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Introduction

Microsatellites have been detected in a wide diversity of eukaryotes of varying complexity and genome size [START_REF] Tóth | Microsatellites in different eukaryotic genomes: Survey and analysis[END_REF]. Although numerous studies suggest that at least a fraction of microsatellites have important functions (Li et al., 2002, and references therein), they are generally regarded as highly variable neutral markers, and are thus the most frequently used genetic markers in population biology.

Despite early reports of microsatellite abundance [START_REF] Beckmann | Toward a unified approach to genetic-mapping of eukaryotes based on sequence tagged microsatellite sites[END_REF][START_REF] Beckmann | Survey of human and rat microsatellites[END_REF][START_REF] Epplen | On simple repetitive DNA sequences and complex diseases[END_REF], the isolation of microsatellites as useable markers appears to be more difficult in some taxa than in others (Nematoda: [START_REF] Fisher | Microsatellites of the parasitic nematode Strongyloides ratti[END_REF]Lepidoptera: Nève & Meglécz, 2000;[START_REF] Zhang | Lepidopteran microsatellite DNA: redundant but promising[END_REF]; Aedes aegypti and Ixodes scapulris: [START_REF] Fagerberg | Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti[END_REF]. There are at least two possible, non-exclusive, explanations for this heterogeneity: (1) either the abundance of microsatellites, or (2) their localization in the genomes (e.g. coding or noncoding regions; association with repetitive DNA; extent of gene duplications or polyploidy; position on the chromosomes) significantly differ among species or higher level taxa. [START_REF] Zhang | Lepidopteran microsatellite DNA: redundant but promising[END_REF] has pointed out the relative scarcity of microsatellites in Lepidopteran genomes, as have [START_REF] Fagerberg | Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti[END_REF] in I. scapularis (Arachnida; Ixodida) and A. aegypti (Diptera). Both studies are based on indirect estimates, as genome data are rare for non-Dipteran (non-Drosophila) insects. The only Lepidoptera genome that has been sequenced so far is of Bombyx mori [START_REF] Mita | The genome sequence of silkworm, Bombyx mori[END_REF][START_REF] Xia | A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[END_REF]. In this species, microsatellites make up 0.31% of the genome [START_REF] Prasad | Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species[END_REF], which is rather low but not out of the range of other analysed genomes [START_REF] Tóth | Microsatellites in different eukaryotic genomes: Survey and analysis[END_REF]. In this study, we directly compared microsatellite abundance among the 10 insect species for which Whole Genome Shotgun (WGS) sequences are available.

The use of polymerase chain reaction-based microsatellite analysis in population genetics is based upon the premise that the flanking sequences are unique for each locus (single co-dominant locus evaluation) and that they mutate much more slowly than the microsatellite repeat motif [START_REF] Hancock | Microsatellites and other simple sequences: genomic context and mutational mechanisms[END_REF]. While there have been many studies on the mutation pattern of microsatellite core repeats [START_REF] Weber | Mutation of human short tandem repeats[END_REF][START_REF] Michalakis | Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate[END_REF][START_REF] Chakraborty | Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci[END_REF][START_REF] Schlötterer | Genome evolution: Are microsatellites really simple sequences?[END_REF][START_REF] Schug | The mutation rates of di-, tri-and tetranucleotide repeats in Drosophila melanogaster[END_REF][START_REF] Estoup | Microsatellite evolution: inferences from population data[END_REF][START_REF] Hancock | Microsatellites and other simple sequences: genomic context and mutational mechanisms[END_REF][START_REF] Pupko | Evolution of microsatellites in the yeast Saccharomyces cerevisiae: Role of length and number of repeated units[END_REF], little is known on their origin, including the uniqueness of their flanking sequences. A recent study showed that in two butterfly species a considerable proportion of the isolated microsatellite loci cluster into families based on similarities between flanking regions of different loci [START_REF] Meglécz | High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia[END_REF]. The work presented here aims to (1) test if this phenomenon is general in insects and in Lepidoptera in particular, and to (2) examine the distribution of the frequencies of these microsatellite families among taxa.

As microsatellites are generally more frequent in noncoding DNA regions [START_REF] Hancock | The contribution of slippage-like processes to genome evolution[END_REF][START_REF] Ramsay | Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley[END_REF][START_REF] Metzgar | Selection against frameshift mutations limits microsatellite expansion in coding DNA[END_REF][START_REF] Tóth | Microsatellites in different eukaryotic genomes: Survey and analysis[END_REF][START_REF] Karaoglu | Survey of simple sequence repeats in completed fungal genomes[END_REF] and a large portion of noncoding DNA is repetitive in many species [START_REF] Comeron | What controls the length of noncoding DNA?[END_REF][START_REF] Kidwell | Perspective: transposable elements, parasitic DNA, and genome evolution[END_REF]Li et al., 2002 and references therein), we also tested the association between microsatellite families and interspersed repetitive elements.

