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en-Josas, France, 3 Laboratoire d’Epigénétique, CEA - Institut de Génomique, Centre National de Génotypage, Evry, France, 4 Laboratory for Medical Epigenetics,
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Abstract

Background: Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional
resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes
both vulnerable and adaptable.

Methods and Findings: We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of
imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control
diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for
male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were
observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these
changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs
within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential
methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially
methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in
chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic
on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation
only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for
these differences in DNA methylation.

Conclusions: A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome,
together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and
physiological functions potentially involved in adaptation and/or evolution. These findings highlight the importance of
studying both sexes in epidemiological protocols and dietary interventions.
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Introduction

There is no doubt that much of the increase in obesity can be

attributed to lifestyle factors, such as the excess consumption of

energy-rich foods, a decline in physical activity, inherited genetic and

other factors [1]. However the ‘Developmental Origins of Adult

Health and Disease’ (DOHaD) hypothesis provides an alternative

hypothesis [2]. Maternal nutrient deprivation has been well

characterised in this context. However little is known about the

potentially deleterious effects of overnutrition, such as a typical

hypercaloric Western diet rich in energy, saturated fats and sugar or a

high-fat diet, on the health of offspring, potentially resulting in a

metabolic syndrome phenotype in the offspring [3,4,5]. Obese and

diabetic women are less fertile than women of normal weight, tend to

consume more calories, particularly from fat [6], and have a higher

rate of adverse pregnancy outcomes [7] and a higher risk of impaired

breastfeeding [8]. The proportion of women of child-bearing age who

are overweight (25%, 30%, and 50% in France, Germany, and the

US, respectively) and do not eat an appropriate diet is significant and

increases. We therefore need to identify ways of providing advice,

evidence-based dietary recommendations, clinical treatments and

counselling for these women and their babies.

There is increasing evidence to suggest that the placenta is

involved in determining the risk of cardiovascular disease and

cancer (reviewed in [9,10,11,12,13,14 Thornburg, 2010 #6165]).

The placenta is the primary means of communication and nutrient

delivery to the foetus and is presumably involved in foetal

homeostasis. It is therefore an appropriate organ for studies

investigating how differences in maternal food consumption are

sensed by the developing offspring [15]. In mice, the mature

placenta (E14.5) consists of three principal layers: an outer layer

of trophoblast giant cells, a middle spongiotrophoblast layer

(sometimes called the junctional zone) and the innermost labyrinth

[16,17,18]. Placental function follows a carefully orchestrated

developmental cascade during gestation. Both the development

and ongoing functions of the placenta may be dynamically

regulated by environmental factors, including nutrient status and

tissue oxygenation [19]. The timing of certain adverse incidents

during development may therefore have a critical effect on the

subsequent vasculature of the placenta or on trophoblast and

placental function and foetal programming [20,21].

Despite the important role of the placental in supplying

nutrients to the foetus, very few studies have investigated the

effects of general nutritional status on blastocyst development and

implantation, subsequent placental development and the role of

the placenta in adaptive epigenetic processes in response to

nutritional stimuli [18,22,23,24,25,26,27,28,29,30,31,32,33]. Only

two groups have explored the impact on the global placental gene

response of changes in maternal diet [12,34,35]. The data

obtained suggest that placental development is highly adaptable

and that there are many possible types of compensation for

suboptimal nutrition [36].

The placenta has long been considered to be an asexual organ,

with most placental studies consistently pooling data for male and

female placentae into a single group [37]. However, predisposition

to metabolic disease differs between the sexes, with women more

likely to develop obesity and men, cardiovascular disease. This

sexual dimorphism may already exist during development. Indeed,

there is mounting evidence to suggest that the sex of the embryo,

through the embryo-derived tissues of the placenta, plays a

significant role in determining foetal size, nutrition, morbidity and

survival [37,38]. Such differences may appear early, even before the

gonads have developed, highlighting the important role of the sex

chromosomes [39,40] (reviewed in [41]). A molecular investigation

of the extent to which male and female conceptuses react to the

same maternal diet is therefore of interest. Only a handful of studies

have reported differences between the sexes, in terms of the

expression of individual genes or pathways, in male and female

human and rodent placentae. These studies also addressed the

impact of differences in the quality of the maternal diet on placental

gene expression, with a systematic investigation of the relationship

between diet and the expression of sexually dimorphic genes,

providing insight into the different sensitivities of male and female

foetuses to what the mother eats [12,35,37,42,43,44,45,46].

