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Abstract
Background: Formal classification of a large collection of protein structures aids the
understanding of evolutionary relationships among them. Classifications involving manual steps,
such as SCOP and CATH, face the challenge of increasing volume of available structures. Automatic
methods such as FSSP or Dali Domain Dictionary, yield divergent classifications, for reasons not
yet fully investigated. One possible reason is that the pairwise similarity scores used in automatic
classification do not adequately reflect the judgments made in manual classification. Another
possibility is the difference between manual and automatic classification procedures. We explore
the degree to which these two factors might affect the final classification.

Results: We use DALI, SHEBA and VAST pairwise scores on the SCOP C class domains, to
investigate a variety of hierarchical clustering procedures. The constructed dendrogram is cut in a
variety of ways to produce a partition, which is compared to the SCOP fold classification.

Ward's method dendrograms led to partitions closest to the SCOP fold classification.
Dendrogram- or tree-cutting strategies fell into four categories according to the similarity of
resulting partitions to the SCOP fold partition. Two strategies which optimize similarity to SCOP,
gave an average of 72% true positives rate (TPR), at a 1% false positive rate. Cutting the largest size
cluster at each step gave an average of 61% TPR which was one of the best strategies not making
use of prior knowledge of SCOP. Cutting the longest branch at each step produced one of the
worst strategies.

We also developed a method to detect irreducible differences between the best possible automatic
partitions and SCOP, regardless of the cutting strategy. These differences are substantial. Visual
examination of hard-to-classify proteins confirms our previous finding, that global structural
similarity of domains is not the only criterion used in the SCOP classification.

Conclusion: Different clustering procedures give rise to different levels of agreement between
automatic and manual protein classifications. None of the tested procedures completely eliminates
the divergence between automatic and manual protein classifications. Achieving full agreement
between these two approaches would apparently require additional information.
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Background
This work investigates a large number of different meth-
ods for producing an automatic classification of structural
domains of proteins based on all-against-all pairwise
structural similarity scores. We produce candidate classifi-
cations and compare them to the human expert-curated
classification SCOP [1]. Perhaps the earliest attempt at
automatic classification of protein structures was by Holm
and Sander [2], who produced the FSSP database, consist-
ing primarily of a tree obtained by applying hierarchical
clustering using the pairwise structural similarity scores
among a sequence representative set [3]. Later, Dietmann
et al [4] refined FSSP by introducing the notion of domain
[5]. More recent work by Gewehr et al. [6] and others [7-
10], focused on the problem of assigning new, unclassi-
fied domains into their correct pre-established fold
classes. Other authors [11-15] compared a set of pairwise
similarity measures computed by various structure com-
parison methods to the SCOP (or other) pre-existing clas-
sification, to investigate the causes of divergence between
automatically determined pairwise structural similarity
and expert-curated classification. In particular, the com-
parison between FSSP, SCOP and CATH, by Hadley and
Jones [12], makes use of FSSP pairwise scores between
protein chains which are present in all three databases, as
FSSP does not use domain as the classification unit.
Although these studies advanced the understanding of
divergence between automatic similarity and expert-
curated classification, improvement of automatic classifi-
cation procedures was not their primary objective.

Our earlier work [15] pointed to structural variations
within SCOP folds as a main cause of divergence between
automatic and expert-curated classifications. Intra-fold
structural variation affects the measured structural simi-
larity both within and between folds. The measured simi-
larities are often not uniform among domains within a
fold and the average similarity among domains within
one fold can be different from that within another fold.
We investigate different partitioning strategies in an
attempt to accommodate such uneven similarity distribu-
tions. In particular, we investigate dendrogram cutting
strategies as a potential means of isolating both tightly
clustered, homogeneous folds and more heterogeneous
ones, using a single procedure.

One source of potential confusion in the literature is the
failure to explicitly consider the fundamental difference
between mathematical properties of a similarity score
matrix compared to a classification or partition. Mathe-
matically, each can be represented as an M by M matrix
where M is the number of protein domains. Unlike a pair-
wise similarity score matrix which can be any square
matrix, a "partition matrix" is made of 0 or 1 elements
indicating when two domains are in the same (1) or dif-

ferent (0) clusters of the partition. The partition matrix
can always be transformed into a block-diagonal form by
sorting the rows and columns appropriately, reflecting a
property related to the definition of a partition itself. A
partition of a set of domains is comprised of non-overlap-
ping clusters, meaning that if A and B are in the same clus-
ter, while B and C are also in the same cluster, then A and
C are necessarily in that same cluster, a type of transitivity
here called the "partition constraint". This property may
be absent in a pairwise similarity matrix.

Building a classification by clustering based on pairwise
similarity scores is essentially the same thing as transform-
ing the pairwise similarity matrix into one which satisfies
the partition constraint. Clearly, this process may force
some domain pairs originally considered as dissimilar
into the same cluster while other, similar pairs would be
forced into different clusters. In many studies comparing
the automatically determined pairwise similarities and a
structural classification database [11-15], the effect of the
presence of the partition constraint was not explicitly con-
sidered. Some of the reported discrepancy between simi-
larity scores and classifications may potentially result
from the failure of the similarity scores to satisfy this con-
straint. In the present study, we eliminate this factor by
first converting the pairwise similarity dataset into a parti-
tion (via clustering) and then comparing the two parti-
tions.

The derivation of a partition from a set of pairwise simi-
larities is not a trivial process, but involves several distinct
steps of computations, requiring careful analysis. Here,
particular attention will be given to hierarchical clustering
methods and dendrogram cutting strategies. We obtain a
partition from pair-wise similarity scores by first trans-
forming the similarity measure into a distance measure,
applying various standard hierarchical clustering meth-
ods, obtaining a dendrogram, or binary cluster joining
tree, and in the final step, applying a strategy which
removes the root node and successively lower level nodes
leaving behind a set of trees corresponding to the clusters
in the partition. The pairwise similarity scores are pro-
vided by VAST [15,16], SHEBA [17] and DALI [18,19],
three distinctive and efficient approaches for measuring
structural similarity.

Results
Performance of hierarchical clustering as tree building 
methods
We generated pairwise similarity scores between all pairs
of domains in the SCOP C class using three different struc-
ture alignment methods, VAST, SHEBA and DALI, and
using two different similarity metrics for each method,
altogether yielding 6 similarity matrices. We used four dif-
ferent hierarchical clustering methods (Single, Average,
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Complete linkage and Ward method [20]) to build den-
drograms. The dendrograms were cut using seven SCOP-
independent strategies and three SCOP-dependent strate-
gies. Finally, two different criteria for terminating the tree
cutting process were investigated. We stopped the cutting
either when a 1% false positive rate (FPR) was reached or
when the number of clusters matched the number of folds
in the SCOP C class, which is 94 for the current dataset.
The true positive rate at 1% false positive rate (TPR01) and
the number of clusters in each partition, resulting from
these various partitioning approaches, using the 1% FPR
termination criterion, are reported in Tables 1 and 2.

Trees generated by Ward's method result in better per-
formance. The TPR01 values obtained for Ward's clustering
method are, with one exception, always higher than for
the Average, Complete or Single linkage method. The sim-
plest, level cut strategy with Ward's method achieves an
average TPR01 of 50% across all six structure comparison
scores. Complete or Average linkage clustering constitute
the next best alternatives to Ward's method, with average
TPR01 across all similarity scores and structure comparison
methods, of 32% and 29% respectively. Single linkage
clustering shows uniformly the most divergence from
SCOP. Not only does Ward's method achieve the highest
average TPR01 value, but the values vary less across differ-
ent similarity scores and structure comparison methods,
than do those for Complete, Average and Single Linkage,
suggesting that Ward's is more satisfactory for this appli-
cation.

With other tree cutting strategies the trend among various
clustering methods is the same. For the largest size cut
strategy, Ward's method gives an average TPR01 value of
61%, at least 10% better than for the three other clustering
methods. Again, Complete and Average Linkage give sim-
ilar average TPR01 values, while Single Linkage is very low
in comparison. In view of the clearly superior results with
Ward's method, we investigate tree cutting strategies using
that method alone.

Performance of tree cutting strategies
In the following, the performance of tree-cutting strategies
is analyzed. The 10 tested tree-cutting strategies fall into
four groups according to their TPR01 values (Figure 1 and
Table 1), and are represented by the longest branch cut
(1), level cut (2), largest size cut (3) and mutual informa-
tion cut (4) strategies. Figure 1 illustrates the comparative
performance among these representative tree cutting strat-
egies, for the VAST number of matched residues similarity
score.