Results and discussion

Microsatellite abundance

The estimation of microsatellite abundance is very difficult without genomic data. Indirect methods, such as using the frequency of positive clones, have a number of potential biases. The emergence of genomic data provides a possibility to have a clearer picture, but only for a limited number of species. Furthermore, it is difficult to directly compare the results of independent studies, as there are no standard criteria for the minimal size of the microsatellites. In this study, we have used microsatellites with at least four uninterrupted repeat units (eight for single base pairs), so that even short mono-or dinucleotide repeats are included in the analyses. In similar studies, the criteria have been both more and less stringent. For example [START_REF] Tóth | Microsatellites in different eukaryotic genomes: Survey and analysis[END_REF] used microsatellites longer than 12 bp for a wide variety of Eukaryotes, [START_REF] Dieringer | Two distinct modes of microsatellite mutation processes: Evidence from the complete genomic sequences of nine species[END_REF] used at least two repetitions, [START_REF] Karaoglu | Survey of simple sequence repeats in completed fungal genomes[END_REF] used microsatellites longer than 10 bp for fungal genomes and [START_REF] Prasad | Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species[END_REF] used at least five repetitions (15 for single bases), for B. mori.

Table 1 presents the estimated proportion of pure microsatellites in the genome, for each repeat unit length, calculated from WGS and complete genome data. At first sight, our estimation seems extremely high. For example, we found that on average ≈ 16 kb of microsatellite is found per 1 Mb of genomic DNA in the B. mori genome, while this was found to be ≈ 3 kb in [START_REF] Prasad | Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species[END_REF] for the same species. Rerunning our analyses with the same criteria as applied by [START_REF] Prasad | Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species[END_REF], however, gave very similar Nevertheless, our results enable us to compare the frequencies of microsatellites among the 10 species for which WGS data were available. We observed a three-fold variation in microsatellite frequencies among the 10 investigated insect species, with the lowest value in A. aegypti and the highest in Apis mellifera. Even within the Drosophila genus, the variation among species is considerable (Table 1). Running the analyses with more stringent criteria (i.e. at least five to eight uninterrupted repeats) did not change the overall pattern of variation among species (data not shown). The difference between genomes is even more pronounced when only 2 -6 bp motifs are considered (Fig. 1). The proportion of mononucleotide motifs compared with other motifs is particularly high in B. mori and A. aegypti. As microsatellites with mononucleotide motifs are rarely used as markers, this introduces even greater difference among species in the abundance of potential genetic markers.

A particularly low frequency of positive clones was reported in A. aegypti compared with Anopheles albimanus [START_REF] Fagerberg | Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti[END_REF] and for several Lepidoptera species [START_REF] Zhang | Lepidopteran microsatellite DNA: redundant but promising[END_REF] and references therein), while A. mellifera is one of the insect species for which a very large number of microsatellite markers are established [START_REF] Solignac | Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome[END_REF]. Microsatellite abundance in the genome is thus probably a relevant factor in the success of microsatellite marker isolation; however, it is unlikely to be the only source of the problems specifically found in some taxa such as Lepidoptera. The low frequency of microsatellites in the genome should not lead to amplification problems and in principle, with enrichment or by increasing the number of screened clones, a sufficient number of markers could be isolated.

Proportion of grouped sequences

Microsatellite flanking sequences were analysed species by species. Each data set was blasted against itself (e = 1E-40) and sequences were sorted into four categories based on the results of the BLASTn: (1) Unique if no similarities were observed to any other sequences of the same data set; (2) UnBLASTable if sequence had no hits at all, not even with itself; (3) Redundant, if the identity to another sequence was higher than 95% along the whole flanking sequence; and (4) Grouped if sequences produced a significant hit with at least one different sequence and they were not redundant.

Data from complete genomes and WGS For both Drosophila melanogaster and Anopheles gambiae, the estimates of the proportion of grouped sequences were lower from complete genome sequences than from WGS (Table 2). This might be the consequence of the fact that genome assembly is the most difficult in regions with a high concentration of repetitive DNA, thus these regions might be overrepresented among the contigs of the WGS sequences. Consequently, the proportion of grouped sequences should not be taken literally from WGS data. Nevertheless, the same tendency is observed in both WGS and complete genome estimations: the genome of A. gambiae contains a higher proportion of microsatellite sequences grouped into families than that of D. melanogaster (Table 2; χ 2 = 4146.4, P < 0.0001; χ 2 = 69.1, P < 0.0001, for complete genome and WGS data, respectively).

The presence of microsatellite sequence families is clearly demonstrated in all 10 species for which WGS data were available (Table 2). The proportion of grouped sequences among WGS data sets varied largely among species (χ 2 = 12997.1, P < 0.0001). However, as discussed above, these proportions are only rough estimates, and should be interpreted with caution. Nevertheless, it is still striking that the proportion of grouped sequences in B. mori is the highest among the investigated 10 species (36.1% and 34.7%, respectively, for the two data sets) and it is significantly higher than the second highest proportion (23.6% for A. aegypti; χ 2 = 368.5, P < 0.0001; χ 2 = 293.6, P < 0.0001, respectively).

