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Invariant natural killer T (iNKT) cells constitute 
a distinctive population of mature T lymphocytes 
that coexpress a highly restricted TCR reper-
toire composed of a single invariant Vα14Jα18 
chain in mice and a Vα24Jα18 chain in hu-
mans, preferentially paired with limited TCR 
Vβ chains (1–4). This semiinvariant TCR re-
fl ects a positive selection by glycolipid antigens 
presented by the nonpolymorphic MHC class 
I–like molecule CD1d (5). iNKT cells are well 
known for their prompt production of cyto-
kines, such as IL-4, IFN-γ, TNF-α, IL-3, and 
GM-CSF, in response to the exogenous CD1d-
bound glycolipid α-galactosylceramide (α-Gal-
Cer), the most commonly used stimulant, which 
was originally isolated from a marine sponge 
(2, 4–8). Recently, more physiological ligands 

have also been identifi ed, i.e., the endoge nous 
lysosomal glycosphingolipid isoglobotrihexosyl-
ceramide (iGb3), exogenous glycosylceramides 
from the cell wall of Sphingomonas wittichii, 
and diacylglycerol antigens from pathogenic 
bacteria (9–12).

Because of their large cytokine spectrum, 
iNKT cells can interact with a variety of cells 
from the innate immune system and, conse-
quently, aff ect the outcome of many infl amma-
tory responses against pathogens (8, 13–15). In 
this line of evidence, it has been reported that 
they provide an early host protection against 
Streptococcus pneumonia by promoting the traf-
fi cking of neutrophils into airways (16). More-
over, we have previously demonstrated that a 
single injection of α-GalCer induces mobilization 
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Invariant natural killer T (iNKT) cells are an important source of both T helper type 1 (Th1) 

and Th2 cytokines, through which they can exert benefi cial, as well as deleterious, effects 

in a variety of infl ammatory diseases. This functional heterogeneity raises the question of 

how far phenotypically distinct subpopulations are responsible for such contrasting activi-

ties. In this study, we identify a particular set of iNKT cells that lack the NK1.1 marker 

(NK1.1neg) and secrete high amounts of interleukin (IL)-17 and low levels of interferon 

(IFN)-𝛄 and IL-4. NK1.1neg iNKT cells produce IL-17 upon synthetic (𝛂-galactosylceramide 

[𝛂-GalCer] or PBS-57), as well as natural (lipopolysaccharides or glycolipids derived from 

Sphingomonas wittichii and Borrelia burgdorferi), ligand stimulation. NK1.1neg iNKT cells 

are more frequent in the lung, which is consistent with a role in the natural immunity to 

inhaled antigens. Indeed, airway neutrophilia induced by 𝛂-GalCer or lipopolysaccharide 

instillation was signifi cantly reduced in iNKT-cell–defi cient J𝛂18−/− mice, which produced 

signifi cantly less IL-17 in their bronchoalveolar lavage fl uid than wild-type controls. 

 Furthermore, airway neutrophilia was abolished by a single treatment with neutralizing 

monoclonal antibody against IL-17 before 𝛂-GalCer administration. Collectively, our fi ndings 

reveal that NK1.1neg iNKT lymphocytes represent a new population of IL-17–producing cells 

that can contribute to neutrophil recruitment through preferential IL-17 secretion.
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of myeloid progenitors (CFU cells) and neutrophils from the 
bone marrow to the periphery (8). Yet, it is still not clear 
how iNKT cells promote neutrophil recruitment to infl am-
matory sites and what mediators are involved.

The newly described cytokine IL-17 is a likely candidate 
for this task because it has already been implicated in airway 
neutrophilia induced by endotoxin exposure (17, 18). Fur-
thermore, it has been documented that in IL-17 receptor–
defi cient mice, the host defense against lung bacterial infection 
is impaired (19).

Based in these data, we set out to examine whether stim-
ulated iNKT cells were able to produce IL-17, and whether 
this cytokine mediated the neutrophil recruitment. We found 
that a small subset of iNKT cells lacking the NK1.1 marker 
generated high amounts of IL-17, together with low IL-4 
and IFN-γ levels, in response to several iNKT cell ligands, 
namely, α-GalCer or its analogue PBS-57, as well as glyco-
lipids derived from S. wittichii and Borrelia burgdorferi. This 
NK1.1neg iNKT cell subset was more frequent among lung 
iNKT cells, which is in accordance with a potential contribu-
tion to the airway neutrophilia elicited by intranasal (i.n.) ex-
posure to α-GalCer, PBS-57, or LPS.