Among the four SCOP-independent tree cutting strategies
shown, "largest size cut" achieves the best performance
with its ROC curve dominating all other SCOP-independ-
ent ROC curves. Moreover, "largest size cut" ROC curve is
the closest to that for Mutual Information cut, a strategy
which attempts to maximize the agreement of the parti-
tion with SCOP at each step. Similar results (data not
shown) were seen for SHEBA and DALI similarity scores.

Table 1: TPR values at 1% FPR (TPR01) for Hierarchical Cluster Methods and Tree Cutting Strategies.

Group# Tree Cutting 
Strategy

Hierarchical 
Cluster 
Method

VAST Nres VAST Pcli SHEBA Nres SHEBA Zscore DALI Nres DALI Zscore Average Range

2 Level Average 28 24 23 33 28 38 29 15
2 Level Complete 28 31 29 40 39 27 32 13
2 Level Single 14 10 12 21 16 8 13 13
2 Level Ward 50 48 48 54 50 49 50 6
3 Largest Size Average 54 50 48 59 55 41 51 18
3 Largest Size Complete 44 44 43 43 50 51 46 8
3 Largest Size Single 29 22 27 39 34 13 27 26
3 Largest Size Ward 61 59 61 58 62 65 61 7
3 Tree 

Completeness
Ward 57 59 61 56 56 63 58 7

3 Highest tree Ward 57 61 62 56 57 63 59 7
1 Tree skewness Ward 25 15 26 22 31 21 23 10
1 Longest branch Ward 29 20 26 22 27 13 23 16
2 Maximum 

Entropy
Ward 45 40 43 46 58 48 46 18

1 BestTPR Ward 12 13 13 10 8 16 12 8
4 Best ratio TPR 

&FPR
Ward 73 72 73 71 75 75 73 4

4 MI Ward 73 71 72 71 76 76 73 5
Direct pw§ none 50 52 60 61 52 67 57 17

§Direct pw is the direct pairwise comparison between pairwise similarity scores and SCOP folds in the C class, and does not involve clustering.
# the group to which the strategy belongs.
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The longest branch cut group (Table 1, Group 1) contains
the strategies of lowest performance, e.g. tree skewness
strategy, as indicated by their respective mean TPR01 val-
ues. Longest branch cut strategy results in one of the low-
est agreements with SCOP, in particular for FPR values
below 30% (Figure 1). Above this FPR level, its perform-
ance becomes more acceptable relatively to the upper
bound given by the mutual information cut. This strategy
seems to make more sense when inter-cluster distance is
high, i.e. for highest nodes of the tree. But it behaves much
worse than others when the inter-cluster distance is
reduced, as its ROC curve is closer to the main diagonal
than the ROC for other strategies. In the lowest part of the
tree, inter-cluster distances vary only slightly so that the
longest branch criterion for choosing among the many
possibilities, the next sub-tree to be cut might not be dis-
criminative enough.

Level cut and maximum entropy cut strategies form
another group (Table 1, Group 2) characterized by mid-
dling performance. Their grouping is explained by the fact
that these strategies perform comparably at low FPR val-
ues and their average TPR01 values are comparable. Higher
variability among the TPR values for maximum entropy
cut strategy is noted, however. Indeed, for VAST and
SHEBA, level cut strategy is better than maximum entropy
cut, as a rule, with DALI number of matched residues
(Nres) score the only exception. The highest TPR01 for the
maximum entropy cut strategy (58%) is obtained with the
Nres metric, while the lowest value (40%) is obtained by
VAST Pcli.

The third, largest size cut strategy group (Table 1, Group
3) also includes the tree completeness cut, and highest
tree cut strategies and corresponds to SCOP-independent
strategies of highest performance, with average TPR01 val-

Receiver Operating Characteristic (ROC) curves for various tree cutting strategies, using the Ward's method clustering based on the VAST Nres similarity scoreFigure 1
Receiver Operating Characteristic (ROC) curves for various 
tree cutting strategies, using the Ward's method clustering 
based on the VAST Nres similarity score. The true positive 
rate (TPR, Y axis) is plotted against the false positive rate 
(FPR, X axis). Black curves correspond to largest size cut 
(solid line), longest branch cut (dotted line) and level cut 
(dash-dot line) strategies, which use only of tree topology 
parameters. The red dotted curve corresponds to the MI cut 
strategy, which uses SCOP classification information directly, 
so is viewed only as an approximate upper bound to the 
SCOP-independent strategies. The Y-axis intercept for this 
curve is 0.45 and close to 0.0 for all SCOP-independent 
strategies. Only the portion of the curve for FPR values 
below 0.45 is shown. Between this FPR value and 0.63 rela-
tive positions of the curves do not vary. Above 0.63 FPR 
value all curve superpose to the MI cut curve.
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Table 2: Number of Clusters for Hierarchical Cluster Methods and Tree Cutting Strategies at 1%FPR.

Group Tree Cutting Strategy Hierarchical Cluster Method VAST Nres VAST Pcli SHEBA Nres SHEBA Zscore DALI Nres DALI Zscore

2 Level Average 460 573 576 402 444 389
2 Level Complete 307 250 332 195 221 396
2 Level Single 810 1023 921 686 787 1041
2 Level Ward 110 120 138 106 113 121
3 Largest Size Average 183 210 222 190 169 256
3 Largest Size Complete 81 84 88 94 69 82
3 Largest Size Single 515 658 528 420 439 792
3 Largest Size Ward 71 79 81 71 67 72
3 Tree Completeness Ward 95 89 87 88 101 96
3 Highest tree Ward 88 80 84 81 92 91
1 Tree skewness Ward 603 701 603 592 606 641
1 Longest node Ward 409 704 627 837 646 991
2 Maximum Entropy Ward 143 146 109 101 81 109
1 BestTPR Ward 1121 1112 1054 1106 1185 1029
4 Best ratio TPR &FPR Ward 59 65 70 61 57 63
4 MI Ward 105 76 72 68 55 77
Page 4 of 18
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:74 http://www.biomedcentral.com/1471-2105/9/74
ues ranging from 58 to 61%. The tree height and tree com-
pleteness are closely related to the number of leaves, i.e.
the size of the tree. These results indicate that of these
three topological properties, the size is a better measure,
for the purpose of creating partitions that agree with
SCOP. This is true for partitions of small size (the large
FPR values), but also when the number of clusters is large
(the small FPR values).

The fourth group (Table 1, Group 4) is made up of mutual
information cut and Best TPR/FPR Ratio cut strategies, all
of which make direct use of the SCOP fold partition and
thus are not useful for an independent classification. The
poor performance of the best TPR cut strategy (Table 1,
Group 1) indicates that strategies which ignore the false
positives will not generate SCOP-like partitions.

The size of each partition is reported in Table 2, and shows
a large variation in the number of clusters depending on
the hierarchical clustering method. Single linkage always
leads to partitions with a high number of clusters, in fact
close to the total number of domains M, when FPR is kept
low at 1%.

Comparison of partitions
The relative organization of automatically generated par-
titions can be understood by first finding a distance meas-
ure between two partitions and then displaying the
partitions in a distance preserving graph. The distance
between partitions (Eq. 8), computed as the total number
of disagreements about whether or not a pair of domains
is in the same cluster, is reported in the Table 3. In this
exercise, partitions with exactly 94 clusters were com-
pared, including the SCOP fold partition.

Average distances (Table 4) among partitions within a
given comparison method (either VAST, SHEBA or DALI),
are uniformly lower than distances between these latter
and SCOP, by almost a factor two. Partitions from VAST
tend to be slightly more heterogeneous than those from
DALI or SHEBA. On average, automatic partitions from
the three comparison methods are similarly distant from
SCOP. Similarly, for a given cut strategy, the average dis-
tance among its partitions is consistently smaller than the
distances from those automated partitions to SCOP
(Table 4). Further, largest size cut partitions are half as dis-
tant among themselves as are those of level cut strategy.
The pattern of distances confirm that the largest size cut
partitions are much closer to the SCOP fold partition than
level cut partitions, as also seen using the ROC curves.

Table 5 shows that every automatic partition is much
closer to other automatic partitions, than to the SCOP
fold partition. For example, the DALI Z-score level-cut
partition (DZL) is at most 56,000 units from all other
automated partitions, but 91,000 units from SCOP. The
closest automated partition to SCOP is DALI Z-score, larg-
est size cut (DZS), with a distance of 63,000 units, which
in turn is no farther than 49,000 units from all other auto-
mated partitions. DZL is farthest from both SCOP and
from at least one other automatic partition. Conversely,
DALI Nres with Largest size-cut (DNS) is perhaps most
representative of automated methods as it minimizes the
maximum distance to other such methods.