Data from screening partial libraries Sequences originating from screenings of partial genomic libraries may be biased by the screening protocol applied. However, as discussed in [START_REF] Meglécz | High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia[END_REF] the same protocol used in the same laboratory, at the same time, for different species gave strikingly different estimates of the proportion of grouped sequences (Euphydryas aurinia, Parnassius apollo, Aphis fabae). Our enlarged series of data from screenings show the same lack of association between the applied protocols and the proportions of grouped sequences. Indeed, the same protocol was used for Busseola fusca, Cydia pomonella, E. aurinia, Ostrinia nubilalis, P. apollo, A. fabae, with the percentage of grouped sequences ranging from 2.8% to 55.1% (χ 2 = 75.3, P < 0.0001), and another protocol for Drupadia theda and Arhopala epimuta, where the two species were screened simultaneously, yielded 6.5% and 31.4% grouped sequences, respectively (χ 2 = 10.3, P = 0.0013). Thus, it is unlikely that the screening protocol is responsible for the high proportion of grouped sequences in some species (Table 2). An obvious disadvantage of the screening data is the relatively small number of sequences available for each species. By increasing the number of investigated sequences some of the sequences classified as unique can become grouped. Thus the proportion of grouped sequences depends partially on the number of sequences available. This introduces a downwards bias in the estimation of the proportion of grouped sequences in small data sets. B. mori data provide a possibility to compare estimates of the proportion of grouped sequences based on screening vs. WGS data. As expected, the proportion of grouped sequences is lower when estimated from the screening data (25.7%) than from the WGS data (34.7% and 36.1% for the two data sets). However, these estimates are not significantly different (χ 2 = 0.882, P = 0.348; χ 2 = 1.222, P = 0.267, for the two comparisons, respectively).

In spite of the downwards bias of the proportion of grouped sequences from screening data, we demonstrated the presence of sequence families in almost all studied species apart from three species for which only a few sequences were available. Nevertheless, by decreasing the stringency of the search for sequence similarities (i.e.

BLAST with e = 1E-10 instead of e = 1E-40) Parnassius mnemosyne and Parnassius smintheus had 6.9% and 15.8% of grouped sequences, respectively. Only Zale galbanata (with only nine sequences available) remained apparently free from grouped sequences. Thus, there appears to be a common trend that varying and often high proportion of microsatellite sequences within Lepidoptera species cluster into families. Some of the microsatellites of the seven control (non-Lepidoptera) species also grouped into families, and WGS data sets indicated that this phenomenon is indeed not restricted to Lepidoptera, but it is present in all investigated taxa (Table 2).

GenBank entries of microsatellites Of the 415 insect species for which microsatellite sequences have been submitted to GenBank, 13% had at least one pair of grouped sequences. Note that redundant sequences were identified and discarded as before, in order to avoid a further possible bias of different teams of researchers working on the same species and finding the same microsatellite sequences. By selecting only species that have at least 10, 20, 30 or 40 sequences available in GenBank, the proportion of species having at least two grouped sequences increased strongly (32%, 53%, 71%, 81%, respectively). Undoubtedly, Gen-Bank microsatellite entries are not representative of whole genomes as in most cases researchers submit only polymorphic loci for which successful amplification protocols were established. Furthermore, the number of sequences is very low for most of the species (i.e. only 58 insect species had a minimum of 20 microsatellite entries). In spite of these factors, which introduce a very strong downwards bias in the proportion of grouped sequences, a high proportion of species representing diverse insect orders had microsatellite sequence families.

Grouped vs. redundant sequences For all data sets, the same approach was used to identify grouped and redundant sequences. This is a necessary step for data originating from both screening and whole genome shotgun sequencing, in order to eliminate alleles of the same locus or multiple copies of the same allele. Our choice of the 95% cut-off is based on previously published results (for discussion see [START_REF] Meglécz | High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia[END_REF]. Although, the complete genome sequences are nonredundant, we used the same method for identification of redundant sequences in order to obtain results comparable with the other data. Running the analysis with or without the identification of redundant sequences for complete genomes suggests that our procedure of eliminating redundant sequences and setting the cut-off limit to 95% is rather conservative. Indeed, a considerable portion of the sequences classified as redundant are in fact not redundant but represent different loci grouped into families. As a result, the proportions of grouped sequences within species are underestimated. However, as our principal aim was to compare the proportion of grouped sequences among the different data sets, the cutoff value is of little importance as long as it is identical for all analyses. Furthermore, demonstrating the presence of microsatellite sequence families with a conservative method gives an even stronger evidence of their occurrences. While using this conservative method, we managed to demonstrate the presence of microsatellite sequence families based on interlocus similarities of the flanking regions in a wide variety of insect species from data of diverse origins. Although the quantification of this phenomenon is difficult, our results indicate that the proportion of grouped microsatellites varies considerably among species and taxa. In particular, data from both partial genomic screens and WGS indicate that in many Lepidoptera the proportion of grouped sequences is particularly high (approximately 20% or more; Fig. 2).

