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Abstract
Background: Efforts to sequence the genomes of different organisms continue to increase. The
DNA sequence is usually decoded for one individual and its application is for the whole species.
The recent sequencing of the highly heterozygous Vitis vinifera L. cultivar Pinot Noir (clone ENTAV
115) genome gave rise to several thousand polymorphisms and offers a good model to study the
transferability of its degree of polymorphism to other individuals of the same species and within
the genus.

Results: This study was performed by genotyping 137 SNPs through the SNPlex™ Genotyping
System (Applied Biosystems Inc.) and by comparing the SNPlex sequencing results across 35 (of
the 137) regions from 69 grape accessions. A heterozygous state transferability of 31.5% across the
unrelated cultivars of V. vinifera, of 18.8% across the wild forms of V. vinifera, of 2.3% among non-
vinifera Vitis species, and of 0% with Muscadinia rotundifolia was found. In addition, mean allele
frequencies were used to evaluate SNP informativeness and develop useful subsets of markers.

Conclusion: Using SNPlex application and corroboration from the sequencing analysis, the
informativeness of SNP markers from the heterozygous grape cultivar Pinot Noir was validated in
V. vinifera (including cultivars and wild forms), but had a limited application for non-vinifera Vitis
species where a resequencing strategy may be preferred, knowing that homology at priming sites
is sufficient. This work will allow future applications such as mapping and diversity studies, accession
identification and genomic-research assisted breeding within V. vinifera.

Background
The number of genomes sequenced continues to increase.
These sequences are usually decoded for one individual,
but their application is considered for the entire species
and even within the genus. Sequencing projects have been

completed for a number of herbaceous plants, namely
thale cress (Arabidopsis thaliana, [1]) and rice (Oryza sativa,
[2]), while for woody species, such as black cottonwood
poplar (Populus trichocarpa, [3]) and papaya (Carica
papaya, [4]), a draft assembly is available. The high com-
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mercial value of grape (Vitis vinifera L.) gave rise to the
funding of two sequencing programs on a near-
homozygous line [5] and a highly heterozygous cultivar
[6]. The genome sequencing of this latter genotype
resulted in several thousand polymorphisms and there-
fore provided a good model to study the transferability of
its polymorphism content across individuals within V.
vinifera and within Vitis.

Grape is one of the oldest and most important perennial
crops in the world. Its cultivation is concentrated in
regions with a Mediterranean-type climate but it is grown
in most temperate regions. The vast majority of the
world's grapes are cultivars of V. vinifera subsp. sativa
(from here reported as V. vinifera cultivars), which are
used as a source of fresh fruit and raisins, and fermented
to make wine and distilled beverages. Cultivated grapes
were domesticated from the wild V. vinifera subsp. sylves-
tris [7], which was once distributed widely from the Mid-
dle East to Western Europe [8]. This range was greatly
restricted by the introduction of the mildew diseases and
grape phylloxera from North America in the mid-1800s,
to which V. vinifera subsp. sylvestris is highly susceptible
[9]. The genus Vitis is unique among the 15 (GRIN data-
base; http://www.ars-grin.gov/cgi-bin/npgs/html/
splist.pl?12735M recognized in the family Vitaceae in hav-
ing 38 chromosomes that form 19 bivalents at meiosis.
Most other related genera in Vitaceae, including Mus-
cadinia, 2n = 40, have multiples of 10 chromosomes.
Often classified as a subgenus of Vitis, Muscadinia has
three species native to the southern USA and eastern Mex-
ico, M. rotundifolia is the only one cultivated. The genus
Vitis consists of about 60 inter-fertile primarily Northern
Hemisphere species with about 30 in America and 30 in
Asia. Because of their resistance to a wide range of pests
and pathogens, several Vitis species have been extensively
used for breeding rootstocks and inter-specific hybrids.
Muscadinia rotundifolia has been hybridized with V. vinif-
era in efforts to combine the exceptional disease and pest
resistance of M. rotundifolia with the high fruit quality of
V. vinifera [9,10].