A convenient, intuitive representation of the organization
of these partitions is obtained using multi-dimensional
scaling, a technique which embeds the 13 partitions into
a low-dimension Euclidean space so that the pairwise dis-
tances are approximately preserved. Figure 2 represents

Table 3: Distance between partitions*, (Δ-distance in 1000s)

Partition VNS SNS DNS VPS SZS DZS VNL SNL DNL VPL SZL DZL SCOP

VNS 0 30 24 31 30 28 27 46 37 47 41 51 65
SNS 30 0 24 35 25 23 44 32 38 51 38 51 65
DNS 24 24 0 31 21 22 39 42 25 48 37 48 66
VPS 31 35 31 0 37 32 43 50 43 28 47 56 71
SZS 30 25 21 37 0 27 42 43 37 50 28 51 69
DZS 28 23 22 32 27 0 44 47 36 49 42 41 63
VNL 27 44 39 43 42 44 0 48 37 49 37 51 75
SNL 46 32 42 50 43 47 48 0 41 56 47 49 84
DNL 37 38 25 43 37 36 37 41 0 52 39 53 73
VPL 47 51 48 28 50 49 49 56 52 0 54 56 83
SZL 41 38 37 47 28 42 37 47 39 54 0 56 70
DZL 51 51 48 56 51 41 51 49 53 56 56 0 91
SCOP 65 65 66 71 69 63 75 84 73 83 70 91 0

*Partitions obtained from automatic methods, are identified by three letter code. The first letter in the name of each automatic partitions indicates 
the structures comparison method (V, S and D, for VAST, SHEBA and DALI respectively), the second letter, the score (N, P, and Z, for number of 
matched residues, Pcli and Zscore, respectively), and the third letter indicates the level cut (L) or largest size cut (S) strategies. SCOP corresponds 
to the C class fold partition of the manual classification SCOP.
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the automatic and SCOP fold partitions in a 2-dimen-
sional space. Automatic partitions are well-separated from
the SCOP fold partition, which appears isolated. Largest
size-cut partitions are generally closer to SCOP than are
level-cut partitions, and are also less spread.

Comparison of cluster size distributions
In addition to the number of clusters in a partition, the
distribution of cluster sizes may be of interest in selecting
an appropriate classification. Figure 3 shows the cluster
size distribution for six automatically generated partitions
and for SCOP. For comparison, a partition of the same
number of domains randomly assigned to 94 clusters with
equal probability is shown. This distribution was approx-
imated by a Poisson distribution with a mean value of
1330/94 ≅ 14.15.

We observe first that all partitions, including SCOP, have
lower median cluster size and greater spread of size than
for random. There is evidently sufficient signal strength
within the similarity score matrix to influence the size dis-

tribution. Second, the 75th percentiles for automated
methods tend to be larger than for SCOP, while the SCOP
distribution shows larger positive skewness, with a greater
number of unusually large clusters. Third, there is some
uniformity in the size distribution within tree cutting
strategies, with largest size cut showing somewhat higher
75th percentiles and less skewness than do the level cut
distributions. Level cut distributions are closer the SCOP
distribution in terms of median, 75th percentile size and
the larger number of outliers, than the largest size cut dis-
tributions.

The largest SCOP fold (c.1), is in fact, split by all strategies
and methods as none include a cluster with 182 domains.
Largest size cut strategy intentionally eliminates outliers
of large size, thereby creating more clusters of intermedi-
ate sizes, with greater spread (inter-quartile range) than
for level cut. The level cut generates a few large size out-
liers but the clusters are smaller, typically. This is consist-
ent with the observation made earlier that the level cut
behaves like the maximum entropy cut at small FPR

Table 5: Distance between Automatic Partitions and SCOP fold Partition

Automatic Partition Maximum Δ-distance to Others* Δ-distance to SCOP* FPR (%) TPR (%)

VNS 51 65 0.5 53
SNS 51 65 0.7 59
DNS 48 66 0.5 54
VPS 56 71 0.8 55
SZS 51 69 0.5 51
DZS 49 63 0.6 60
VNL 51 75 1.5 54
SNL 56 84 1.6 55
DNL 53 73 1.1 56
VPL 56 83 1.6 53
SZL 56 70 1.1 56
DZL 56 91 1.9 54

Automatic partitions are identified by three letter code used in table 3.
"Others" refers to other automatic partitions.
*Δ-distance, as defined in Methods, in 1000s.
FPR (%) – False Positive Rate (Methods, Eq. 4)
TPR (%) – True Positive Rate (Methods, Eq. 6)

Table 4: Δ-distance*, in 1000s, between partitions within each method and minimum Δ-distance from each method to SCOP

Method Average Distance Maximum Distance Average Distance to SCOP Minimum Distance to SCOP

1 VAST 43 56 73 65
2 SHEBA 35 47 72 65
3 DALI 37 53 73 63
4 Size 28 37 66 63
5 Level 48 59 80 70

*Δ-distance as defined in Method, Eq. 8.
 Average or Maximum distance among partitions of a particular structural comparison program, or of a tree-cutting strategy. Average distance 

among SHEBA partitions for example, is obtained by averaging across all SHEBA similarity scores and tree cutting strategies. Average distance 
among largest size cut partitions for example, is obtained by averaging across all similarity scores of structure comparison programs VAST, SHEBA 
and DALI.
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ranges. Using partitions of 94 clusters, we find FPR values
higher than 1% for level cut strategy but lower than 1% for
largest size cut strategy (Table 5), indicating that a trade-
off must be made in matching the size distribution as well
as maximizing the TPR in relationship to the SCOP parti-
tion.

Identification of dispersed folds
The spanning cluster of a SCOP fold is the smallest cluster
in the dendrogram which spans or includes all domains in
that fold. The excess span of that fold (see Methods) are
the domains from other folds that are included in its span-
ning cluster. A homogeneous cluster is a cluster which
includes only domains from a single SCOP fold. The size
of the excess span and the size of the largest homogeneous
cluster are given in Table 6 for each fold in SCOP C Class

for three different dendrograms. These two measures
allow comparison of each dendrogram to SCOP on a fold
by fold basis, and can highlight regions of agreement or
disagreement between the two systems. When the excess
span is zero and the largest homogenous cluster is 100%
of the fold size, the dendrogram and SCOP are in perfect
agreement for that fold. A hypothetical tree-cutting strat-
egy could potentially isolate this particular sub-tree to
form a cluster exactly matching that fold.

The first 38 folds reported in Table 6 are in perfect agree-
ment with dendrograms of all three structure comparison
methods VAST, SHEBA and DALI. Together they comprise
187 of 1330 domains in the C-class. The next 23 folds
(Table 6, rows 39–61, comprising 227 domains) agree
perfectly with the dendrogram of at least one structure
comparison method. Thus 61 out of 94 SCOP folds in the

Box plots of the cluster size distributions for six automati-cally generated partitions with 94 clusters and the SCOP par-tition of the C classFigure 3
Box plots of the cluster size distributions for six automati-
cally generated partitions with 94 clusters and the SCOP par-
tition of the C class. Each partition is associated with a box 
plot. A box plot summarizes the following statistics: median 
(line within the box), upper and lower quartiles (the upper 
and lower hinge of the box respectively), minimum and max-
imum data values (the ends of the vertical dash lines), and 
outliers (circles). For comparison, a "random" partition 
would have cluster size following approximately a Poisson 
distribution with intensity parameter equal to M/94 ~ = 14 
domains per cluster. The partitions are labelled as explained 
in Figure 2. The SCOP partition and Random partitions are 
identified. All distributions necessarily have the same mean 
value, M/94, but show differing medians, interquartile ranges, 
tail lengths and maximal values. Both the SCOP and Random 
distributions show minimum values substantially above the 
automated partitions. The horizontal red dash line indicates 
the median value of SCOP fold partition.
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������Classical multidimensional scaling (MDS) plot of various auto-matically generated partitions and the SCOP fold partitionFigure 2
Classical multidimensional scaling (MDS) plot of various auto-
matically generated partitions and the SCOP fold partition. 
The MDS plot approximately preserves distances, Δ, 
between partitions (see Methods). The X axis represents the 
projection of the location of each partition onto the first 
eigenvector (first principal component), while the Y axis is a 
projection onto the second eigenvector (second principal 
component). The X and Y axes of the plot are scaled to rep-
resent the distance, Δ, divided by 1000. Automatic partitions 
are obtained with Ward's method clustering, based on two 
different similarity score for each of the three methods 
VAST, SHEBA and DALI. Each partition is designated by an 
uppercase letter: A, VAST Pcli Level cut; B, VAST Nres Level 
cut; C, DALI Zscore Level cut; D, DALI Nres Level cut; E, 
SHEBA Zscore Level cut; F, SHEBA Nres Level cut; G, VAST 
Pcli Largest Size cut; H, VAST Nres Largest Size cut; I, DALI 
Zscore Largest Size cut; J, DALI Nres Largest Size cut; K, 
SHEBA Zscore Largest Size cut; L, SHEBA Nres Largest Size 
cut, and S, the expert-curated partition SCOP. Automatic 
partitions resulting from the same tree-cutting strategy, are 
grouped together within the same dotted area.
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Table 6: Excess Span and Largest Homogeneous Cluster Size for SCOP C Class folds.

