establishing strategies to prevent AMD. Risk factors for AMD are both environmental [3–9] and genetic [10–14]. Over the past few years, several single nucleotide polymorphisms (SNPs) have been associated with AMD, including variants in the CFH and ARMS2 genes [15–26,64]. The association between these polymorphisms and AMD risk suggests a pathway of inflammation and oxidation in AMD. Besides these pathways, several lines of evidence suggest a strong role of antioxidant micronutrients (xanthophylls, vitamin E and vitamin C) and lipids in AMD [8,27–33].

Our purpose was to assess candidate genes and polymorphisms involved in the lipid pathway among individuals harboring non-risk alleles for CFH and ARMS2. The SCARB1 gene which encodes SRBI, a multiligand cell surface receptor, is known to mediate selective cholesterol uptake, and cholesterol efflux [34–37], and was regarded as an attractive candidate gene. Furthermore, recent studies have shown that SCARB1 is also involved in uptake of vitamin E and lutein giving further support to a possible role of SCARB1 in AMD [38,39]. In fact, the xanthophyll, lutein, is recovered at high concentration in the human macula lutea and has been associated with the risk of AMD, and vitamin E, the main lipophilic antioxidant, is suspected to prevent oxidation of polyunsaturated fatty acids recovered at high concentrations in the human retina [40–42]. Several studies have suggested that SCARB1 genotypes for the rs5888 synonymous SNP may play a role in cholesterol homeostasis and is associated with cardiovascular diseases [43–48]. Herein, we report a possible association between the SCARB1 rs5888 SNP and AMD in a subgroup of French and North American AMD patients in a case-control study.
Results

The French cohort consisted of 1241 cases (92% exudative AMD, 5.2% geographic atrophy, 2.8% early or intermediate AMD) and 297 controls. The mean SD age at AMD diagnosis was 78.8 ± 7.5 years. The North American cohort consisted of 1732 advanced AMD cases (72.4% exudative AMD, 27.6% geographic atrophy) and 1257 controls. All subjects were Caucasian. The mean SD age at AMD diagnosis was 80.3 ± 6.5 years (Table 1).

The genotype distributions of the rs1061170, rs10490924 and rs5888 SNPs within the CFH, ARMS2 and SCARB1 genes, respectively, are shown in Table 2. The genotypic distributions of the CFH Y402H and ARMS2 SNPs were significantly different between cases and controls in both the French and North American series (p < 0.0001 for both groups). For rs5888 genotypes, regardless of CFH or ARMS2 genotypes, no significant association was found in the entire French population of AMD patients (Table 2). However, the distribution of the SCARB1 rs5888 genotype was significantly different in the North American AMD population compared to controls (p = 0.004): CT heterozygotes were at increased risk of AMD compared to CC subjects (adjusted OR CT vs CC = 1.4, 95% CI 1.0–1.8), TT did not significantly differ from CC (adjusted OR = 1.2 CI 95% 0.9–1.7). Similar results were obtained after pooling the French and the North American series (p < 0.0001); OR CT vs CC = 1.3, 95% CI 1.0–1.7 and adjusted OR CT vs CC = 1.2, 95% CI 0.9–1.7. Odds Ratio were adjusted for non genetic confounders: age, gender and smoking status.

Characteristics of subjects carrying no risk alleles at the CFH and ARMS2 loci are shown in Table 3 (and Table S1). In the French population, genotypic distribution of the SCARB1 polymorphism was significantly (p < 0.01) different between cases and controls: CT heterozygotes compared to CC subjects were at increased risk of AMD (adjusted OR = 3.5, 95% CI 1.4–8.9). In the North American population, we observed a suggested increased risk of AMD associated with heterozygosity at the rs5888 (global test p = 0.09): OR CT vs CC = 2.5; 95% CI 1.1–5.7. Similar results were obtained when pooling French and North American populations (global test, p < 0.002), in that CT individuals were at increased risk of AMD compared to CC genotypes: adjusted OR = 2.9; 95% CI 1.6–5.3 while TT subjects did not significantly differ from CC subjects (Table 4).

In exudative AMD subgroups (Cases: n = 105, 55 French and 50 American; controls: n = 415, 77 French and 338 American),

Table 1. Non-genetic characteristics of the entire French and North American populations.