Grape breeding is a relatively slow process, which can take
up to 25 years or more to produce a new cultivar, and per-
haps longer when combining desirable fruit and disease
resistance traits. This breeding for pest and disease resist-
ance while combining high fruit quality is critical for long-
term health of the viticulture industry and the reduction
of the current intensive and wide-spread use of pesticides.
The use of genetic markers that are tightly linked to horti-
cultural traits has allowed breeders to accelerate the breed-
ing process through marker-assisted selection (MAS) in
plant species [e.g. [11]]. The first examples of this process
in grape utilized RAPD and AFLP markers, which were

converted into more useful SCAR markers [e.g. [12-15]].
More recently, SSR or microsatellite markers have been
successfully employed in marker-assisted breeding for
table grapes [16], wine grapes and rootstocks [17].
Because of their multiallelic and reproducible nature,
SSRs have been extensively used in mapping studies [e.g.
[18,19]] and for genome anchoring [5,6]. To date more
than 500 grape SSRs are publicly available and are
described in the NCBI databases dbSTS and UniSTS http:/
/www.ncbi.nlm.nih.gov/.

SNPs, dichotomous (biallelic) markers, have been devel-
oped in many species [e.g. [20,21]] including grape where
they were derived from BAC and EST libraries and used
successfully to build genetic maps [22,23] and to anchor
them to a physical map [24]. In addition, SNPs identified
in grape gene sequences have been employed in genetic
diversity studies [25,26] and linkage disequilibrium analy-
ses [27,28]. Moreover, the recent decoding of the grape
genome sequence in the heterozygous Pinot Noir cultivar
provided the grape research community with 1,700,000
SNPs from coding and non-coding regions [6]. Different
strategies have been applied in grape for SNP detection
and genotyping, including low to mid [29] and high
throughput [30] methods. However, most of the SNP dis-
covery and application has been limited to V. vinifera. The
use and transferability of SNPs across V. vinifera has been
restricted to a few cultivars [23] and to a few wild forms
[27]. In addition to the development of markers for MAS,
knowledge on transferability of SNPs is required to allow
the identification of useful alleles for diversity and associ-
ation studies. To date, a comprehensive study of SNP use
and transferability across species within Vitis has never
been attempted.

The primary goal of this study was to assess the use and
transferability of SNPs discovered from the heterozygous
Pinot Noir [6] within the species V. vinifera and within the
genera Vitis and Muscadinia to validate the use of Pinot
Noir genome-based SNP markers for future grape
improvement programs using diverse genetic resources.
This study was performed by genotyping 137 SNPs
through the SNPlex™ Genotyping System (Applied Biosys-
tems Inc.) and by confirming the SNPlex results sequenc-
ing 35 (of the 137) regions on 69 accessions.

Methods
Plant material and genomic DNA extraction
Genomic DNA (gDNA) of 71 genotypes was isolated from
50 to 100 mg of young leaves. After freeze-drying, leaf
material was ground using the MM 300 Mixer Mill (Retsch
Inc., Haan, Germany) and DNA extraction was performed
using the DNeasy 96 Plant Mini Kit (Qiagen, Valencia, Cal-
ifornia, USA) according to the manufacturer's protocol.
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The set of 71 genotypes consisted of: i) 24 V. vinifera cul-
tivars housed at IASMA (Italy), including the sequenced
Pinot Noir clone ENTAV 115; this set included 7 varieties
related to Pinot Noir at the 1st degree level (Pinot Noir is
a parent), 4 varieties related to Pinot Noir at the 2nd degree
level (Pinot Noir is a grand-parent) and 12 varieties unre-
lated to Pinot Noir; ii) 10 accessions of V. vinifera subsp.
sylvestris housed at Vassal INRA-Montpellier (France); and
iii) 37 non-vinifera accessions housed at UC Davis (Cali-
fornia), representing 25 Vitis species and 2 accessions of
M. rotundifolia [see Additional file 1].