RESULTS AND D I S C U S S I O N 

𝛂-GalCer stimulation induces IL-17 production

iNKT cells are plausible candidates for IL-17 production 
(20–24), considering that their biological activities overlap 
with most of those ascribed to this proinfl ammatory  mediator. 
We tested this hypothesis using mononuclear cells (MNCs) 
isolated from the liver, where iNKT cells are more abundant 
than in other organs, and compared IL-17 production by 
total hepatic MNCs from wild-type C57BL/6 and iNKT 
cell-defi cient (Jα18−/−) mice in response to the iNKT cell–
specifi c antigen ligand α-GalCer. As shown in Fig. 1 A, 
IL-17 was easily detected in cell supernatants from wild-
type mice and accumulated during the 72-h incubation 
period. In contrast, it failed to be produced by MNCs from 
Jα18−/− or from CD1d−/− mice (Fig. 1 A), which are both 
iNKT-cell defi cient.

We further addressed the question of whether the capac-
ity to induce IL-17 production was shared by more physio-
logical ligands of iNKT cells, such as glycosphingolipids from 
Sphingomonas sp and diacylglycerol antigens from B. burgdorferi, 
which causes Lyme disease (11, 12). We found that liver cells 
from wild-type, but not from Jα18−/−, mice produced IL-17 
in response to the galacturonic acid–containing S. wittichii 
glycosphingolipid (GalA-GSL) and, to a lesser extent, to 
some synthetic variants of BbGLII from B. burgdorferi (Fig. 
1 C). Our results concord with previous studies identifying 
BbGLIIc as the best BbGLII variant for iNKT cell activation 
(12) and prove that ligands with more physiological relevance 
than α-GalCer can also induce IL-17 production.

It has been widely documented that iNKT cells produce 
large amounts of both IFN-γ and IL-4 in response to α-GalCer 
(1–4). Knowing that both cytokines are potent inhibitors of 
IL-17 production (22, 23), we examined how this activity 

was aff ected when endogenous IFN-γ and/or IL-4 produc-
tion was abolished in genetically modifi ed IFN-γ−/− mice 
and/or in the presence of neutralizing anti–IL-4 mAbs. The 
lack of either cytokine resulted in a clear increase of IL-17 
secretion after α-GalCer activation (Fig. 1 B), which was fur-
ther enhanced in the absence of both, indicating that IL-4 
and IFN-γ are produced endogenously and contribute simi-
larly to the inhibition.

The iNKT NK1.1neg subset is the major source of IL-17 after 

𝛂-GalCer stimulation

It is well established that α-GalCer acts specifi cally on iNKT 
cells (5). However, other cells could be secondarily stimulated 
and potentially produce IL-17 in our experimental model. To 
confi rm the direct involvement of iNKT cells in IL-17 pro-
duction, we gated the tetramer CD1d/α-GalCer+ population 

Figure 1.  iNKT cell ligands induce IL-17 production by liver 

MNCs. Liver MNCs from wild-type, Jα18−/−, and CD1d−/− mice were 

stimulated in vitro by α-GalCer (A) or synthetic B. burgdorferi glycolipids 

(BbGL-II [IIa–IIh]) or GalA-GSL (GSL) (C). (B) Liver MNCs from wild-type 

(WT) or IFN-γ−/− mice were stimulated with α-GalCer in the presence or 

absence of anti–IL-4 mAb. In all experiments, IL-17 levels were measured 

in supernatants. The addition of isotype controls did not modify IL-17 

production by α-GalCer–stimulated liver MNCs and no cytokine were 

detected without ligand stimulation (not depicted). Data represent the 

mean ± the SD of two to seven individual mice. *, P < 0.05; **, P < 0.01; 