Excess Span Size§ Largest Homog. Cluster (%) +

Row fold SCOP fold description Ndom* Nfam# VAST SHEBA DALI INT VAST SHEBA DALI Nc$

CONSISTENT FOLDS
1 c.100 Thiamin pyrophosphokinase, catalytic domain 2 1 0 0 0 0 100 100 100 1
2 c.101 Undecaprenyl diphosphate synthase 2 1 0 0 0 0 100 100 100 1
3 c.106 SurE-like 2 1 0 0 0 0 100 100 100 1
4 c.109 PEP carboxykinase N-terminal domain 4 1 0 0 0 0 100 100 100 1
5 c.114 YchN-like 2 1 0 0 0 0 100 100 100 1
6 c.117 Amidase signature (AS) enzymes 3 1 0 0 0 0 100 100 100 1
7 c.16 Lumazine synthase 3 1 0 0 0 0 100 100 100 1
8 c.17 Caspase-like 3 2 0 0 0 0 100 100 100 1
9 c.22 Ribosomal protein L4 2 1 0 0 0 0 100 100 100 1

10 c.27 Nucleoside phosphorylase/phosphoribosyltransferase 
catalytic domain

3 1 0 0 0 0 100 100 100 1

11 c.28 Cryptochrome/photolyase, N-terminal domain 4 1 0 0 0 0 100 100 100 1
12 c.32 Tubulin, GTPase domain 2 1 0 0 0 0 100 100 100 1
13 c.33 Cysteine hydrolase 3 2 0 0 0 0 100 100 100 1
14 c.34 DFP DNA/pantothenate metabolism flavoprotein 2 1 0 0 0 0 100 100 100 1
15 c.36 Thiamin diphosphate-binding fold (THDP-binding) 19 4 0 0 0 0 100 100 100 1
16 c.39 Nicotinate mononucleotide:5,6-dimethylbenzimidazole 

phosphoribosyltransferase (CobT)
2 1 0 0 0 0 100 100 100 1

17 c.42 Arginase/deacetylase 3 2 0 0 0 0 100 100 100 1
18 c.43 CoA-dependent acyltransferases 7 3 0 0 0 0 100 100 100 1
19 c.5 MurCD N-terminal domain 2 1 0 0 0 0 100 100 100 1
20 c.50 Leucine aminopeptidase (Aminopeptidase A), N-

terminal domain
2 1 0 0 0 0 100 100 100 1

21 c.59 MurD-like peptide ligases, peptide-binding domain 5 2 0 0 0 0 100 100 100 1
22 c.6 Cellulases 3 1 0 0 0 0 100 100 100 1
23 c.62 vWA-like 8 2 0 0 0 0 100 100 100 1
24 c.65 Formyltransferase 3 1 0 0 0 0 100 100 100 1
25 c.67 PLP-dependent transferases 35 6 0 0 0 0 100 100 100 1
26 c.68 Nucleotide-diphospho-sugar transferases 15 12 0 0 0 0 100 100 100 1
27 c.7 PFL-like glycyl radical enzymes 4 4 0 0 0 0 100 100 100 1
28 c.70 Nucleoside hydrolase 2 1 0 0 0 0 100 100 100 1
29 c.71 Dihydrofolate reductases 8 1 0 0 0 0 100 100 100 1
30 c.73 Carbamate kinase-like 2 2 0 0 0 0 100 100 100 1
31 c.74 AraD-like aldolase/epimerase 3 1 0 0 0 0 100 100 100 1
32 c.76 Alkaline phosphatase-like 6 3 0 0 0 0 100 100 100 1
33 c.77 Isocitrate/Isopropylmalate dehydrogenases 4 2 0 0 0 0 100 100 100 1
34 c.79 Tryptophan synthase beta subunit-like PLP-dependent 

enzymes
6 1 0 0 0 0 100 100 100 1

35 c.81 Formate dehydrogenase/DMSO reductase, domains 
1–3

5 1 0 0 0 0 100 100 100 1

36 c.83 Aconitase iron-sulfur domain 2 1 0 0 0 0 100 100 100 1
37 c.86 Phosphoglycerate kinase 2 1 0 0 0 0 100 100 100 1
38 c.89 Phosphofructokinase 2 1 0 0 0 0 100 100 100 1

MODERATELY CONSISTENT FOLDS
39 c.25 Ferredoxin reductase-like, C-terminal NADP-linked 

domain
12 5 643 0 0 0 92 100 100 1

40 c.61 PRTase-like 17 2 0 0 68 0 100 100 88 1
41 c.82 ALDH-like 7 2 0 954 0 0 100 86 100 1
42 c.87 UDP-Glycosyltransferase/glycogen phosphorylase 6 6 0 937 0 0 100 83 100 1
43 c.116 alpha/beta knot 5 3 3 0 0 0 80 100 100 1
44 c.41 Subtilisin-like 4 2 0 0 1056 0 100 100 75 1
45 c.98 MurF and HprK N-domain-like 4 2 8 0 0 0 75 100 100 1
46 c.46 Rhodanese/Cell cycle control phosphatase 7 3 130 54 0 0 86 86 100 1
47 c.57 Molybdenum cofactor biosynthesis proteins 3 2 1056 0 0 0 67 100 100 1
48 c.93 Periplasmic binding protein-like I 13 1 3 0 0 0 62 100 100 1
49 c.45 (Phosphotyrosine protein) phosphatases II 12 2 0 0 267 0 100 100 58 1
50 c.107 DHH phosphoesterases 2 2 0 0 1058 0 100 100 50 1
51 c.18 DNA glycosylase 2 2 1057 0 0 0 50 100 100 1
52 c.108 HAD-like 11 10 1048 932 0 0 55 91 100 1
53 c.10 Leucine-rich repeat, LRR (right-handed beta-alpha 

superhelix)
18 10 304 0 0 0 44 100 100 1

54 c.48 TK C-terminal domain-like 5 3 50 0 47 0 60 100 80 1
55 c.14 ClpP/crotonase 11 3 240 335 0 0 73 64 100 1
56 c.24 Methylglyoxal synthase-like 3 3 450 0 27 0 67 100 67 1
57 c.8 The "swivelling" beta/beta/alpha domain 10 8 0 28 4 0 100 80 40 1
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(page number not for citation purposes)



BMC Bioinformatics 2008, 9:74 http://www.biomedcentral.com/1471-2105/9/74
C class are consistent with the dendrogram built from at
least one pairwise structural similarity measure.

Structure comparison methods differ in the consistency of
their associated dendrogram with the SCOP folds. Den-
drogram derived from each similarity score method disa-
gree with SCOP for various folds. Forty-eight folds
(comprising 1080 domains) disagree for the VAST tree,
41(1026 domains) for the SHEBA tree, and 43 (991
domains) for the DALI tree, according to this criterion.

We consider a fold to be highly dispersed if it disagreed
with trees of all three structure comparison methods.
There are 33 such folds (comprising 916 domains) and
they are reported in Table 6, row 62–94. None of these 33
folds could be obtained as a homogeneous cluster, thus

each contributes to the loss of agreement between any
automatic partition and the SCOP fold partition. For
these 33 folds, the intersection of their excess span was
computed, and reported in Table 4, column labelled INT.
INT is a measure of the disagreement with SCOP that
remains even if all three dendrograms were combined.
Thirty-one out of 33 folds give rise to a positive INT,
meaning that same domains contributed to their disper-
sion within trees. These 31 folds therefore contribute to
the remaining distance between the automatic and expert-
curated partitions, regardless of tree cutting strategy or
structure comparison method used.