Whole Genome Amplification
Ten ng of gDNA were amplified by whole genome ampli-
fication (WGA) [31] using the GenomiPhi V2 DNA
Amplification Kit (GE Healthcare, Little Chalfont, Buck-
inghamshire, United Kingdom) according to the manu-
facturer's protocol. The success of the WGA reaction and
the absence of product in the negative control samples
were assessed by agarose gel electrophoresis.

SNPlex assay and data analysis
The SNPlex (Applied Biosystems Inc., [32]) assay was car-
ried out on 1 μl (from 45 to 225 ng) of fragmented
GenomiPhi amplified gDNA (WGA-DNA) diluted to a
final volume of 12 μl and air dried in the dark.

Six SNP sets, for a total of 225 validated electronic SNPs
(eSNPs), were chosen based on the number of validated
SNPs over the total eSNPs in the Pinot Noir clone ENTAV
115 [30] (dbSNP NCBI Build 128). The SNPlex analysis
was carried out according to the manufacturer's protocol
modified for the amount of PCR product used in the
hybridization cycles (3 μl instead of 1.5 μl). The samples
were run on a 3730 × l DNA Analyzer (Applied Biosystems
Inc.) and the data were analyzed using the Gene Mapper
v.4.0 software (Applied Biosystems Inc.). Genotype anal-
ysis was performed based on the SNPlex_Rules_3730
method following factory default settings.

Sequencing analysis
Ca. 450 bp (short-range) of flanking region for each of the
40 target SNPs [see Additional file 2] were sequenced in
all 71 genotypes in order to confirm the SNPlex results
and to discover all possible polymorphic sites (SNPs and
In/dels). The selected 40 SNPs were scattered across the 19
grapevine chromosomes. Twenty of them were present in
coding (inside predicted genes: exons and introns)
regions and 20 corresponded to non-coding (outside pre-
dicted genes) regions (http://genomics.research.iasma.it –
IASMA Genome Browser). In addition, ca. 850 bp (long-
range) encompassing each of three target SNPs (SNP6038,
SNP6082, and SNP6132) were sequenced in all 71 geno-
types in order to investigate the short-range primer
regions and to find additional mutations.

For both short- and long-sequencings, PCR primers were
designed based on the Pinot Noir genomic sequence [6],
using the Primer3 software [33] according to the follow-
ing criteria: i) forward and reverse primers 200–250 bp or
500 bp upstream and downstream in respect to the target
SNP; ii) primer size between 18 and 25 bases; iii) primer
melting temperature (Tm) between 59 and 61°C; iv)
alignment score and global alignment score for self-com-
plementarity and complementarity between primer pairs
ranging from 8 to 13 [see Additional file 2].

Subsequently, the 40 genomic regions were amplified in
all 71 genotypes. PCR reactions were assembled using the
following conditions: 1–20 ng of gDNA, 1× PCR buffer
(Qiagen, Valencia, California, USA), 0.2 mM each dNTP,
0.4 μM of each primer, 1 U HotStarTaq DNA polymerase
(Qiagen, Valencia, California, USA), and water to a final
volume of 12.5 μl. The DNA amplifications were per-
formed using a 15 min initial denaturation/activation
step, followed by 30 cycles at 94°C for 30 sec, 57°C for 30
sec, and 72°C for 1 min, with a final extension step of 10
min at 72°C. PCR products were assessed by electro-
phoresis in 1.5% agarose gel and visualized by ethidium
bromide staining. In order to remove unincorporated
dNTPs and primers during the amplification reaction, the
positive amplicons were purified through
MultiScreen384PCR Cleanup plate (Millipore, Carrigtwo-
hill, Co. Cork, Ireland).