Association between microsatellites and interspersed repetitive elements

All sequences were screened for the presence of repetitive elements. When testing D. melanogaster microsatellites from the complete genome data set against the Drosophila repetitive elements bank, 6.4% of the sequences showed significant similarities to diverse repetitive elements. This proportion, however, was more than 20 times higher among grouped sequences (83.5%), than among unique sequences (3.5%; χ 2 = 21315; P < 0.0001). Testing D. melanogaster microsatellite sequences against the Anopheles repetitive DNA bank gave similar but much less striking results: 1.1% sequences showed similarities to repetitive elements in total, 1.9% among grouped sequences, 0.8% among uniques. Nevertheless, these proportions remained significantly different (χ 2 = 19.4; P < 0.0001).

A similar tendency was observed for A. gambiae microsatellites. When testing against the Anopheles repetitive elements bank the proportion of sequences showing similarities to a repetitive element is 40.1% and 3.4% for grouped and unique sequences, respectively (χ 2 = 32142; P < 0.0001), while against the Drosophila bank these proportions are 0.6% and 0.3% (χ 2 = 54.0; P < 0.0001). Thus, for a large proportion of grouped sequences in these two species, associations between repetitive elements and microsatellites have been demonstrated. Furthermore, our results indicate that repetitive element banks are rather specific for each species or genus, and the sensitivity of the detection of repetitive elements is strongly reduced for species in different genera even from the same order.

Screening microsatellite sequences from WGS data for repetitive elements yielded very similar results for all Drosophila (six species) and Anopheles species as described above (data not shown). However, only 0.75% (n = 10000) microsatellites sequences of A. aegypti showed similarities to the Anopheles repetitive bank, and for all non-Diptera species this portion was even lower. This resulted in a low power of detecting the difference between the proportion of repetitive elements among grouped and unique sequences. In spite of this, the proportion of the sequences associated with repetitive elements was still significantly higher among grouped sequences than among unique ones in B. mori (data set B; against the Anopheles bank, χ 2 = 9.27; P = 0.0023).

A large number of studies indicate that microsatellites are more frequent in noncoding regions than in coding ones [START_REF] Wang | Survey of plant short tandem DNA repeats[END_REF][START_REF] Edwards | The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish, Fugu rubripes: Perspectives in functional and comparative genomic analyses[END_REF][START_REF] Metzgar | Selection against frameshift mutations limits microsatellite expansion in coding DNA[END_REF][START_REF] Li | Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review[END_REF][START_REF] Tóth | Microsatellites in different eukaryotic genomes: Survey and analysis[END_REF]. Only tri-and hexanucleotide repeats seem to be more frequent in coding regions [START_REF] Morgante | Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[END_REF], which is probably the consequence of negative selection against frameshift mutations in the coding regions [START_REF] Metzgar | Selection against frameshift mutations limits microsatellite expansion in coding DNA[END_REF]. It is also known that, in species with large genomes in particular, noncoding DNA is largely composed of repetitive elements [START_REF] Kidwell | Perspective: transposable elements, parasitic DNA, and genome evolution[END_REF]. For example, 45% of the euchromatic DNA in humans corresponds to transposable elements [START_REF] Smit | Interspersed repeats and other mementos of transposable elements in mammalian genomes[END_REF][START_REF] Lander | Initial sequencing and analysis of the human genome[END_REF], and the size of the genome of maize has been doubled as a result of retrotransposon insertions [START_REF] Sanmiguel | Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons[END_REF]. Association between microsatellites and transposable elements has been reported in nematodes [START_REF] Hoekstra | Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat[END_REF][START_REF] Johnson | Abundant variation in microsatellites of the parasitic nematode Trichostrongylus tenuis and linkage to a tandem repeat[END_REF], Dipterans [START_REF] Fagerberg | Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti[END_REF][START_REF] Wilder | Mobile elements and the genesis of microsatellites in dipterans[END_REF], rice [START_REF] Akagi | Micron, a microsatellite-targeting transposable element in the rice genome[END_REF][START_REF] Temnykh | Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential[END_REF] and barley [START_REF] Ramsay | Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley[END_REF]. Similarly, our study clearly demonstrates that a large proportion of Drosophila (six species) and A. gambiae grouped microsatellites are associated with diverse transposable elements. Furthermore, we demonstrated the specificity of the repetitive elements banks to each species/genus. This indicates that the lack of significant association between transposable elements and microsatellites for the other investigated insect species is probably the result of the scarcity of information on the transposable elements in those specific species, rather than a true lack of association. Thus, it is likely that the presence of microsatellite families is at least partially the result of the association between microsatellites and interspersed repetitive DNA elements or their remnants.