Dispersion caused by low structural similarity within folds
To examine such dispersed folds in detail, we select two
examples. Figure 4 schematically represents the situation

58 c.63 CoA transferase 5 2 0 1 1 0 100 60 60 1
59 c.55 Ribonuclease H-like motif 53 19 400 362 0 0 94 21 100 1
60 c.91 PEP carboxykinase-like 4 2 449 0 80 0 50 100 50 1
61 c.95 Thiolase-like 13 2 4 0 4 0 46 100 46 1

DISPERSED FOLDS
62 c.47 Thioredoxin fold 51 13 1 1 1 0 45 82 82 2
63 c.12 Ribosomal proteins L15p and L18e 2 1 1 3 1 0 50 50 50 2
64 c.31 DHS-like NAD/FAD-binding domain 10 5 4 3 4 3 70 70 70 2
65 c.1 TIM beta/alpha-barrel 182 70 3 1148 1148 3 53 43 62 6
66 c.15 BRCT domain 7 4 130 12 4 2 71 86 86 2
67 c.13 SpoIIaa-like 3 2 10 4 7 3 67 67 67 2
68 c.30 PreATP-grasp domain 11 5 4 6 7 3 64 36 45 3
69 c.51 Anticodon-binding domain-like 13 6 6 35 7 0 54 69 77 2
70 c.3 FAD/NAD(P)-binding domain 46 5 7 1015 1014 7 41 41 41 8
71 c.84 Phosphoglucomutase, first 3 domains 6 1 10 94 266 10 67 67 67 2
72 c.4 Nucleotide-binding domain 7 3 46 18 14 14 57 29 29 3
73 c.9 Barstar-like 2 2 18 413 593 17 50 50 50 2
74 c.19 FabD/lysophospholipase-like 3 2 1056 940 40 40 67 67 67 2
75 c.53 Resolvase-like 9 3 444 44 65 16 44 44 44 3
76 c.97 Cytidine deaminase-like 4 2 45 411 139 28 75 75 75 2
77 c.44 Phosphotyrosine protein phosphatases I-like 3 2 52 57 120 46 67 67 67 2
78 c.58 Aminoacid dehydrogenase-like, N-terminal domain 11 5 72 404 59 32 55 55 55 3
79 c.49 Pyruvate kinase C-terminal domain-like 6 2 237 94 182 61 67 67 67 2
80 c.52 Restriction endonuclease-like 23 21 1036 216 141 128 91 57 91 3
81 c.72 Ribokinase-like 15 7 185 372 165 151 67 67 67 2
82 c.80 SIS domain 6 3 198 420 1054 23 67 67 67 2
83 c.92 Chelatase-like 11 5 311 932 221 200 36 36 36 3
84 c.60 Phosphoglycerate mutase-like 7 4 446 415 280 237 57 57 57 2
85 c.26 Adenine nucleotide alpha hydrolase-like 42 11 1017 913 460 459 29 29 29 7
86 c.94 Periplasmic binding protein-like II 25 2 654 970 592 511 96 84 88 2
87 c.66 S-adenosyl-L-methionine-dependent 

methyltransferases
35 23 620 908 1025 602 23 80 83 3

88 c.78 ATC-like 12 2 643 931 1048 625 42 33 58 3
89 c.35 Phosphosugar isomerase 3 2 652 940 1057 634 67 67 67 2
90 c.37 P-loop containing nucleotide triphosphate hydrolases 122 20 937 821 938 814 25 40 28 9
91 c.23 Flavodoxin-like 65 31 1045 878 1046 873 14 18 18 18
92 c.56 Phosphorylase/hydrolase-like 24 11 1035 919 1036 912 75 83 75 4
93 c.2 NAD(P)-binding Rossmann-fold domains 99 10 960 928 961 921 24 32 32 9
94 c.69 alpha/beta-Hydrolases 51 26 1059 1064 1060 1059 35 96 35 2

Ward Hierarchical Cluster Tree generated using Nres metric for VAST, SHEBA and DALI.
*Ndom, the number of domains in the fold.
#Nfam, the number of families in the fold.
§Excess Span Size is Span less Ndom; Span is the number of domains contained in the smallest cluster containing all domains of the fold.

 INT is the size of the intersection of the excess spans for VAST, SHEBA and DALI.
+Largest Homog. Cluster is the ratio of the size of the largest homogeneous cluster of the fold to the size of the fold itself, expressed as percent.
$Nc is the minimum number of homogeneous clusters in the fold, across VAST, SHEBA and DALI.
Table is sorted in ascending order of minimum excess span size, then in the ascending order of INT, and then by the average Largest Homog. Cluster Size value for the three 
methods in the descending order.

Table 6: Excess Span and Largest Homogeneous Cluster Size for SCOP C Class folds. (Continued)
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of fold c.58 within each dendrogram. Instead of forming
one homogeneous cluster including all domains of the
fold, c.58 consists of mainly two homogeneous clusters
set far apart in the tree. Between these two homogeneous
clusters, domains from other C class folds intervene, in
particular from c.78. Thus, one homogeneous cluster of
fold c.58 is considered more similar to domains from fold
c.78 than to other domains from fold c.58, and this situa-
tion pertains to all three structure comparison methods.

Figure 5a, b and 5c presents the matrices of pairwise dis-
tances between all domains within folds c.58, for VAST,
SHEBA and DALI, respectively. Coding the distances by
color makes obvious why fold c.58 is split into mainly two
homogeneous clusters by all three dendrograms. Figure
5a, b and 5c also include domain d1b74a1 from fold c.78,
which is highly similar to domains of fold c.58. Indeed,
many of the pairwise distances involving d1b74a1 (coded
yellow), are small enough that it would fit into any cluster
of fold c.58. This pattern of high distance between homo-
geneous clusters of c.58 and low distance of a fold c.78
domain to members of c.58 explains why no clustering
method and no tree-cutting strategy is likely to perfectly
identify fold c.58.

This pattern of structural similarity measures is further
analyzed based on structural superposition of domains.

Figure 6 (a) and 6 (b) superpose domain pairs from the
same homogeneous cluster, and show the degree of struc-
tural similarity typical within cluster. The structural super-
position of the domains from different homogeneous
clusters of c.58 is shown in Figure 6 (c). The low similarity
observed here is mainly due to the difference of the N ter-
minal features, with the 3 layer a/b/a feature typical of this
fold present in both domains. Figure 6 (d) is the structural
superposition of a domain from c.58 with one from c.78.
Again, the strands and helices making the 3 layer a/b/a
feature are well aligned.

In Figure 6, the structural superposition (d) of domains
from different folds produces even a better alignment
than the superposition (c) of domains from two different
clusters within the same c.58 fold. The disagreement
between automatic and expert-curated classification,
arises directly from the low similarity within fold c.58,
and the substantial similarity to domains of another fold.
It becomes impossible to merge the two distinct homoge-
neous clusters of fold c.58 without including domains
from c.78 as well.

As another example, we select fold c.1, one of the largest
in the dataset, and a highly dispersed fold. The intersec-
tion of spanning clusters for this fold includes three
domains from the single fold c.6, Cellulases, which are
partial barrels. Fold c.6 is found to be easily identifiable
by all three similarity methods (Table 6, row 22). Figure 7
shows two TIM barrel fold structures and one Cellulases
structure. TIM barrel structures are easily recognizable and
are not likely to be confounded with any other folds by
the human expert. The typical TIM barrel structure d1clxa_
(Figure 7 a) appears to be more similar to the Cellulases
structure d1dysa_ (Figure 7 b), than to another TIM barrel,
d1a4ma_ (Figure 7 c), by all three structure comparison
methods. TIM barrel structure (c) has 8 strands although
two of them are much longer and two are much shorter
than the rest making the barrel somewhat distorted, com-
pared to the typical TIM barrel structure (a). The lower
similarity between a typical TIM barrel domain and
another member of that fold, compared to the similarity
of a c.6 domain to the typical TIM barrel, means that auto-
mated clustering methods cannot separate these two folds
perfectly. The structural distinctions between the two
folds are evidently too subtle to be detected by these struc-
ture comparison methods.