The sequencing of the PCR products was carried out using
the BigDye Terminator Cycle Sequencing Ready Reaction
Kit v3.1 (Applied Biosystems Inc.) as follows: 2 μl of PCR
purified products, 1X Sequencing buffer, 0.32 μM of for-
ward primer, 1 μl of BigDye Terminator and deionized
water to a final volume of 10 μl. The sequencing reactions
were performed using a 2 min initial denaturation step,
followed by 25 cycles at 96°C for 10 sec, 50°C for 5 sec
and 60°C for 4 min and then purified from unincorpo-
rated primer and BigDye excess through
Multiscreen384SEQ Sequencing reaction Cleanup Plate
(Millipore, Carrigtwohill, Co. Cork, Ireland). Capillary
electrophoresis of the purified products was performed on
a 3730 × l DNA Analyzer (Applied Biosystems Inc.). DNA
sequence electropherograms were aligned with the
Pregap4/Gap4 software package (Staden Package, [34])
and used to scan all polymorphic sites in the 71 geno-
types.

Results
SNPlex assay and data analysis
Out of the 225 analysed eSNPs on 71 genotypes, 137 sat-
isfied the quality value (a mean of 98% genotype call rate
per SNPset) and were therefore considered successful,
while 88 regions were unsuccessful. The technical trans-
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ferability was thus of 61% (137 SNPs) and corresponded
to SNPs with homologous flanking sequences.

The transferability in the strict sense, namely those SNPs
that maintained the heterozygous state, was analysed
based on the four grapevine sub-groups (24 V. vinifera cul-
tivars, 10 V. vinifera subsp. sylvestris accessions, 35 non-
vinifera Vitis accessions, and 2 M. rotundifolia accessions).
This transferability was 41.9% in V. vinifera cultivars(rang-
ing from 52.9% – among genotypes related to Pinot Noir
at 1st degree level to 31.5% among genotypes unrelated to
Pinot Noir), 18.8% in V. vinifera wild forms, only 2.3% in
non-vinifera Vitis species, and 0% in M. rotundifolia (Table
1).

For each SNP locus, the Minor Allele Frequency (MAF)
value was also evaluated at the three Vitis levels (24 V. vin-
ifera cultivars, 10 V. vinifera subsp. sylvestris accessions and
35 non-vinifera Vitis accessions). The analysis of MAF val-
ues showed that only 2.2% of the 137 SNPs displayed
MAFs < 0.10 in V. vinifera cultivars, 38.0% in V. vinifera
wild forms, and 87.6% in non-vinifera Vitis species,
whereas 52.6% of 137 SNPs displayed MAFs ≥ 0.30 in V.
vinifera cultivars, 28.5% in V. vinifera wild forms, and
2.9% in non-vinifera Vitis species (Figure 1). Three highly
informative subsets of markers (those with MAF values ≥
0.30), consisting of 72 SNPs for V. vinifera cultivars, 39
SNPs for V. vinifera wild forms, and 4 SNPs for non-vinif-

era Vitis species, were developed ("*" in Table S3). The
first subset showed 50 V. vinifera cultivar specific SNPs,
the second had 17 V. vinifera wild form specific SNPs, and
the third revealed 1 non-vinifera Vitis species specific SNP
("x" in Table S3); 1 fully shared SNP marker (SNP0047)
among the three subsets was identified [see Additional file
3].

Sequencing analysis and mutation survey
In the sequencing analysis, amplicons corresponding to
five SNPs (SNP0028, SNP0085, SNP6155, SNP7193,
SNP8165) amplified in Pinot Noir but failed to amplify in
98% the studied genotypes. The remaining 35 successful
regions – 20 corresponding to coding regions and 15 to
non-coding regions – were sequenced in 69 Vitis geno-
types. The two of M. rotundifolia accessions failed to
amplify for all 35 regions. The identification of SNPs and
In/del (both homozygous and heterozygous) was per-
formed along the Staden Package alignments and resulted
in the following conclusions:

i) 173 SNPs were discovered in the V. vinifera cultivars
(106 in coding and 67 in non-coding regions) with an
average of one SNP every 104 bp (one SNP every 117 bp
in coding and every 91 bp in non-coding regions). Of
these 173 SNPs, 62.4% (108) corresponded to transitions
(A↔G, C↔T) and 37.6% (65) to transversions (A↔C,
A↔T, C↔G, G↔T). In addition, 4 homozygous (2 in cod-

Table 1: Transferability of heterozygosity (maintenance of the heterozygous state) in the four grapevine groups, totaling for 71 
accessions.