***, P < 0.001.
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from hepatic MNCs and sorted them into two subsets accord-
ing to their NK1.1 expression (Fig. 2 A). Upon stimulation 
with α-GalCer, IL-17 was only detected in supernatants of 
NK1.1neg iNKT cells (Fig. 2 B), along with very low amounts 
of IL-4 and IFN-γ (Fig. 2, C and D). In contrast, the NK1.1pos 
subset produced high levels of the latter two cytokines (Fig. 2, 
C and D), but little IL-17 (Fig. 2 B), proving that it responded 
normally to α-GalCer stimulation. GalA-GSL and BbGLIIc 
ligands also induced IL-17 production by sorted NK1.1neg, but 
not NK1.1pos, iNKT cells (Fig. 2 E). NK1.1pos iNKT cells 
were activated by these ligands because they produced IL-4 
(Fig. 2 F). No detectable IL-17 production was observed when 
sorted T cells from Jα18−/− mice were stimulated with 
α-GalCer (Fig. 2 G). The conclusion that the NK1.1neg subset 
is the main source of IL-17 among iNKT cells was confi rmed 
by intracellular cytokine staining, as shown in Fig. 2 H.

With the exception of IL-17, which is produced by 
NK1.1neg iNKT cells, and IL-4, IFN-γ, and IL-3, which are 
produced more effi  ciently by NK1.1pos than NK1.1neg iNKT 
cells, the cytokine profi le generated by the two subsets in re-
sponse to α-GalCer was essentially the same, as assessed by a 
protein array detecting 32 diff erent cytokines (Fig. S1, available 
at http://www.jem.org/cgi/content/full/jem.20061551/DC1). 
Moreover, NK1.1neg and NK1.1pos iNKT cells were undis-
tinguishable by the expression of major iNKT cell markers, 
such as CD4, CD44, CD62L, CD69, Ly49A, and Ly49C, 
which occurred at similar levels (Fig. S2). Furthermore, both 
populations shared the Vβ bias that is typical for NK1.1pos 
iNKT cells (Fig. 2 I).

NK1.1neg and NK1.1pos iNKT cell subsets are 

functionally distinct

The preferential production of IL-17 by NK1.1neg iNKT 
cells raised the question of whether their NK1.1pos coun-
terparts were unable to produce the same amount because 
of the inhibition exerted by endogenous IL-4 and IFN-γ. 
To address this issue, we blocked both cytokines by the 
corresponding neutralizing mAbs before stimulation with 
α-GalCer. Even though approximately fourfold more 
IL-17 was produced by NK1.1pos cells in these conditions 
(Fig. 3 A), the concentrations remained eight times lower 
than those generated by the NK1.1neg subset (Fig. 3 B), 
indicating that the two populations are functionally 
distinct. Nonetheless, the IL-17 production by the NK1.1neg 
population remained sensitive to down-regulation by IL-4 
and IFN-γ, as assessed by the strong inhibitory eff ect of 
exogenous cytokines (Fig. 3 B).

Figure 2. NK1.1neg iNKT cells are the major iNKT subset producing 

IL-17. Liver MNCs from wild-type mice were stained with CD1d/α-GalCer 

tetramers, anti-TCRβ, and NK1.1 before sorting. (A) Representative FACS 

profi les obtained before (left) and after (right) sorting of CD1d/α-GalCer 

tetramers +NK1.1neg (NK1.1neg iNKT) and CD1d/α-GalCer tetramers 
+NK1.1pos (NK1.1pos iNKT) liver iNKT cells. (B–F) Sorted NK1.1neg iNKT 

and NK1.1pos iNKT liver MNCs were stimulated with α-GalCer (B–D) or 

synthetic B. burgdorferi glycolipids (BbGL-II [IIc]) or GalA-GSL (GSL; 

E and F) plus irradiated liver MNCs from Jα18−/− mice as APCs. Sorted 

CD4+CD62L+ T cells from Jα18−/− mice were stimulated with α-GalCer 

plus irradiated liver MNCs from Jα18−/− mice as APCs (G). 3 d later, IL-17 

(B, E, and G), IL-4 (C and F), and IFN-γ (D) were measured in the superna-

tants. No cytokine was detected in the absence of α-GalCer stimulation, 

in the absence of APCs or when APCs alone were stimulated with 

α-GalCer (not depicted). Data represent the mean ± the SD of two to three 

individual experiments. *, P < 0.05. (H) Intracellular IL-17 staining was 

performed after in vitro stimulation of liver MNCs and analyzed among 

gated CD1d/α-GalCer tetramers +NK1.1neg or CD1d/α-GalCer tetramers 
+NK1.1pos by fl ow cytometry. The percentage of IL-17+ and Ig control+ 