There are at least three different mechanisms that might create this kind of microsatellite-transposable element association. ( 1) Microsatellites arise at random in the genome, but they are more likely to be removed from coding and control regions. In this case, the association would be incidental. However, with this mechanism, most microsatellites are expected to be found near interspersed repetitive elements and thus they should become grouped. Our results do not support this hypothesis. (2) If a microsatellite arises in a transposable element, the number of microsatellite loci can be considerably amplified by transposition. (iii) Transposons might take an active role in microsatellite origin if microsatellites arise during transposition. In the two latter cases, grouped microsatellites are expected to be associated with transposable elements more often than unique ones. This is supported by our results. However, distinguishing between these two scenarios requires more detailed analyses and it is beyond the scope of this paper.

BLAST against baculovirus sequences

Lepidoptera are commonly infected by baculoviruses [START_REF] Cory | The ecology and evolution of insect baculoviruses[END_REF]. In order to test the hypothesis of non-insect amplified DNA, all Lepidoptera microsatellite sequences were BLASTed against genomes of baculoviruses. As these analyses did not produce any significant hits, it is unlikely that virus infection is a cause of the presence of sequences families in Lepidoptera.

Implications on the use of microsatellites as markers

Although the use of grouped microsatellites as genetic markers is not impossible [START_REF] Hoekstra | Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat[END_REF], they are unlikely to be good candidates for single locus genotyping purposes as flanking region similarities can lead to multiple locus amplifications and unclear banding patterns. Thus the variability among species in both the proportion of grouped sequences and the abundance of microsatellites may explain the large differences in the success/effort ratio of establishing reliable microsatellite markers for Lepidoptera and more generally for insects.

We are aware of two different methods to avoid clones containing grouped sequences. [START_REF] Van't Hof | Characterization of 28 microsatellite loci for the butterfly Bicyclus anynana[END_REF] have established a method to eliminate grouped sequences as a last step of the screening process prior to sequencing. An alternative approach is to isolate singlecopy DNA from the genome prior to screening for microsatellites [START_REF] Elsik | Low-copy microsatellite recovery from a conifer genome[END_REF], as has recently been accomplished for Aedes japonicus [START_REF] Widdel | Finding needles in the haystack: Single copy microsatellite loci for Aedes japonicus (Diptera: Culicidae)[END_REF]. Once the screening is done and sequences are available, it is strongly advised to check microsatellite flanking sequences for interloci similarities prior to primer design. The program, MicroFamily [START_REF] Meglécz | MICROFAMILY (version 1): a computer program for detecting flanking region similarities among different microsatellite loci[END_REF]; http://www.up. univ-mrs.fr/Local/egee/dir/meglecz/MicroFamily.html) can accomplish this task. However, if only a low number of clones/sequences are available the fact that a sequence is found to be unique, does not necessarily indicate its uniqueness in the genome. The program Primer3 for designing primers [START_REF] Rozen | Primer3 on the WWW for general users and for biologist programmers[END_REF] has a highly useful option of screening sequences for interspersed repeats using human, rodent or Drosophila repetitive element banks. However, as shown above, the sensitivity of detecting interspersed repeats from a noncongeneric repetitive bank is low.

A further problem in Lepidoptera and in many other species [START_REF] Keyghobadi | Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae)[END_REF][START_REF] Harper | Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus[END_REF][START_REF] Meglécz | High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia[END_REF][START_REF] Zhang | Lepidopteran microsatellite DNA: redundant but promising[END_REF][START_REF] Van't Hof | Characterization of 28 microsatellite loci for the butterfly Bicyclus anynana[END_REF] is the frequent presence of null alleles, even for apparently clearly amplifying and interpretable microsatellite loci. This problem still has to be addressed in future research. [START_REF] Hardison | Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution[END_REF] have demonstrated the covariance of substitution rate and transposition frequency among different genomic regions in human and mouse genomes. One possibility is that transposition frequencies and substitution rates also covary among species, such that some species or groups of species have both a high number of transposable elements and high average mutation rates. In these species, the association between microsatellites and transposable elements can lead to many microsatellites that are not unique; but, even if amplification is successful, the high mutation rate in the flanking regions may lead to a high likelihood of null alleles.

Conclusions

Microsatellites are used as highly polymorphic, single locus, co-dominant markers. However, our results demonstrated that in insects, a variable proportion of microsatellites cluster into sequence families based on similarities in their flanking region. In some species, this phenomenon, in association with a relatively low abundance of microsatellites, renders the isolation of reliable microsatellite markers particularly difficult.

The association between microsatellite sequence families and interspersed repetitive elements suggests a mechanism for the creation and/or amplification of microsatellites and thus the presence of such microsatellite families, and clearly indicates that the behaviour and evolution of microsatellite sequences can only be fully understood within a larger genomic context.

Experimental procedures

Cleaning and extraction of sequences Sequences from screening partial libraries Microsatellite sequence data were collected from 23 species, including 16 Lepidoptera and seven other insect species (two Diptera, two Coleoptera, two Trichoptera, one Hemiptera). For each species, all readable, microsatellite-containing, sequences resulting from one or more screenings of partial genomic libraries were analysed (Table 3). Microsatellites with motifs of 1-6 bp were identified. For the motif of a single base at least eight, for all other motifs at least four uninterrupted repetitions were necessary to retain the sequence.