Genotypes Transferability of heterozigosity (%) *

Mean Min-Max

Vitis vinifera sbs. sativa average 41.9 0.8 – 70.0

1st degree of parentage with PN 52.9 0.0 – 100.0

2nd degree of parentage with PN 41.3 0.0 – 100.0

unrelated with PN 31.5 0.0 – 75.0

Vitis vinifera sbs. sylvestris average 18.8 0.0 – 60.0

non-vinifera Vitis species average 2.3 0.0 – 34.0

Muscadinia rotundifolia average 0.0 0.0

* number of heterozygous sites in each genotype group/total number of analyzed sites in each genotype group
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ing and 2 in non-coding regions) and 12 heterozygous In/
dels (6 in coding and 6 in non-coding regions) were iden-
tified; when present, the average In/del frequency was of
one every 360 bp.

ii) 116 SNPs were found in the V. vinifera wild forms (61
in coding and 55 in non-coding regions) with an average
of one SNP every 129 bp (one SNP every 169 bp in coding
and every 89 bp in non-coding regions). Of these 116
SNPs, 61.2% (71) corresponded to transitions and 38.8%
(45) to transversions. In addition, 2 homozygous (1 in
coding and 1 in non-coding regions) and 8 heterozygous
In/dels (4 in coding and 4 in non-coding regions) were
discovered; when present, the average In/del frequency
was of one every 399 bp.

iii) 218 SNPs were identified in the non-vinifera Vitis spe-
cies (124 in coding and 94 in non-coding regions) with an
average of one SNP every 97 bp (one SNP every 112 bp in
coding and every 82 bp in non-coding regions). Of these
218 SNPs, 70.6% (154) corresponded to transitions and
29.4% (64) to transversions. In addition, 17 homozygous
(8 in coding and 9 in non-coding regions) and 38 hetero-
zygous In/dels (22 in coding and 16 in non-coding
regions) were identified; when present, the average In/del
frequency was of one every 274 bp (Table 2).

Considering the three genotype groups, the size of the
amplicons was generally conserved, except for a few non-
vinifera Vitis species cases where short insertions (average
15 bp) were detected.

The observed heterozygosity (H0) was computed for each
genotype based on all mutations (SNPs and In/dels) iden-

tified in the 35 resequenced loci. The V. vinifera cultivar
Granoir (code VV19) was the most heterozygous (27%),
while the accessions of V. monticola, V. biformis and V.
shuttleworthii (code VS10, VS27, VS37) were the least
(2%). The level of polymorphism could not be assessed in
the two accessions of M. rotundifolia since the sequencing
failed.

Validation of the SNPlex genotyping system by sequencing
The sequencing analysis of the 35 SNP regions confirmed
the genotype (target SNP) of Pinot Noir identified by
SNPlex, which was in accord with Pindo et al. [30]. When
the 2,415 sequencing data points (35 SNPs × 69 Vitis gen-
otypes) were considered, 92 (3.8%) were inconsistent
with the SNPlex results. Of these incongruous data 40
occurred in V. vinifera cultivars, 3 in V. vinifera wild forms,
and 49 in non-vinifera Vitis species. Furthermore, 72
occurred in coding regions while 20 were present in non-
coding regions. These data grouped in six classes: i) Class
I: 52 (56.5%) were homozygous after sequencing, while
SNPlex analysis indicated they were heterozygous; ii)
Class II: 4 (4.3%) were heterozygous and one or more
SNPs were identified close to the target SNP by sequenc-
ing, while SNPlex analysis indicated they were
homozygous; iii) Class III: 17 (18.5%) were detected as
heterozygous and no additional SNP was found close to
target SNP by sequencing, while these sites were identified
as homozygous after SNPlex analysis; iv) Class IV: 3
(3.3%) were homozygous after SNPlex analysis, while
sequencing detected them as heterozygous with the pres-
ence of a third allele in respect to the Pinot Noir genotype;
v) Class V: 1 (1.1%) was homozygous after SNPlex analy-
sis, while sequencing detected it as homozygous in respect
to the Pinot Noir genotype; vi) Class VI: 15 (16.3%) were
homozygous after SNPlex analysis, while sequencing
detected them as homozygous for the other allele variant
present in the Pinot Noir genotype.