cells is indicated in each graph. (I) Representative FACS profi le of Vβ ex-

pression by gated NK1.1neg and NK1.1pos iNKT cells. Data (H and I) are rep-

resentative of three independent experiments. nd, not detected.
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Recent studies reported that TGF-β and IL-6 are re-
quired for driving the diff erentiation of naive CD4 T cells 
into Th17 cells (25), thus prompting us to verify whether 
NK1.1pos iNKT cells become more effi  cient IL-17 producers 
in these conditions. Fig. 3 C clearly shows that this is true for 
naive conventional T cells, but not for NK1.1pos iNKT cells, 
even though they retained their ability to produce both IL-4 
and IFN-γ (Fig. 3, D and E), which proves responsiveness to 
stimulation. In addition, we tested the eff ect of IL-23 on 
NK1.1pos iNKT cells, knowing that it enhances IL-17 pro-
duction by conventional T cells (26). Yet, once again, this 
treatment did not increase IL-17 secretion by NK1.1pos iNKT 
(Fig. 3 F), suggesting that NK1.1neg and NK1.1pos cells are, 
indeed, functionally distinct iNKT cell subsets.

Physiological relevance of NK1.1neg iNKT and IL-17 in early 

host defense to airborne antigens

Because of their constant exposure to foreign antigens, air-
ways and lungs depend on a competent immune response 
to avoid deleterious infl ammatory responses caused by inef-
fi cient clearance of pathogens. Having established that iNKT 
cells are potent IL-17 producers, we addressed the question 

of their participation in airway neutrophilia resulting from 
exposure to α-GalCer, PBS-57, which is another iNKT cell 
ligand (27), or LPS. We fi rst verifi ed that pulmonary iNKT 
cells could produce IL-17 upon activation, which was actually 
the case for MNCs from wild-type, but not from Jα18−/−, 
mice after exposure to these ligands (Fig. 4, A–C). We next 
sorted NKT cells from pulmonary MNCs and found once 
again that only the NK1.1neg subset responded to α-GalCer 
stimulation in terms of IL-17 production (Fig. 4 D). Remarkably, 
this subpopulation turned out to be much more frequent 
in the lung than in the liver (Fig. 2 A) or in the spleen 
(Fig. S3, available at http://www.jem.org/cgi/content/full/
jem.20061551/DC1) because it comprises up to 40% of pul-
monary iNKT cells in naive mice (Fig. 4 E).

Figure 3. Inhibition of IL-17 production by iNKT cells in the pres-

ence of IL-4 and IFN-𝛄. (A and B) Sorted liver NK1.1pos iNKT (A and F) 

and NK1.1neg iNKT (B) cells were cocultured with irradiated liver MNCs 

from Jα18−/− mice as APCs and stimulated with α-GalCer in the presence 

or absence of anti–IL-4 and anti–IFN-γ mAb (A) of IL-4 and IFN-γ (B), or 

IL-23 (F). (C–E) Sorted NK1.1pos iNKT and naive conventional T cells were 

cocultured with anti-CD3, anti-CD28, TGFβ, IL-1α, IL-6 and TNF-α. 3 d 

later, IL-17 (C), IL-4 (D), and IFN-γ (E) were measured in all supernatants. 

Data represent the mean ± the SD of two to three individual experi-

ments. *, P < 0.05. Figure 4. IL-17 production by lung MNCs stimulated with 𝛂-GaCer, 

PBS-57, or LPS requires iNKT cells. Total (A–C) or sorted (D) NK1.1pos 

iNKT and NK1.1neg iNKT cells from lung MNCs from wild-type (A–D) and 

Jα18−/− (A–C) mice were stimulated in vitro with α-GalCer (A–D), PBS-57 

(B), or LPS (C). 3 d later, supernatants were recovered and IL-17 was mea-

sured by ELISA. Data represent the mean ± the SEM of four individual 

mice. No cytokine was detected without stimulation (not depicted). 