Discussion
There are two approaches for comparing results from
automatic structure comparison methods to an expert-
curated reference classification such as SCOP. One can
either directly compare the pairwise structural similarity
measures to a similar measure derived from the reference
partition, or produce a partition from the pairwise struc-

Schematic of dispersion of fold c.58Figure 4
Schematic of dispersion of fold c.58. Nodes labelled c.58 rep-
resent two of the homogeneous clusters of fold c.58. Node 
labelled c.78 is one homogeneous cluster of fold c.78. Rela-
tive join positions reflected from the complete Ward's 
method dendrograms, based on clustering the Nres similarity 
scores.
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Matrices of pairwise distances among domains of folds c.78Figure 5
Matrices of pairwise distances among domains of folds c.58 and c.78. Pairwise distances between domains were obtained from 
the pairwise similarity scores number of matched residues, according to Eq(1) and symmetrized as specified in Methods. The 
yellow color corresponds to pairwise distances smaller than141, 119 and 88 for VAST matrix (a), SHEBA matrix (b) and DALI 
matrix(c) respectively. The white color corresponds to pairwise distances higher than 141, 129 and 88 for (a), (b) and (c) 
respectively.

a 

Domain 
Name 

SCOP 
Family 

d1gz4a2 

d1bgva2 

d1gtm
a2 

d1hw
xa2 

d1c1da2 

d1leha2 

d1a4ia2 

d1b0aa2 

d1edza2 

d1npda2 

d1lu9a2 

d1b74a1 

d1gz4a2 c.58.1.3 0 251 249 285 243 241 232 272 307 295 225 242 
d1bgva2 c.58.1.1 251 0 44 72 112 108 223 221 312 224 202 175 
d1gtma2 c.58.1.1 249 44 0 34 98 90 219 223 220 212 192 133 
d1hwxa2 c.58.1.1 285 72 34 0 126 124 227 225 284 246 232 191 
d1c1da2 c.58.1.1 243 112 98 126 0 38 169 171 208 188 164 87 
d1leha2 c.58.1.1 241 108 90 124 38 0 147 157 182 202 162 89 
d1a4ia2 c.58.1.2 232 223 219 227 169 147 0 6 47 155 89 118 
d1b0aa2 c.58.1.2 272 221 223 225 171 157 6 0 59 151 107 106 
d1edza2 c.58.1.2 307 312 220 284 208 182 47 59 0 170 140 141 
d1npda2 c.58.1.5 295 224 212 246 188 202 155 151 170 0 132 125 
d1lu9a2 c.58.1.4 225 202 192 232 164 162 89 107 140 132 0 73 
d1b74a1 c.78.2.1 242 175 133 191 87 89 118 106 141 125 73 0 

 
 
 
 
 

b 

Domain 
Name 

SCOP 
Family 

d1gz4a2 

d1bgva2 

d1gtm
a2 

d1hw
xa2 

d1c1da2 

d1leha2 

d1a4ia2 

d1b0aa2 

d1edza2 

d1npda2 

d1lu9a2 

d1b74a1 

d1gz4a2 c.58.1.3 0 319 299 341 267 269 310 258 323 319 281 290 
d1bgva2 c.58.1.1 319 0 38 60 104 104 235 221 278 260 194 243 
d1gtma2 c.58.1.1 299 38 0 36 76 80 205 241 222 194 200 183 
d1hwxa2 c.58.1.1 341 60 36 0 100 112 221 275 240 238 210 187 
d1c1da2 c.58.1.1 267 104 76 100 0 28 157 203 192 156 162 113 
d1leha2 c.58.1.1 269 104 80 112 28 0 159 191 232 148 148 173 
d1a4ia2 c.58.1.2 310 235 205 221 157 159 0 8 61 119 99 98 
d1b0aa2 c.58.1.2 258 221 241 275 203 191 8 0 63 113 97 168 
d1edza2 c.58.1.2 323 278 222 240 192 232 61 63 0 142 124 179 
d1npda2 c.58.1.5 319 260 194 238 156 148 119 113 142 0 106 113 
d1lu9a2 c.58.1.4 281 194 200 210 162 148 99 97 124 106 0 73 
d1b74a1 c.78.2.1 290 243 183 187 113 173 98 168 179 113 73 0 

 
 
 
 
 

c 

Domain 
Name 

SCOP 
Family 

d1gz4a2 

d1bgva2 

d1gtm
a2 

d1hw
xa2 

d1c1da2 

d1leha2 

d1a4ia2 

d1b0aa2 

d1edza2 

d1npda2 

d1lu9a2 

d1b74a1 

d1gz4a2 c.58.1.3 0 217 245 269 199 195 202 186 231 203 187 190 
d1bgva2 c.58.1.1 217 0 30 44 84 78 137 143 186 152 132 129 
d1gtma2 c.58.1.1 245 30 0 32 58 70 127 123 160 162 118 109 
d1hwxa2 c.58.1.1 269 44 32 0 84 100 169 177 196 174 148 139 
d1c1da2 c.58.1.1 199 84 58 84 0 22 107 107 124 94 94 79 
d1leha2 c.58.1.1 195 78 70 100 22 0 93 89 108 98 84 75 
d1a4ia2 c.58.1.2 202 137 127 169 107 93 0 4 35 83 63 74 
d1b0aa2 c.58.1.2 186 143 123 177 107 89 4 0 31 79 73 76 
d1edza2 c.58.1.2 231 186 160 196 124 108 35 31 0 100 102 103 
d1npda2 c.58.1.5 203 152 162 174 94 98 83 79 100 0 62 71 
d1lu9a2 c.58.1.4 187 132 118 148 94 84 63 73 102 62 0 49 
d1b74a1 c.78.2.1 190 129 109 139 79 75 74 76 103 71 49 0 
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tural similarity score and compare it to the reference par-
tition. We adopted the latter approach in this study, as we
expected that enforcing partitioning constraints would
introduce a new element that is not present in the pairwise
similarity measures alone.

We explored a variety of methods for obtaining automatic
partitions from pairwise structural similarity measures
computed by VAST, SHEBA and DALI. Specifically, four
different hierarchical clustering methods were used to
construct dendrograms or binary trees, which were then
cut into sub-trees by ten different tree-cutting strategies, to
produce partitions. The results show that the combination
of Ward's method with the largest size cut strategy has best
agreement with SCOP among all combinations of cluster-
ing methods and tree-cutting strategies explored so far.

Trees generated by Ward's method result in partitions
agreeing better with SCOP folds, than those generated by
Single, Complete or Average linkage, regardless of the tree
cutting strategy applied. Clusters formed by Ward's
method tend to be highly concentrated around a mean, as
they are formed so that the variance within the cluster is
minimized. This suggests that SCOP folds are constructed
based on the cohesiveness of the group as a whole rather
than on similarity of individual pairs. This may be a more
appropriate view of folds than as complete sub-graphs
where every structure is related to every other structure as
suggested by Complete linkage clustering. Although Aver-
age linkage produces clusters which are organized around
a constructed mean, it does not minimize the variance
around this mean, in contrast to Ward's method. Its lower
performance relative to Ward's method strengthens the
view of folds as structurally cohesive groups of domains.
The mediocre results obtained by Single linkage empha-

Superposition of c.58 and c.78 domain pairs, by DALI alignmentFigure 6
Superposition of c.58 and c.78 domain pairs, by DALI alignment. Panel (a): one intra-cluster, cluster 1, pair of c.58, d1edza2 
(146 residues, red) and d1b0aa2 (121 residues, blue), 118 residues aligned, RMSD = 2.7Å, and Zscore = 14.4. Panel (b): 
another intra-cluster, cluster 2, pair of c.58, d1c1da2 (148 residues, yellow) and d1leha2 (134 residues, magenta), 130 residues 
aligned, RMSD = 1.4Å and Zscore = 21.3. Panel (c): inter-cluster pair of c.58, between cluster 1 and cluster 2, d1b0aa2 (blue) 
and d1c1da2 (yellow), 81 residues aligned, RMSD = 4.7Å and Zscore = 4.5. Panel (d): inter-fold domain pair between d1b74a1 
(c.78, 105 residues, green) and d1b0aa2 (c.58, 121 residue, blue), 75 residues aligned, RMSD = 3.3Å, Zscore = 6.2. Both c.58 
and c.78 folds are characterized by having a core of 3 layers a/b/a with a parallel beta-sheet of 4 strands, ordered 2134. Under 
hierarchical clustering, fold c.58 is comprised of two homogeneous clusters (Figure 4).

a

b

c

d
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size even more the suitability of the notion of structural
cohesiveness in modelling folds. Indeed Single linkage
folds can be seen as minimum spanning trees, which do
not necessarily require structural cohesiveness.

Largest size tree cutting strategy and those associated with
it, such as highest tree cut and tree completeness cut,
achieve much better agreement with SCOP, than other
SCOP independent strategies. In particular they out-per-
form the "standard" level cut strategy. This is an unex-
pected result and suggests that the fold size was perhaps
an implicit criterion, among others, in the formation of
SCOP folds and that large groups of protein structures
were split even when their internal similarity was higher
than the internal similarity of smaller sized group of pro-
teins. The small spread of the sizes of SCOP folds shown
in Figure 3 supports this notion. On the other hand, a

highly structurally distinctive fold such as TIM barrel (c.1)
which is highly populated relative to the majority of folds
and easily, visually recognizable, form an exceptionally
large cluster.