Discussion
This study was intended to validate the use of 137 SNP
markers, developed from the heterozygous genome of
Pinot Noir clone ENTAV 115. The transferability of these
markers was assessed across V. vinifera cultivars, wild
forms of V. vinifera, and non-vinifera Vitis species to vali-
date their utility as informative tools for marker-assisted
selection in grape improvement programs, diversity stud-
ies, association analysis and mapping purposes.

SNP transferability and informativeness
SNPs are more abundant in the genome and are more sta-
bly inherited than other genetic markers [35]. SNP detec-
tion does not involve gel electrophoresis, which is
relatively slow and labour intensive, thereby it is more
suitable for high throughput genotyping methods [36]. In
addition to the SNPlex™ Genotyping System (Applied Bio-

MAF (Minor Allele Frequency) distribution of the 137 SNPs in three Vitis groupsFigure 1
MAF (Minor Allele Frequency) distribution of the 137 
SNPs in three Vitis groups.
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systems Inc., [32]) used in this study, a wide array of tech-
nologies have now been developed, including chip-based
(Affymetrix, [37]) and BeadArray (Illumina Inc., [38])
technologies, all providing efficient and reliable methods
for large scale SNP surveys.

SNPs can be used for a range of purposes, including rapid
identification of cultivars, construction of ultra high-den-
sity genetic maps, and association studies between a given
genotype and a trait of interest [39]. In this study SNP
transferability in the strict sense was tested because each of
the analysed Vitis species is highly heterozygous and also
because for several purposes (e.g. mapping) only hetero-
zygous markers can be used. In this work it was found that
31.5% of the polymorphisms derived from Pinot Noir are
maintained among unrelated V. vinifera cultivars, which is
consistent with a survey across the cultivars Pinot Noir,
Syrah, Grenache, Cabernet Sauvignon, and Riesling [23].
The heterozygous state transferability of 52.9% between

Pinot Noir and genotypes related to Pinot Noir at the 1st

degree level was expected, without prior knowledge of the
other parental genotypic state. Between Pinot Noir and
genotypes related to Pinot Noir at the 2nd degree level, a
SNP transferability of 41.3% was obtained according to
the possibilities derived from three unknown genotypic
states in the phylogenetic tree. These results confirm the
utility and the robustness of SNP analysis when dealing
with V. vinifera cultivars, particularly in consideration of
the cost and labour required for a resequencing strategy.
However, the transferability of these SNPs to wild forms
of V. vinifera was lower (18%), which will impact their use
for association studies or selective sweep identification,
and the transferability was even lower (2.3%) in non-vin-
ifera Vitis species, which will affect their use for compara-
tive mapping (Table 1). This latter result suggests that
when working with non-vinifera Vitis species it will be
important to employ a resequencing strategy while noting
that the homology in priming sites was quite good. The

Table 2: SNPs and In/dels identified in the 35 resequenced regions

Genotypes Coding regions

SNPs In/dels

Transitions Transversions Heterozygous Homozygous

A↔G C↔T A↔C A↔T C↔G G↔T

Vitis vinifera subs. sativa 37 29 12 15 6 7 6 2

Vitis vinifera subs. sylvestris 19 18 8 8 1 7 4 1

non-vinifera Vitis species 41 43 13 15 9 3 22 8

Non-coding regions

SNPs In/dels

Transitions Transversions Heterozygous Homozygous

A↔G C↔T A↔C A↔T C↔G G↔T

Vitis vinifera subs. sativa 19 23 1 11 4 9 6 2

Vitis vinifera subs. sylvestris 14 20 0 8 6 7 4 1

non-vinifera Vitis species 35 35 3 6 4 11 16 9

Total SNPs Total In/dels Total Mutations

Vitis vinifera subs. sativa 173 16 189

Vitis vinifera subs. sylvestris 116 10 126

non-vinifera Vitis species 218 55 273
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fact that the PCR primers (for sequencing) developed
based on a V. vinifera cultivar (Pinot Noir) matched the
sequence of most Vitis species provides a valuable tool to
get SNP and haplotype information useful for future
diversity and association studies.