<table>
<thead>
<tr>
<th></th>
<th>French population</th>
<th>USA population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
<td>Cases</td>
</tr>
<tr>
<td>N</td>
<td>297</td>
<td>1241</td>
</tr>
<tr>
<td>Sex, men, n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110 (39.4%)</td>
<td>415 (33.4%)</td>
</tr>
<tr>
<td>Age, m (sd)*</td>
<td>69.2 (7.4)</td>
<td>78.8 (7.5)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current, n(%)</td>
<td>89 (30.1%)</td>
<td>106 (8.6%)</td>
</tr>
<tr>
<td>Never, n(%)</td>
<td>163 (55.1%)</td>
<td>770 (62.1%)</td>
</tr>
<tr>
<td>Past, n(%)</td>
<td>44 (14.8%)</td>
<td>364 (29.3%)</td>
</tr>
</tbody>
</table>

Table 2. Genotype distributions among the entire French and North American populations.

<table>
<thead>
<tr>
<th></th>
<th>French population</th>
<th>USA population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
<td>Cases</td>
</tr>
<tr>
<td>N</td>
<td>297</td>
<td>1241</td>
</tr>
<tr>
<td>CFHY402H (rs1061170)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>35 (11.8%)</td>
<td>356 (28.7%)</td>
</tr>
<tr>
<td>CT</td>
<td>146 (49.2%)</td>
<td>628 (50.6%)</td>
</tr>
<tr>
<td>TT</td>
<td>116 (39.0%)</td>
<td>257 (20.7%)</td>
</tr>
<tr>
<td>ARMS2 (rs10490924)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>195 (65.7%)</td>
<td>397 (32.0%)</td>
</tr>
<tr>
<td>GT</td>
<td>92 (31.0%)</td>
<td>577 (46.5%)</td>
</tr>
<tr>
<td>TT</td>
<td>10 (3.4%)</td>
<td>267 (21.5%)</td>
</tr>
<tr>
<td>SCARB1 (rs5888)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>79 (26.6%)</td>
<td>317 (25.5%)</td>
</tr>
<tr>
<td>CT</td>
<td>151 (50.8%)</td>
<td>629 (50.7%)</td>
</tr>
<tr>
<td>TT</td>
<td>67 (22.6%)</td>
<td>295 (24.8%)</td>
</tr>
</tbody>
</table>

P values: global chi² test with 2 degrees of freedom for comparison of genotype distribution between cases and controls.

doi:10.1371/journal.pone.0007341.t001

doi:10.1371/journal.pone.0007341.t002
different Caucasian populations. Associated to AMD:
and genetic factors. Among the long list of genes potentially
limit of our study is the sample size of our populations without the
help in identifying novel and independent genetic risk factors. One
candidate gene screening in a subgroup of AMD patients and
than 50% in the pathology of AMD [50,51], we hypothesized that
homozygosity for the

Discussion
Here we report for the first time a possible association between a
polymorphism in the SCARB1 gene and AMD, in two distinctly
different Caucasian populations.
AMD is a multifactorial disorder including both environmental
and genetic factors. Among the long list of genes potentially
involved in AMD [49], two major genes have been recently
associated to AMD: CFH and ARMS2 [15–26,64]. Because, double
homozygosity for the CFH and ARMS2 risk alleles account for more
than 50% in the pathology of AMD [50,51], we hypothesized that
candidate gene screening in a subgroup of AMD patients and
controls homozygous for CFH and ARMS2 wild-type alleles may help
in identifying novel and independent genetic risk factors. One
limit of our study is the sample size of our populations without the
CFH and/or the ARMS2 at-risk alleles. Only 61/1241 (4.9%) of

Table 3. Non-genetic characteristics of the French and North American populations with no risk alleles for CFH and ARMS2.