Sequences were edited by (1) replacing all characters other than ACGT by N; (2) by deleting the extremities if they contained more than two Ns in the 10 most extreme base pairs; and (3) by removing vector and adapter contamination if the sequence produced a BLAST hit (e = 1E-3) against the UniVec vector base of NCBI (ftp://ftp.ncbi.nih.gov/pub/UniVec) or the adaptors/linkers used during microsatellite isolation.

GenBank microsatellite entries All microsatellite sequences of all insects were downloaded from GenBank (10 January 2006) and treated species by species, as described above.

Whole Genome Shotgun All contigs of WGS sequencing projects were downloaded from NCBI (www.ncbi.nlm.nih.gov/ Genomes;21 October 2005) for 10 insect species [Lepidoptera:

(1) Bombyx mori (data set A: ADDK01000001-01066482, [START_REF] Xia | A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[END_REF]; data set B: BAAB01000001-01213289, [START_REF] Mita | The genome sequence of silkworm, Bombyx mori[END_REF]; Diptera: (2) Anopheles gambiae (AAAB01000001-01069724, [START_REF] Holt | The genome sequence of the malaria mosquito Anopheles gambiae[END_REF], (3) Aedes aegypti (AAGE01000001-01655164, The Institute for Genomic Research, Broad Institute, http://msc.tigr.org/aedes/release.shtml), (4) Drosophila melanogaster (AABU01000001-01002756, [START_REF] Celniker | Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence[END_REF] If sequences contained more than 10 consecutive Ns, the Ns were cut out and the sequences were not joined together. Then, all microsatellites containing at least four repeat units of di-, tri-, tetra-, penta-and hexanucleotide motifs, or at least eight single nucleotide repeats, with 150 bp flanking sequence on each side were extracted. If flanking regions of different microsatellites were overlapping (i.e. when two microsatellites were separated by less than 300 bp flanking sequences), they were pooled into the same sequence to avoid redundancy. Thus, we obtained short sequences with one or more microsatellites in each and 150 bp flanking sequence on each extremity. These were used for further analyses and we refer to each such entity as a 'sequence'. In this way, 11 pools of sequences were obtained, one from each WGS data set. From each pool, 10 000 sequences were randomly selected for comparison of the flanking regions. [START_REF] Severson | Aedes aegypti genomics[END_REF] were extracted as described for WGS sequences.

Complete genomes

Sequence analyses

Sequences were analysed separately for each species and for each type of sequence origin (i.e. screening partial genomic libraries, GenBank entries, WGS and complete genome). In this way we treated 23 data sets from screenings, 415 data sets from GenBank entries, 11 data sets from WGS and two data sets from complete genomes. Pure microsatellite repeat regions (as defined above) were replaced by Ns in order to examine only the flanking regions in the successive analyses. Each data set was blasted against itself with e = 1E-40, thus all BLASTn results presented in this paper represent only intraspecies comparisons. Sequences were sorted into four categories based on the results of the BLASTn. They were classified as: (1) Unique if no similarities were observed to any other sequences of the same data set; (2) unBLASTable if sequence had no hits at all, not even with itself (if the flanking region is too short or repetitive, but not a perfect microsatellite, BLAST masks the region; thus the sequence becomes uninformative and does not align even with itself); or (3) Redundant, if the identity to another sequence was higher than 95% along the whole flanking sequence. All nonredundant sequences that produced a significant hit with at least one different sequence were classified as (4) Grouped. The proportion of grouped sequences was calculated after eliminating unBLASTable and redundant sequences (e.g. number of grouped sequences/(number of grouped sequences + number of unique sequences)). For the whole genome sequences, both the above procedure was applied as well as the same process without identifying 'redundant' sequences.

All these operations were conducted by Perl programs written by the first author (available upon request), MICROFAMILY [START_REF] Meglécz | MICROFAMILY (version 1): a computer program for detecting flanking region similarities among different microsatellite loci[END_REF], BLASTn-2.2.10 (ftp://ftp.ncbi.nih.gov/blast/executable/) and CLUSTALW1.83 [START_REF] Higgins | CLUSTAL V: improved software for multiple sequence alignment[END_REF].

Repetitive sequence banks

We scanned all the sequences of our data sets against databases of repetitive sequences of D. melanogaster and A. gambiae in order to detect the presence of interspersed repetitive elements. This analysis was performed using the program RepeatMasker2 (A.F.A. Smit and P. Green, unpublished data, http://repeatmasker.genome.washington.edu/RM/ webrepeatmaskerhelp.html) and its databases using default sensitivity parameters. The proportion of grouped vs. unique sequences that showed similarities to repetitive elements were compared by χ 2 tests conducted by the R stats package, version 2.0.1 (R Development Core Team, 2004). 

Comparison with baculovirus sequences

Figure 1 .