Marker informativeness can be evaluated using a number
of different criteria. The number of alleles is the most
basic criterion, where markers with a larger number of
alleles are more likely to be polymorphic for any given
germplasm set. Minor allele frequency (MAF) is a measure
used to assess informativeness of SNP loci and is related
to expected heterozygosity where the number of alleles is
two, as is usually the case for SNPs [40] and was con-
firmed in this study. In fact, the occurrence of a triallelic
SNP was very rare and was in accord to a previous SNP
based study in grape [23].

SNPs with MAF values ≥ 0.05 or 0.10 are considered com-
mon and useful for most applications [e.g. [35,41,42]],
whereas SNPs with MAF values ≥ 0.30 are the most
informative and transferable across various genotypes
[27]. In this study, the three highly informative (MAF ≥
0.30) subsets of transferable markers developed for V. vin-
ifera cultivars (72 SNPs), for wild forms of V. vinifera (50
SNPs), and for non-vinifera Vitis species (4 SNPs) repre-
sent new and valuable genomic tools for tasks such as
marker-assisted breeding and genetic mapping. For
genetic mapping one important criterion is that markers
are transferable among pedigrees and ideally among spe-
cies [43]. In the present study, of 137 SNPs only 1 marker
was fully shared among all Vitis subgroups, in addition to
pair wise shared SNPs. There were indeed 50 SNPs specific
to V. vinifera cultivars, 17 specific to wild forms of V. vin-
ifera, and 1 specific to non-vinifera Vitis species, which
should be useful for accession characterization (finger-
printing) [see Additional file 3].

Additional transferability tests of these 137 SNP markers,
developed based on the highly heterozygous Pinot Noir
clone ENTAV 115 [6,30], were carried out in silico against
the near-homozygous PN40024 genome sequence [5]. As
expected, all the SNP regions were homozygous in
PN40024 and the location of most of these was conserved
between the two genomes [see Additional files 4 and 5].

SNPlex validation through sequencing
The SNPlex genotyping system is a comprehensive solu-
tion for medium to large-scale genotyping studies, such as
fine scale mapping, association analysis and marker-
assisted breeding. Based on oligonucleotide ligation/
polymerase chain reaction, it uses capillary electrophore-
sis to separate selectively amplified gene regions, reports
easy-to-survey cluster plots, and manages large numbers
of datasets [32]. Although the efficiency of 61% was good

in this study, 39% of the assays failed. This percentage of
failed assays is dependent on different assay-specific fac-
tors, such as DNA quality and DNA/probe interaction,
and is slightly higher than in other SNPlex genotyping
studies ([30]; Fischer et al. and Ward et al., 3rd SNPlex user
meeting 2008). One possible factor could be the multiple
taxonomic levels compared in this study (cultivar, subspe-
cies, species, genus) while other studies have used more
simplified study sets.