The best combination of hierarchical clustering and SCOP
independent tree cutting strategy e.g. Ward's method with
either largest size, tree completeness or highest tree cut,
resulted in an average TPR01 values (61%, 58% and 59%
respectively) that are only slightly above the average
agreement of 57% achieved by comparing pairwise simi-
larities directly, without clustering, to SCOP folds parti-
tion, using the same set of SCOP C class domains. This
suggests the idea that the persistent discrepancy between
automatically determined similarity and SCOP is most
likely not due to the partitioning constraint, even though
all possible partitioning strategies, such as most recently

Structures from TIM barrel fold c.1 and its variant fold c.6Figure 7
Structures from TIM barrel fold c.1 and its variant fold c.6. Panel (a): d1clxa_, a typical TIM Barrel domain belonging to family 
c.1.8.3 with 345 residues. Panel (b): d1dysa_ c.6.1.1 with 345 residues. Panel (c): d1a4ma_, also a TIM Barrel, belonging to 
family c.1.9.1 with 349 residues. These domains belong to three different homogeneous clusters, by all three programs. The 
pairwise distances by VAST, SHEBA and DALI, between structures (a) and (c) are (334*, 440, 318), between (b) and (a) are 
(236, 350, 256), and between (b) and (c) are (420, 500, 344). The pairwise number of matched residues (Nres) by VAST, 
SHEBA and DALI between structures (a) and (c) are (180*, 127, 188), between (a) and (b) are (227, 170, 217) and between (b) 
and (c) are (137, 97, 175). *This corresponds to the best alignment of the two non symmetric pairwise alignments produced by 
VAST.

a

b c
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developed clustering techniques in [21,22] for example,
have not been examined. Figure 2 provides additional evi-
dence supporting this view. It shows that automatic parti-
tions produced by introducing partitioning constraints
into pairwise structural similarity measures, cluster
together in the space of partitions, far away from the
expert-curated classification SCOP implying that auto-
matic structure comparison methods agree well with each
other, and that there might be irreducible differences
between them and SCOP.

Automatic methods VAST, SHEBA and DALI obtained
71%–76% TPR01 using the combination of Ward's
method and the MI cut strategy which maximizes the
agreement with SCOP. This is higher than the maximum
65% and 67% obtained by the largest size cut and the
direct pairwise comparison scheme, respectively, on the
same set of the SCOP C class protein domains. As the MI
cut strategy proceeds with prior knowledge of SCOP folds
information, this range of agreement is close to the maxi-
mum obtainable between automatic classification and
manually curated SCOP dataset, regardless of the parti-
tioning procedure. The inherent level of disagreement can
be seen from the number of SCOP folds for which the
spanning cluster exceeds the size of the fold, in Table 6.

Examination of two such folds corroborates the findings
of our previous paper [15] that some SCOP folds includes
structural variation causing measured similarity between
members of the same fold to fall below that between
members of related, but different folds. Indeed, the dis-
tance matrix in Figure 5 shows that fold c.58 displays this
pattern, due to low similarity among domains from its
distinct homogeneous clusters, and a high similarity with
domains from a different fold c.78. The superpositions in
Figure 6 (a), (b) and 6 (c), indicate that in all cases, be it
intra or inter-cluster, all three structure comparison meth-
ods aligned the structural feature defining the fold, and
yet intra-cluster structural similarity is higher than inter-
cluster structural similarity. Regarding the TIM barrel fold,
a detailed study by Nagano et al. [23] also characterized
the fold as highly diverse, although using the CATH [24]
database. Thus, structural variation within folds, shown in
[15] as the main cause of divergence between automatic
and expert-curated classifications, does not disappear
even after satisfying the partitioning constraint. This
strengthens our previous findings and emphasizes the
importance of properly handling the structural variation
in order to reduce the gap between automatic and expert-
curated partitions. We also have underlined some rela-
tionships between distinct folds. The domains which cor-
respond to the excess span of a dispersed fold could be
seen as evidence suggestive of a evolutionary relationship
among folds, as discussed by Lupas et al [25]. Domains

from fold c.6, which are excess span of TIM barrel fold, are
actually variants of TIM barrels.

Finally, in the light of this analysis, we think that future
improvements to automatic protein structures classifica-
tion would likely come by explicitly identifying common
structural cores. Pairwise similarity scores alone appear to
be limited in that regard, so techniques involving multiple
structural alignment will likely be needed.

Conclusion
The level of agreement between manual and automatic
classifications varies with clustering methods and tree par-
titioning strategies. However, the best agreement reaches
similar upper bound than when structural pairwise simi-
larity is compared directly to the manual classification.
Therefore divergence between automatic and manual clas-
sifications is not eliminated by the introduction of parti-
tioning constraints.

Our observations are based on SCOP C class, but are likely
valid for other classes as well, as C class domains contain
both types of secondary structure elements, alpha helix
and beta strand, and are the most difficult to classify due
to higher confusion among them compared to the all
alpha or all beta classes [15]. Our exploration of potential
classification procedures of proteins based on structural
similarity is complementary to the analysis done in our
previous paper [15]. The modular structure of the proteins
has been accounted for by using a database of structural
domains defined in SCOP although this domain parsing
may be at variance with other domain parsing such as that
in CATH [24], or those based on amino acid sequences in
CDD[26], ProDOM [27] or Pfam [28]. We did not address
this issue here. Notwithstanding efforts made in this
present work, there is still a discrepancy between the
results of the automatic structure comparison methods
and the SCOP classification. Based on the maximum
attainable TPR of about 76%, roughly one quarter of the
C class domains are not classified by SCOP according to
measured global structural similarity. As we previously
suggested, the main reason is that global structure similar-
ity cannot entirely account for the characteristic local
structural features on which the SCOP classification is
based. Future research should be aimed at finding algo-
rithms able to automatically extract such evolutionarily
conserved, common local structural features of domains.
As observed by Chothia and Lesk [29], in proteins having
low sequence identity and the same biochemical function,
only about half of secondary structures are conserved. The
remaining challenge is to identify the conserved half!

Methods
We consider a set E of M = 1330 domains in the C class
selected from the set of SCOP domains with less than 40%
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pairwise sequence identity in ASTRAL [30] version 1.63.
Their associated N = 94 folds constitute a partition, i.e. a

collection of disjoint folds or subsets  of E whose

union is E.

Our objective is to compare this fold partition, an expert-
curated classification, with a partition of the same set E of
domains, obtained automatically as follows.

First, all M2 = 1,768,900 pairs of domains drawn from this
set E were compared by VAST, SHEBA and DALI. The cal-
culations were made using the high-performance compu-
tational capabilities of the Biowulf PC/Linux cluster at the
National Institutes of Health, Bethesda, MD [31].

Data resulting from the computation were used to pro-
duce matrices of similarity scores [Sqt], where Sqt is either
the Nres (Number of Matched Residues) between domains q
and t, or the Zscore for SHEBA and DALI and the Pcli score
for VAST.

Second, these similarity matrices were transformed into
distance matrices and symmetrized by replacing the upper
diagonal values with the lower diagonal values. There
exists many ways of obtaining a pseudo-distance measure
from a similarity measure [32], even though the triangular
inequality is not always guaranteed. We choose a simple
approach which guarantees that self-distance is zero and
all distances are non-negative. With similarity defined as
the number of matched residues, the distance satisfies the
triangular inequality. For domains q and t within E, and
similarity measure Sqt, the distance Dqt is defined as fol-
low:

Dqt = Sqq + Stt - 2 Sqt (1)

These matrices of pairwise distances were then entered
into hierarchical clustering algorithms to obtain dendro-
grams or binary trees. We considered Matlab implementa-
tion [33] of four representative hierarchical clustering
methods [20]: Single, Average, Complete linkage and
Ward's method.

Tree cutting algorithm
A dendrogram resulting from a hierarchical clustering is a
binary tree, where each node is associated with an inter-
cluster distance defined by the joining distance between
its left and right children. The inter-cluster distance for the
leaves of the tree is defined to be zero. To obtain a parti-
tion from a dendrogram, one ordinarily chooses a level,
i.e. an inter-cluster distance value, falling within the den-
drogram, then removes or "cuts" all the join-nodes above
the chosen level, leaving behind a set of trees whose roots

or join-nodes fall below that specified level. Here, we gen-
eralize this approach and find partitions made up of a set
of sub-trees which join with root nodes at various levels,
by introducing a panel of tree cutting criteria making use
of a variety of tree characteristics, in addition to the inter-
cluster distance. Our recursive algorithm starts with the
original tree. When its root is cut or deleted, two trees
remain, representing the two clusters in the growing cur-
rent partition. Depending on the number of clusters
desired and various topological features of each of the
remaining trees, one tree is selected and its root is cut,
leaving behind two smaller trees, each again representing
a cluster in the refined partition. The procedure is termi-
nated when the desired stopping criterion is reached.