*, P < 0.05. (E) Representative FACS profi les showing the higher percentage 

of NK1.1neg iNKT cells among gated TCRβ+ iNKT cells from lung.
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NK1.1neg iNKT cells display a tissue distribution and a 
capacity to produce IL-17 that is consistent with their poten-
tial role in pulmonary neutrophil recruitment. The physio-
logical relevance of our data was also supported by the 
observation that in iNKT cell–defi cient Jα18−/− mice, air-
way neutrophilia in response to LPS instillation was signifi -
cantly decreased relative to wild-type controls (Fig. 5 A). 
Because in vivo treatment with LPS activates several cell 
populations besides iNKT cells, we delivered α-GalCer or 
PBS-57 by the same i.n. route to target iNKT cells specifi -
cally. In these conditions, neutrophilia occurred only in the 
lung of wild-type, but not of Jα18−/−, mice (Fig. 5 B). Fur-
thermore, higher IL-17 levels were observed in bronchoal-
veolar lavage fl uid (BALF; Fig. 5 C), and the neutralization of 
endogenously produced IL-17 by anti–IL-17 mAb adminis-
tered before specifi c iNKT cell activation with α-GalCer 
 resulted in a net decrease in airway neutrophilia (Fig. 5 D), 
providing an additional argument for the role of IL-17 as an 
important mediator of neutrophil recruitment.

In conclusion, our study has revealed a new iNKT subset 
phenotypically characterized by the lack of the NK1.1 sur-
face marker. NK1.1neg iNKT cells are functionally distinct 

from their NK1.1pos counterpart because of their high pro-
duction of IL-17 and low secretion of IFN-γ and IL-4. The 
existence of distinctive subpopulations provides a possible ex-
planation for the contrasting eff ects exerted by iNKT cells. In 
support of this idea, a recent report demonstrates that liver 
CD4neg NKT cells are unique in their capacity to confer an 
antitumor response (28). Our fi ndings provide the fi rst evi-
dence for a particular NK1.1neg iNKT subset endowed with 
a preferential IL-17–producing profi le induced by various 
antigens that we propose to name iNKT17 cells. The fact 
that this phenotype is more abundant in the lung than in liver 
or spleen (Fig. S3) supports the notion that specialized iNKT 
cell subsets may reside in diff erent organs.

MATERIALS AND METHODS
Animals. 7–9-wk-old C57BL/6 mice were purchased from Janvier. 

Jα18−/−–, CD1d−/−–, and IFN-γ−/−–defi cient mice (29, 30) were bred in 

our own facilities. All mice were kept in well-controlled animal housing fa-

cilities and had free access to tap water and pellet food. Animal experiments 

were performed according to the French Institutional Committee.

Cell preparation. Lymphocytes were isolated from the liver, spleen, or 

lung, as previously described (15, 30).

FACS analysis and sorting of iNKT cells and conventional, naive 

T cells. MNCs were stained with anti-Vβ8.1/8.2 (clone MR5-2), anti-

Vβ8.3 (clone 1B3.3), anti-Vβ7 (clone TR310; mAb provided by S. Latour 

[Institut National de la Santé et de la Recherche Médicale, Paris France] and 

J.C. Bories [EA3963, Paris, France]), or anti-NK1.1 (clone PK136) mAb 

and CD1d/α-GalCer tetramers (plasmids containing CD1d and b2m genes 

were provided by M. Kronenberg, La Jolla Institute for Allergy and Immu-

nology, San Diego, CA). NK1.1pos iNKT (tetramerspos) and NK1.1neg iNKT 

(tetramerspos) cells were then sorted. In parallel, splenocytes were stained 

with anti-CD4 (clone RM4-5) and anti-CD62L (clone Mel14) antibodies 

before sorting of conventional naive CD4+CD62L+ T cells. All cells were 

sorted using a FACSVantage cell sorter (Becton Dickinson).