Using the same approach as reported by Pindo et al. [30],
SNPlex data were checked in 35 regions by sequencing. All
data were confirmed, except for a few (3.8%) discrepan-
cies. Most of these discrepancies (2.1% -heterozygous
only in SNPlex; class I) reflected a preferential annealing
of PCR primers caused by polymorphism (SNP or In/del)
in the PCR priming site, which was identified by sequenc-
ing. Preferential amplification of one allele is a phenome-
non widely described in the literature and it is expected to
increase with the use of genetically diverse study sets [e.g.
[44]], and most of the cases were detected in assays of Vitis
species. The remaining cases (1.7%) were of the greatest
interest, because they represented inconsistencies due to
SNPlex failure, and limitations of this genotyping system.
Possible explanations of the observed discrepancies may
be: a preferential ligation of one SNPlex probe, given an
additional SNP close to the target SNP (class II; also
reported in Pindo et al. [30]); a ligation of only one
SNPlex probe since the actual second allele is different
from that of the reference Pinot Noir genotype (class IV);
a non-specific SNPlex probe ligation (classes V and VI),
even though a sequencing mistake could not be excluded
(as well as for class III). To support these hypotheses, a
long-range sequencing of three SNP regions was per-
formed in all 69 Vitis genotypes. The results validated the
class I hypothesis, given the identification of SNPs and In/
dels in the short-range sequencing primer region, and
confirmed all the previous short-range sequencing results.

Finally, no significant positive relationship was found
when correlating SNPlex/sequencing inconsistencies
(SNPlex failure classes II, III, IV, V and VI) to the average
SNP and In/del frequency in each resequenced region
(data not shown) and the reliability of the SNPlex assay in
a genetically diversified sample was confirmed.

Frequency of the SNPs
The SNP frequency detected by the short-range sequenc-
ing of the 35 regions found that cultivars of V. vinifera
have one SNP for every 117 bp in coding and every 91 bp
in non-coding regions. The results in coding regions
match reports for other V. vinifera cultivars (1/115 bp,
[25]; 1/127 bp, [26]). Other studies have found lower fre-
quencies in non-coding regions (1/39 bp, [26]), but their
samples were chosen to represent greater diversity. The
Page 7 of 10
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frequency of one SNP every 169 bp of coding and every 89
bp in non-coding regions in the wild forms of V. vinifera
were not comparable to a previous study of 9 V. vinifera
cultivars and 2 wild forms of V. vinifera [27], emphasizing
the dependency of these types of data on the chosen set of
germplasm. The non-vinifera Vitis species had frequencies
of one SNP every 112 bp in coding and every 82 bp in
non-coding regions. These coding region results are in
accord with values reported for V. riparia (1/73 bp, [25]),
but no comparison exist for non-coding regions innon-
vinifera Vitis species. SNPs were more prevalent in non-
coding regions than in coding regions in all of the Vitis
groups. This is in accord with reports for the heterozygous
Pinot Noir sequence where coding and non-coding
regions demonstrated different degrees of polymorphism
(one SNP every 250 bp and every 182 bp, respectively,
[6]).

In most organisms studied to date, SNPs are more preva-
lent in the non-coding regions of the genome, in fact the
frequency of SNP distribution has been shown to vary not
only among species, but also within each genome [38].
The SNPs detected in this study were primarily due to base
transitions (64.7%, average among the three groups),
which is consistent with previous results in grape [23,25]
and in other organisms [45]. In addition to SNPs, In/dels
were also detected. The heterozygous In/dels were more
frequent than the homozygous In/dels in each of the three
Vitis groups. No substantial difference in In/del occur-
rence was detected between coding and non-coding
regions of each group, although this result is highly influ-
enced by the chosen regions. There has not yet been a
comprehensive study of In/del distribution in Vitis to
which the results of this study can be compared. The Pinot
Noir heterozygous genome has an average frequency of
one In/del every 450 bp [6], which corresponds to the
results reported for the three Vitis groups.

Conclusion
In conclusion, using this SNPlex application and corrobo-
ration from the sequencing analysis, the informativeness
(MAF information) of SNP markers from the hetero-
zygous grape cultivar Pinot Noir is validated in V. vinifera,
has a more limited application for wild forms of this spe-
cies, and has no direct application for non-vinifera Vitis
species The SNPlex technology was again validated as a
robust method for rapid analysis of a limited number of
SNPs on a large number of plants. Although additional
SNPs could be used, the SNPs developed in this study will
be very useful for accession identification and genomic-
research assisted breeding at the V. vinifera level.
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