More formally the tree cutting algorithm starts from the
initial partition consisting of one cluster containing all

elements of E. Given a partition  of size |K| > 1,

a partition of size |K| + 1 is obtained from K by splitting
one of the clusters Ki into 2 distinct clusters. The splitting

of a cluster is represented by removing the root node of its
associated tree.

At the initial step of this process, there is no choice, but
cutting the root node of the tree. Further partitioning
involves a choice of which cluster to split. A tree cutting
strategy determines this choice. We present below several
strategies which have been developed here and used in
this analysis. We consider three different ways of stopping
the tree partitioning process. First, the partitioning process
stops when no further partition can be obtained, corre-
sponding to the situation where all clusters of the parti-
tion are singletons. Second, the partitioning process stops
when a partition with a given number of clusters is
obtained. We will be mainly interested by partitions of
size 94 clusters corresponding to the number of SCOP C
class folds in the dataset. Third the partitioning process
stops based on reaching < = 1% FPR (see below) when
comparing the automatic partition with SCOP.

Tree cutting strategies independent of SCOP
We define seven SCOP independent tree cutting strategies.
Such a strategy determines the next sub-tree to cut, with-
out using a prior knowledge of SCOP fold partition. They
all have been implemented for this analysis.

Level cut
The strategy proceeds by descending inter-cluster distance,
starting at the level of the root node. At a given step of the
tree cutting strategy, resulting trees are available candi-
dates for further cutting. The level of the next cut is deter-
mined by the tree whose node has the highest inter-cluster

Fj j

N{ } =1

K K i
i

K

=
=1
∪
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distance among all candidates. An illustration of the level
cut is given in Figure 8.

Largest size cut
At a given step of the tree cutting strategy, resulting trees
are available candidates for cutting. The candidate tree
which contains the largest number of domains or leaves,
is cut. This strategy counts the exact number of domains
in the subtree evaluated for cutting.

Highest tree cut
The topological height h(Ki) of the node Ki is the number
of intermediate nodes along the longest path from Ki to
the leaves. The leaves are of topological height zero. For
each cluster Ki, the topological height of its associated sub-
tree is computed. The tree with the topologically highest
root node is cut.

Tree completeness cut
Given the height h(Ki) of the sub-tree with root node Ki,
the number of nodes in this sub-tree if it were complete
would be 2h(Ki)+1-1. If the sub-tree is not complete, its
actual number of nodes, including the root and the leaves,
is less than 2h(Ki)+1-1. Tree completeness is defined as the
ratio of the actual number of nodes of the sub-tree, and
the number of nodes if it were complete. The smaller the
ratio, the less complete is the tree. The tree with the small-
est ratio (least complete) is cut.

Tree skewness cut
Given a tree, its skewness is defined as the ratio of the
number of nodes in its left and right children. The ratio is
defined such that the number of nodes of the smallest
child, left or right, is divided by the number of nodes of
the largest child. The tree of greatest skewness is chosen
for cutting.

Longest branch cut
The branch length of a tree is the difference between the
intercluster distance of the root node and the smaller of
the inter-cluster distances of its two children. The tree with
the longest branch value is cut.

Maximum entropy cut
The entropy H(K) of an entire partition K is defined
by[34]:

where , the probability of the cluster Ki, is ratio

of the number of domains within Ki to the total number

M of domains being partitioned. The tree which would
result in the greatest increase in entropy value for the cur-
rent partition is chosen for cutting.

Tree cutting strategies which refer to SCOP
We define here three tree cutting strategies which use the
prior knowledge of SCOP fold partition to determine the
next sub-tree to cut:

Mutual Information (MI) cut
The mutual information I(K:F) between a partition K
resulting from the cutting of a binary tree and the SCOP
fold partition F, is defined as follow:

H K P Pi i

i K

( ) ln= −
∈
∑ (2)

Pi
Ki
M=

I K F P
Pij

PiPj
ij

j Fi K

( : ) ln=
∈∈
∑∑ (3)

Schematic of cutting strategies and spanning clustersFigure 8
Schematic of cutting strategies and spanning clusters. Leaves 
of the binary tree, e.g. domains, are numbered 1 to 12. In the 
figure, it is assumed that four clusters (1,2,3), (7, 8, 9) and 
(12) are from one particular fold and the three clusters (4, 5, 
6), (10) and (11) contain all 5 domains of another fold. Hori-
zontal line A – A represents the level cut, which produces a 
partition of 7 clusters but which splits the cluster (1,2,3) into 
two clusters, (1,2) and (3). Oblique line B – B is an allowable 
cut which produces a partition of 6 clusters and does not 
split (1,2) from (3). The node n1 represents the spanning 
cluster of the fold having domains 4, 5, 6, 10 and 11. The 
span, or size, of this spanning cluster is nine, and its excess 
span, or number of included domains not in this fold, is four. 
The node labelled n2, spanning three domains, namely 4, 5, 
and 6, represents the largest homogeneous cluster of this 
fold. For this fold, the relative size of the largest homogene-
ous cluster is 3/5, e.g. the size of the largest homogeneous 
cluster divided by the size of the associated fold.

n1

Root

A

B

n2

B

A

1      2   3    4      5   6                7      8         9  10          11           12
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with Pi as defined for entropy, and  is ratio of

the number of domains in common to cluster Ki and fold

Fj to M. Cutting a particular tree results in a new partition,

as well as a new value of I(K:F). The tree which would
result in the greatest increase of the mutual information is
cut.

Best TPR/FPR Ratio cut
TPR and FPR values (defined below) refer to the SCOP
fold partition. The tree whose cutting would results in the
greatest TPR/FPR ratio, is cut.

Best TPR cut
The tree which would result in the greatest TPR value is
cut.

ROC curves for comparing partitions
The ROC curves are constructed using the definition of
true and false positive rates introduced in [15], but with
the notion of membership in a cluster replacing the
notion of similarity cutoff value. The following defini-
tions reflect this variation.

The true positive rate between two partitions is defined as

where TPRj is defined by:

where njk is the number of domains common to cluster k
and SCOP fold j, and nj is the number of domains in fold j.

The false positive rate between partitions is defined as fol-
low:

where

when i and j referring to SCOP folds i and j.

Distance between partitions
Given two partitions K and P, we define the distance
between these two partitions as follow:

where K and P are binary incidence matrices of the two
partitions whose elements take on the value 1 when the
domains i and j are in the same cluster, and 0 otherwise.

Multidimensional scaling (MDS) plot
We use classical multidimensional scaling to plot a set of
points in Euclidean space, such that each point represents
a partition and the Euclidean distance between two points
in the plot approximates the value of the Δ-distance
between partitions they represent. Thirteen partitions are
represented in the plot, including the expert-curated fold
partition SCOP. Automatic partitions were chosen to have
as many clusters as folds in the C class, by requiring the
partitioning algorithm to stop when a partition of size 94
clusters is reached. The computation of pairwise Δ-dis-
tance between the 13 partitions resulted in a 13 by 13
matrix (see Table 3) which is then used as input to the
classical MDS procedure in Matlab [35]. A two dimen-
sional plot of the 13 partitions is obtained by projecting
the points onto the two X and Y axes where the X axis is
the eigenvector corresponding to the largest positive
eigenvalue, and the Y axis the eigenvector corresponding
to the second largest eigenvalue.

Measure of fold dispersion
We define a measure of the dispersion of a SCOP fold
within a binary tree, based on two metrics: the size of the
excess span of the fold, and the size of the largest homo-
geneous cluster of the fold. The spanning cluster of a
SCOP fold is the smallest cluster in the tree including all
its domains. Proceeding upward from the leaves
(domains) of that fold and stopping at the first (lowest)
node common to all its leaves, we find the spanning clus-
ter of the fold. The size of this spanning cluster, i.e. the
number of leaves or domains it includes, is always greater
or equal to the size of the associated fold. The set theoretic
difference between the spanning cluster and the associ-
ated fold, is called excess span. The intersection of span-
ning clusters from distinct trees formed using distinct
methods, identifies domains which might reasonably be
considered as similar to domains in that fold. The size of
the intersection less the members of that fold is a measure
of how much larger the fold should be if it were to include
all reasonably similar domains.

A homogeneous cluster is one containing domains of
only one fold. Folds may be comprised of more than one
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homogeneous cluster. The size of the largest homogene-
ous cluster as a fraction of the size of a fold measures the
fraction of the fold which can be easily recognized by the
similarity measure and clustering algorithm. Figure 8
illustrates the notion of homogeneous and spanning clus-
ters for a schematic binary tree.
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