 1 Figure 1. The proportion of pure microsatellites for each repeat unit length based on WGS data. ‰ refers to the total length of microsatellites in kbp per one Mbp of analysed DNA.

Figure 2 .

 2 Figure 2. Proportion of grouped sequences estimated from different type of data. The first letters of the three-letter codes refer to the genus the second and the third are the first two letters of the species names.

  All microsatellites from the complete genome of D. melanogaster (NT_037436, NT_033779, NT_033778, NT_033777, NC_004354, NC_004353; 23 July 2005;[START_REF] Adams | The genome sequence of Drosophila melanogaster[END_REF] and A. gambiae (NC_004818,

Table 1 .

 1 Total length of the analysed genomic sequences and proportion of microsatellites observed for each repeat unit length for the complete genome and WGS data

		Total DNA (Mbp)	Mono-(‰)	Di-(‰)	Tri-(‰)	Tetra-(‰)	Penta-(‰)	Hexa-(‰)	All motifs (‰)
	Complete genome								
	Drosophila melanogaster	118.4	6.73	6.55	2.34	0.53	0.21	0.24	16.60
	Anopheles gambiae	223.2	6.63	11.57	4.16	0.60	0.09	0.10	23.15
	Whole Genome Shotgun								
	Aedes aegypti	1212.3	7.36	1.50	1.11	0.31	0.18	0.12	10.57
	Anopheles gambiae	313.8	6.11	10.58	3.68	0.58	0.12	0.13	21.19
	Apis mellifera	232.7	14.45	15.30	3.89	1.27	0.44	0.14	35.50
	Bombyx mori A	393.3	10.03	3.64	1.39	0.78	0.16	0.04	16.06
	Bombyx mori B	381.9	10.45	3.68	1.42	0.83	0.18	0.05	16.61
	Drosophila melanogaster	132.5	6.58	6.16	2.22	0.50	0.45	0.22	16.13
	Drosophila persimilis	175.5	4.65	9.52	3.24	0.91	0.65	0.95	19.93
	Drosophila pseudoobscura	147.4	4.97	10.33	3.64	1.02	0.73	0.91	21.59
	Drosophila sechelia	157.2	4.34	5.30	1.84	0.40	0.50	0.13	12.51
	Drosophila simulans	119.3	4.71	6.01	2.05	0.43	0.17	0.13	13.51
	Drosophila yakuba	156.8	5.05	5.80	2.02	0.42	0.21	0.33	13.83

Table 2 .

 2 Number of sequences in each category for each data set

	Species	Unique	Grouped	Redund.	UnBL.	Prop. grouped
	Complete genome					
	Anopheles gambiae*	175128	14893	6141		0.078
	Anopheles gambiae †	171483	24679	-		0.126
	Drosophila melanogaster*	90005	1607	1835		0.018
	Drosophila melanogaster †	89657	3790	-		0.041
	Whole Genome Shotgun					
	Aedes aegypti	7432	2291	265		0.236
	Anopheles gambiae*	8570	891	531		0.094
	Apis mellifera	9672	126	69		0.013
	Bombyx mori A*	6257	3541	192		0.361
	Bombyx mori B*	6376	3391	209		0.347
	Drosophila melanogaster*	9149	604	238		0.062
	Drosophila persimilis	8222	1166	568		0.124
	Drosophila pseudoobscura	9371	472	123		0.048
	Drosophila sechelia	8770	738	475		0.078
	Drosophila simulans	9568	287	122		0.029
	Drosophila yakuba	8669	992	313		0.103
	Screening (Lepidoptera)					
	Arctia caja	45	10	10		0.182
	Arhopala epimuta	35	16	6		0.314
	Busseola fusca	30	24	7		0.444
	Bombyx mori*	26	9	0		0.257
	Coenonympha hero	28	8	2		0.222
	Cydia pomonella	70	2	14		0.028
	Drupadia theda	58	4	11		0.065
	Euphydryas aurinia	51	22	13		0.301
	Ostrinia nubilalis	15	4	4		0.211
	Parnassius apollo	35	43	18		0.551
	Parnassius mnemosyne	2 6	0	2		0
	Parnassius smintheus	1 8	0	0		0
	Polyommatus belargus	8	4	6		0.333
	Plutella xylostella	83	33	8		0.284
	Reissita simonyi	28	4	3		0.125
	Zale galbanata	8	0	1		0
	Screening (non-Lepidoptera)					
	Aphis fabae	61	4	31		0.061
	Amphitmetus transversus	26	9	9		0.257
	Culex pipens	14	2	1		0.125
	Culex quinquefasciatus	16	2	0		0.111
	Monolepta vincta	30	2	2		0.062
	Plectrocnemia conspersa	26	6	27		0.188
	Polycentropus flavomaculatus	18	2	6		0.1

Unique = number of sequences with no similarities to any other sequences of the same data set; Grouped = number of sequences grouped into sequence families based on similarities in their flanking region; Redund. = number of redundant sequences; UnBL. = number of the sequences that did not produce any hit; Prop. Grouped = proportion of grouped sequences (Grouped/(Grouped + Unique)). *Species with more than one data set available are in bold characters.