Cell culture. A fi nal concentration of 106 liver or lung MNCs or 2.5 × 105 

sorted iNKT cells per milliliter were cultured with or without irradiated 

liver MNCs (5 Gy) from Jα18−/− or CD1d−/− mice as APCs, at a ratio of 

1:2. Cells were cultured in RPMI 1640 medium containing antibiotics, 10% 

FCS, 4 mg/ml β-mercaptoethanol, and 200 mM glutamine (all from Invit-

rogen) incubated at 37°C with 100 ng/ml α-GalCer solution, 100 ng/ml 

PBS-57, 10 μg/ml BbGL compounds, or 1 μg/ml LPS. 10 μg/ml of block-

ing anti–IL-4 (clone 11B11) and/or 10 μg/ml anti–IFN-γ (clone R46A2), 

as well as 1 μg/ml of coated anti-CD3 and 10 μg/ml anti-CD28 antibodies, 

or their respective isotype controls, were used in some experiments. In some 

conditions, exogenous cytokines, such as 4 ng/ml mouse IL-4, 10 ng/ml 

IFN-γ, 1 ng/ml TGF-β, 40 ng/ml IL-1α, 5 ng/ml IL-6, 10 ng/ml IL-23, 

and 20 ng/ml TNF-α (all from R&D Systems), were also added. All culture 

supernatants were harvested and stored at −80°C.

Determination of cytokines. The levels of IL-17A (R&D Systems), IL-4, 

and IFN-γ were assessed by ELISA, as previously described (28, 29). Cyto-

kine protein array II was purchased from Ray Biotech and used for analyzing 

supernatants from α-GalCer–stimulated sorted NK1.1pos and NK1.1neg 

iNKT cells according to the manufacturer’s instructions.

Intracellular cytokine staining. Liver MNCs were stimulated for 4 h 

with 10−8 M PMA (Sigma-Aldrich), 10−6 M ionomycin, and 10 μg/ml 

brefeldin A. Cells were then washed and incubated with CD1d-α-GalCer 

tetramer-APC, anti-NK1.1 PerCP-Cy-5.5, and anti–TCRβ-FITC. For intra-

cellular staining, cells were fi xed with 4% PFA, washed, and permeabilized 

Figure 5. 𝛂-GalCer–, PBS-57–, or LPS-induced neutrophil recruit-

ment to airways implicates iNKT cells. (A–D) Wild-type and Jα18−/− 

mice received a single i.n. dose of 10 μg LPS (A), 2 μg PBS-57 (B), or 2 μg 

α-GalCer (B–D) 24 h before sacrifi ce. The number of neutrophils recruited 

in BALF (A and B) and the concentration of IL-17 (C) is represented. 

(D) Mice were treated with anti–IL-17 mAb 24 h before i.n. exposure to 

α-GalCer. The number of neutrophils recruited in BALF was determined 24 h 

later. The injection of control mAb did not modify neutrophil recruitment 

(not depicted). Data represent the mean ± the SEM of 5–10 individual 

mice. *, P < 0.05; **, P < 0.01.
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with 0.5% saponin (Sigma-Aldrich), and then further incubated with 

anti–IL-17-PE or isotype control (BD Biosciences). The cells were washed 

and analyzed on a FACSCalibur (Becton Dickinson) using CellQuest soft-

ware (BD Biosciences).

In vivo treatment. Mice received a single i.n. administration of 2 μg α-Gal-

Cer (Kirin Brewery Co., Ltd), 2 μg PBS-57 (Sigma-Aldrich), or 10 μg LPS 

(Sigma-Aldrich) 24 h before sacrifi ce. In some experiments, mice received 

100 μg of anti–IL-17 mAb (R&D Systems) or control Ig (Sigma-Aldrich) i.p. 

24 h before ligand administration. Diff erential cell counts were determined in 

BALF 24 h after ligand instillation, as previously described (30).

Statistical analysis. A nonparametric Mann-Whitney test was used to cal-

culate signifi cance levels for all measurements. P values <0.05 were consid-

ered statistically signifi cant.

Online supplemental material. Fig. S1 shows cytokine profi le of NK1.1pos 

and NK1.1neg liver iNKT cells stimulated with α-GalCer for 3 d. 32 diff erent 

cytokines were analyzed using mouse cytokine array II membranes. Fig. S2 

shows that NK1.1neg iNKT and NK1.1pos iNKT cells express similar levels 

of CD4, CD69, CD44, CD62L, Ly49A, and Ly49C markers. All antibodies 

used were obtained from Becton Dickinson. Fig. S3 shows the percentage 

of NK1.1pos iNKT and NK1.1neg iNKT cells among gated CD1d/α-GalCer 

tetramers +TCRβ+ iNKT splenocytes.
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