<table>
<thead>
<tr>
<th></th>
<th>French population</th>
<th>USA population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
<td>Cases</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex, men, n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77 (31.9%)</td>
<td>61 (26.2%)</td>
</tr>
<tr>
<td>Age, m (sd)*</td>
<td>70.3 (7.2)</td>
<td>77.9 (9.8)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current, n(%)</td>
<td>19 (24.7%)</td>
<td>10 (16.4%)</td>
</tr>
<tr>
<td>Never, n(%)</td>
<td>46 (59.7%)</td>
<td>41 (67.2%)</td>
</tr>
<tr>
<td>Past, n(%)</td>
<td>12 (15.6%)</td>
<td>10 (16.4%)</td>
</tr>
<tr>
<td>Sample size: France: 61 cases and 72 controls – USA: 56 cases and 160 controls.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0007341.t003

adjusted OR after pooling both populations for CT heterozygous
individuals was: OR = 3.6, 95%CI: 1.7–7.6, p<0.0015.

Discussion
Here we report for the first time a possible association between a
polymorphism in the SCARB1 gene and AMD, in two distinctly
different Caucasian populations.
AMD is a multifactorial disorder including both environmental
and genetic factors. Among the long list of genes potentially
involved in AMD [49], two major genes have been recently
associated to AMD: CFH and ARMS2 [15–26,64]. Because, double
homozygosity for the CFH and ARMS2 risk alleles account for more
than 50% in the pathology of AMD [50,51], we hypothesized that
candidate gene screening in a subgroup of AMD patients and
controls homozygous for CFH and ARMS2 wild-type alleles may help
in identifying novel and independent genetic risk factors. One
limit of our study is the sample size of our populations without the
CFH and/or the ARMS2 at-risk alleles. Only 61/1241 (4.9%) of

Table 4. Adjusted Odds ratio for rs5888 of SCARB1 gene in patients with no risk alleles for CFH and ARMS2.

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>CT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95%)</td>
<td>OR (95%)</td>
<td>P*</td>
</tr>
<tr>
<td>France</td>
<td>3.5 [1.4–8.9]</td>
<td>1.0 [0.3–3.2]</td>
<td><0.01</td>
</tr>
<tr>
<td>USA</td>
<td>2.5 [1.1–5.7]</td>
<td>2.0 [0.8–5.2]</td>
<td><0.09</td>
</tr>
<tr>
<td>Pooled</td>
<td>2.9 [1.6–5.3]</td>
<td>1.6 [0.8–3.3]</td>
<td><0.002</td>
</tr>
<tr>
<td>Gender-Pooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>4.3 [1.5–11.9]</td>
<td>1.8 [0.5–6.3]</td>
<td><0.02</td>
</tr>
<tr>
<td>Women</td>
<td>2.5 [1.2–5.5]</td>
<td>1.7 [0.7–4.3]</td>
<td><0.07</td>
</tr>
</tbody>
</table>

Exudative forms

	OR (95%)	OR (95%)	P*
France	3.6 [1.3–10.0]	1.1 [0.3–4.0]	<0.02
USA	3.5 [1.1–10.5]	2.2 [0.6–8.0]	<0.09
Pooled	3.6 [1.7–7.6]	1.6 [0.7–4.0]	<0.0015

Adjustment for non genetic confounders: age, sex, and cigarette smoking.
For table 4, OR are estimated by genotype (CT vs CC and TT vs CT) but the p
values are global p values (with 2 degrees of freedom) for estimates a global
effect of genotype (is at least one of the genotypes (CT or TT) significantly
associated with increased risk of AMD).
*Interaction with center; p<0.05, interaction with sex (in pooled population),
p<0.48.
Sample size: France: 61 cases and 72 controls – USA: 56 cases and 160 controls.
doi:10.1371/journal.pone.0007341.t004