†Without the identification of redundant sequences.

Table 3 .

 3 Number of available sequences (n) and their accession numbers for each species from screening partial genomic libraries

	Species	Order	n	Accession nos	References
	Arctia caja	Lepidoptera	86	AJ809344 -809406	Anderson et al. (2006)
				AJ829727 -829729	
				AJ867349 -867385	
	Arhopala epimuta	Lepidoptera	60	DQ380801-380855	Fauvelot (2005)
				AY974048 -974052	
	Busseola fusca	Lepidoptera	63	AY884595 -884602	Faure & Silvain (2005)
				DQ393596 -393652	
	Bombyx mori	Lepidoptera	37	DQ383475 -383511	Reddy et al. (1999)
				AY566203	
	Coenonympha hero	Lepidoptera	45	AF499094 -499100	Cassel (2002)
				AY396747	
				DQ399357-399393	
	Cydia pomonella	Lepidoptera	87	AY640590 -640613	Franck et al. (2005)
				DQ393893 -393955	
	Drupadia theda	Lepidoptera	81	DQ380724-380800	Fauvelot (2005)
				AY974054-974057	
	Euphydryas aurinia	Lepidoptera	89	AY491782-491857	Péténian et al. (2005)
	Ostrinia nubilalis	Lepidoptera	25	AY642971-642974	Coates et al. (2005)
				DQ375208-375226	
	Parnassius apollo	Lepidoptera	103	AY491858-491940	Péténian et al. (2005)
	Parnassius mnemosyne	Lepidoptera	31	DQ373968-373998	Meglécz & Solignac (1998)
	Parnassius smintheus	Lepidoptera	19	AF1333661-133364	Keyghobadi et al. (1999, 2002)
				AY048082-048096	
	Polyommatus bellargus	Lepidoptera	22	AF276048-276052	Harper et al. (2000, 2003)
				DQ396449-396465	
	Plutella xylostella	Lepidoptera	127	DQ649107-649234	Unpublished
	Reissita simonyi	Lepidoptera	35	AY250742-250755	Klutsch et al. (2003)
				DQ406603-406623	
	Zale galbanata	Lepidoptera	9	AF484811-484815	Caldas et al. (2002)
				DQ372958-372962	
	Aphis fabae	Hemiptera	99	AY506847-506854	D'Acier et al. (2004)
				DQ295044-295055	
				DQ381847-381924	
	Amphitmetus transversus	Coleoptera	44	AY430192-430197	Patt et al. (2004b)
				DQ419530-419568	
	Culex pipiens	Diptera	24	AY423738-423745	Keyghobadi et al. (2004); Smith et al. (2005)
				DQ388481-388496	
	Culex quinquefasciatus	Diptera	21	AY958073-958078	Keyghobadi et al. (2004); Smith et al. (2005)
				DQ388497-388511	
	Monolepta vincta	Coleoptera	34	AY575862-575868	Patt et al. (2004a)
				DQ415989-416015	
	Plectrocnemia conspersa	Trichoptera	66	AY634882-634887	Wilcock et al. (2001)
				EF068319-068376	
	Polycentropus flavomaculatus	Trichoptera	29	AJ429150-429164	Dawson & Wilcock (2002)
				AJ810098-810101	
				AJ810103-810104	
				AJ810106-810107	
				AJ810109-810110	
				AJ810113-810116	

  All Lepidoptera microsatellite sequence data sets were BLASTed against the 19 genomes of baculoviruses available in GenBank (downloaded 13 December 2005): NC_007383.1, Trichoplusia ni SNPV virus; NC_007151.1, Chrysodeixis chalcites nucleopolyhedrovirus; NC_005137.2, Choristoneura fumiferana defective nucleopolyhedrovirus; NC_004778.3, Choristoneura fumiferana MNPV; NC_004117.1, Mamestra configurata nucleopolyhedrovirus B; NC_003094.2, Helicoverpa armigera nuclear polyhedrosis virus; NC_004690.1 Adoxophyes honmai nucleopolyhedrovirus; NC_005068.1, Cryptophlebia leucotreta granulovirus; NC_001962.1, Bombyx mori nucleopolyhedrovirus; NC_002169.1, Spodoptera exigua nucleopolyhedrovirus; NC_005038.1, Adoxophyes orana granulovirus; NC_004156.1, Helothis zea virus 1; NC_004062.1, Phthorimaea operculella granulovirus; NC_003102.1, Spodoptera litura nucleopolyhedrovirus; NC_002816.1, Cydia pomonella granulovirus; NC_002654.1, Heliocoverpa armigera nucleopolyhedrovirus G4; NC_001982.1, Helicoverpa armigera stunt virus RNA 2; NC_001973.1, Lymantria dispar nucleopolyhedrovirus; NC_001623.1, Autographa californica nucleopolyhedrovirus.
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