AMD French patients and 85/1732 (4.9%) of American AMD did
not carry one of these at-risk alleles. Thus, it requires large series of
patients in order to assure that some patients without the CFH and/or
the ARMS2 at-risk alleles are present in the final sample.
Heterozygosity for the rs5888 SNP of the SCARB1 gene (CT) may
be associated with an increased risk of AMD in the French and North
American populations, respectively. Nevertheless, our findings have to
be interpreted very cautiously. Heterozygosity was found significantly
associated to AMD in wild-type individuals for CFH and ARMS2 in
the French group (p<0.01), and in the same direction but not
significant in the North American population (p<0.09). Heterozygosity
at the rs5888 was also found to be significantly associated with
AMD when all North American individuals, regardless of their
genotypes at the CFH and ARMS2 loci, were considered (p<0.004),
but not in the French population. This discrepancy might be
explained by the low number of French controls, compared to the
North-American sample. However the number of French AMD
patients and controls (respectively 1241 and 297) was evaluated in
order to obtain similar number of AMD patients and controls in wild-
type groups with no risk alleles for CFH and ARMS2 (respectively 61
and 77). An association between rs5888 of SCARB1 and the exudative
type of AMD was observed (OR: 3.6, 95%CI: 1.7–7.6; p<0.0015). We
enrolled a large number of exudative forms of AMD because patients
with neovascular AMD are most often referred to our specialized
retina departments than atrophic forms of AMD.
SCARB1 gene is located in 12q24.31, in a region of interest
pointed by linkage analysis [52,53]. SCARB1 gene encodes a
multiligand cell surface receptor that mediates selective cholesterol
uptake, and cholesterol efflux [34–37]. Reverse cholesterol
transport, is a major pathway for the clearance of excess
cholesterol from the body. Several studies have reported that the
SCARB1 rs5888 SNP is associated with the development of
coronary heart disease [44], and lipid profile [45–48]. Indeed,
epidemiological studies in Caucasian populations have shown that
the rs5888 is associated with increased HDL cholesterol and lower
LDL cholesterol, and rs5888 has been reported to be associated
with a greater risk of developing coronary heart disease in males
[44]. Because AMD and cardiovascular diseases share common
pathways [54–56], we decided to analyze genes involved in lipid
homeostasis. Furthermore, it is known that SCARB1 is also
expressed in the retinal pigment epithelium [57], and could
interact with APOE, another gene which some groups but not all
have reported to be involved in AMD [58,59]. Besides the
pathway of lipids, SCARB1 is also involved in the metabolism of
lutein and vitamin E [60]. Lutein, obtained from foods, is a
member of the carotenoid family, more specifically the xantho-
phyll family. Lutein protects the photoreceptors against light-
initiated oxidative damage. Furthermore, epidemiologic studies based on diet questionnaires or serum levels of lutein revealed that high levels of lutein are associated with a decreased risk of AMD [8,61]. Vitamin E acts as an antioxidant, protecting the retina against oxidative stress, with possible preventive and therapeutic effects [33,40,41]. SCARB1 is involved in the metabolism of three key molecules involved in the etiology of AMD: cholesterol, lutein and vitamin E, all supported by fundamental and epidemiological studies. For these reasons based on gene function and gene location, we considered SCARB1 as a good candidate gene for AMD. The greater risk of AMD found in CT individuals heterozygous at rs5888 has already been reported in peripheral arterial disease [43]. The rs5888 SNP is a coding-synonymous polymorphism (A350A). This polymorphism may nevertheless be in linkage disequilibrium with a functional sequence change as recently demonstrated with the identification of the rs10490924 polymorphism in the ARMS2 gene which results in instability of the transcript [62]. To evaluate this hypothesis, we sequenced the 15 SCARB1 exons (in 8 patients: 3 patients TT, 2 patients CC and 3 patients CT) and 200 kb of the 5'UTR in 92 wild-type individuals patients and controls, but we did not found any anomalies in the gene sequence, neither insertions or deletions such as the one described in the SCARB1 promoter [63]. The relatively small sample size in some of the subgroup analyses could also explain some of the findings. On the other hand, it is also possible that the rs5888 polymorphism has a functional effect through a mechanism involving splicing regulatory system. From this point of view it is worth noting that it has been shown that SCARB1 mRNA expression is significantly decreased in heterozygous individuals compared to homozygous CC or TT [43]. ‘A dominant-negative effect can be suggested.’ Further studies will hopefully bring insights into this intriguing question.

In conclusion, our results suggest that the SCARB1 polymorphism is associated with AMD. This genetic finding is consistent with basic and epidemiological studies underlying the role of cholesterol, lutein and vitamin E in AMD. Additional studies including correlations with serum analysis and larger samples sizes are needed to confirm this finding.

Methods

French Populations

Patients. Written informed consent was obtained, as required by the French bioethical legislation and local ethic committee (CCPRPB Henri Mondor), in agreement with the Declaration of Helsinki for research involving human subjects.

A total of 1241 French AMD patients were recruited in 4 French Ophthalmologic Centres, at the Ophthalmology Eye Clinic of Créteil in collaboration with the Pellegrin Hospital, the Quinze-Vingts Hospital and the Centre of Imaging and Laser of Paris, between November 2005 and July 2007. Inclusion criteria of the AMD patients were: (1) women or men aged 55 or older, and (2) with exudative AMD, atrophic AMD or with early or intermediate AMD (also called Aged-Related Maculopathy) in at least one eye. Exclusion criteria were presence of other retinal disease (e.g. diabetic retinopathy, high myopia, or macular dystrophies). Patients underwent a complete ophthalmologic examination including best corrected visual acuity measurement, fundus examination, and retinal photographs. Fluorescein angiography (Topcon 50A camera, Tokyo, Japan)- and if needed indocyanine green angiography (HRA, Heidelberg, Germany)- and Optical Coherence Tomography (Carl Zeiss Meditec, Inc) were performed. A questionnaire about medical history and smoking was completed.

Controls. A total of 297 French women or men over 55 years with a normal fundus examination and a normal aspect of fundus photography were also recruited at the Ophthalmology Eye Clinic of Créteil between 2002 and 2008. Information about their medical history including smoking, was obtained.

Genotyping Methods. Genomic DNA was extracted from 10 mL blood leukocytes using the Illustra® kit according to the manufacturer protocol (GE Healthcare). The SCARB1 rs5888 CFH Y402H and ARMS2 rs10490924 SNPs were genotyped by quantitative PCR allelic discrimination using reagents and conditions from Custom Taqman SNP Genotyping Assays (Applera Corp., France), using ABI 7900HT (Applied Biosystems) [24].

North American Populations

Patients. Subjects and methods of diagnosis and enrollment have been previously described [64]. All patients had advanced age-related macular degeneration, either exudative or geographic atrophy, and diagnosis was based on ocular examination and fundus photography. They were all Caucasian and unrelated (Table 1).

Controls. Caucasian individuals without AMD who were unrelated to the cases and to other controls were enrolled. Absence of AMD was based on ocular examination and grading of fundus photographs [64] (Table 1). All cases and controls signed a written informed consent form.

Genotyping Methods. DNA samples were evaluated for the rs5888 SNP using either the Affymetrix 6.0 platform as part of our genome-wide association study (under review) or the Sequenom platform. Genotyping was performed at the Broad Institute in Cambridge, MA, USA.

Statistical Analysis. Hardy-Weinberg assumption was assessed by the standard method comparing the observed numbers of subjects in different genotype categories with the expected number under Hardy-Weinberg equilibrium for the estimated allele frequency, and testing with a Pearson goodness-of-fit statistic with the χ2 with 1 degree of freedom.

χ2 test was used to compare categorical allelic and genotype distributions between cases and controls (table 1). General linear models were used to compare means between cases and controls. Logistic regression models were used to estimated odds ratio (OR) with 95% confidence interval (95%CI) for AMD risk. OR’s were adjusted for age, gender and smoking status. Significance levels were set at p<0.05. Analyses were performed with the SAS software release 9.01 (SAS Institute INC, Cary, NC).

Homogeneity between the 2 populations was tested by introduction of interaction terms with study center in the models (1st test), by Breslow-day Test for homogeneity of the odds ratio (2nd test) and by I2 (≥ % of heterogeneity). I2 has been estimated by the software Review Manager 5. I2 and Breslow-Day test have been made without adjustment.

Supporting Information

Table S1 Genotype distribution for SCARB1 (rs5888) in the French and North American individuals with no risk alleles for CFH (rs1061170) and ARMS2 (rs10490924). P values: global χ2 test with 2 degrees of freedom for comparison of genotype distribution between cases and controls. Found at: doi:10.1371/journal.pone.0007341.s001 (0.03 MB DOC)

Acknowledgments

Author Contributions
Conceived and designed the experiments: JZ NL PB BF JM JK EHS. Performed the experiments: JZ RR NL EHS. Analyzed the data: JZ JS FR JF AM JK JMR EHS. Contributed reagents/materials/analysis tools: JS PB BS JK JMR EHS. Wrote the paper: JZ JS FR EHS.

References