Genomic imprinting is an epigenetic phenomenon in which

specific mammalian genes are expressed preferentially from the

allele inherited either from the father or from the mother. More

than 80 genes are imprinted in humans and mice, and it is thought

that there may be 100 to 500 imprinted genes in the entire

genomes of these species [47,48]. The placenta is notable amongst

mammalian organs for its high and prolific expression of imprinted

genes. [49,50]. Most imprinted genes are grouped into clusters,

each of which may contain a mixture of maternally and paternally

expressed genes. These clusters are located at about 15 different

sites on the chromosomes of the human genome, at sites syntenic

to those in mice. These imprinted domains are co-ordinately

regulated by imprinting centres, consisting of differentially

methylated regions (DMRs) that are methylated either maternally

during oogenesis or paternally during spermatogenesis. DMRs act

via long-range mechanisms, such as antisense RNA interference,

and through methylation-sensitive boundary elements (CTCF)

[30,51,52,53]. A network of imprinted genes, including Zac1 and

H19, which controls embryonic growth and may be the key to a

common mechanism of gene regulation during mammalian

evolution, has recently been described [54,55]. Another important

feature associated with imprinted gene loci is the presence of

imprinted small non-coding RNAs clusters [56]. The complexity

of imprinted domain regulation may also render these domains

particularly susceptible to environmental changes of gene

expression through nutrition during the prenatal period, beginning

in the preimplantation embryo, and in the postnatal period

[25,57,58,59]. It has recently been shown that changes in postnatal

growth induced by a maternal low protein diet (LPD) at the time

of conception may be result partly from the sex-specific

programming of imprinted gene expression within the preimplan-

tation embryo itself [25]. The expression profile for imprinted

genes has been shown to be altered in placentae from rat foetuses

presenting IUGR [60], from infants with a low birth weight

[61,62]} or after superovulation in the midgestation placenta in

human pregnancies [63]. Imprinted genes are dosage-sensitive.

They encode proteins involved in common pathways and play

multiple roles in the placenta, including regulation of the growth

and transport capacity, thereby controlling the supply of nutrients

to the foetus [53,64,65]. They may also directly regulate the

growth rate of foetal tissues, thereby controlling foetal nutrient

demand. Moreover genetic and molecular studies of the develop-

ment and evolution of sexual dimorphism [66] have shown that

epigenetic marks at imprinted gene DMRs are established in a sex-

specific manner in bovine blastocysts, after somatic cloning [67]. It

remains unclear how epigenetic modifications fix the effects of

early environmental events, in a sex-specific manner, ensuring

sustained responses to transient stimuli and resulting in modified

gene expression patterns and phenotypes later in life [68].

There is convincing experimental evidence to suggest that

epigenetic marks act as a memory of exposure to inappropriate

environments in early life. These marks induce long-term changes

in gene expression, potentially leading to disease in later life.

Disturbed placental epigenetics has been demonstrated in cases of
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intrauterine growth retardation and small for gestational age, and

also appears to be involved in the pathogenesis of pre-eclampsia

and gestational trophoblastic disease (reviewed in [69]). Our aims

are to identify how and where epigenetic modifications fix the

effects of early environmental events (overnutrition associated with

a deleterious uterine environment) to ensure sustained responses to

transient stimuli, leading to the modification of gene expression

patterns and phenotypes later in life [41,68]. We investigated the

ways in which maternal diet might influence imprinted gene

expression and epigenetic DNA methylation at the whole-genome

level and in imprinted gene DMRs in male and female foetuses

during the last third of pregnancy, when morphological develop-

ment of the placenta is complete [70]. We investigated the impact

of a high-fat diet (HFD) during pregnancy on the expression of 20

imprinted genes. We observed sex- and diet-specific differential

expression of imprinted genes from four clusters, in the placentae

of E15.5 male and female offspring from the litters of pregnant

mice fed a HFD since the first day of gestation. Global DNA

methylation also showed sex- and diet-specific differences.

Results

Developmental studies
Pregnant females were weighed on the day of the vaginal plug and

at E15.5. Overall, HFD-fed mothers had a weight gain that was

higher than CD fed mothers (14.060.3g vs 10.360.3g, p = 0.0001),

but when the weight gain is reported in relation to the number of

fœtuses, there was no difference in weight gain between animals on

the two different diets (2.060.13g vs 1.860.13g, p = 0.2173). We

determined placental and foetal weights at E15.5 for 110 female and

81 male foetuses from mothers on the CD, and for 99 female and 103

male foetuses from mothers on the HFD (Table 1). No gross physical

deformities were observed in either the control or the high-fat group

and litter size was not affected by the HFD. The main effect of sex

was on placental weight, the placenta being heavier for male than for

female foetuses, regardless of diet (p,0.0001): 9.7% heavier for the

CD and 11.2% heavier for the HFD. Diet affected placental weight

regardless of the sex of the offspring (p,0.0001), with the HFD

resulting in a 6.4% heavier placenta for females and a 7.9% heavier

placenta for males. Embryo weight did not differ significantly

between the sexes and was unaffected by diet. Remarkably, the foetal

weight to placental weight ratio index (FPI), reflecting nutrient

transfer from the placenta to the foetuses, was affected by diet

(p = 0.0039), the HFD reducing the FPI, and was different according

to the sex (p,0.0001), females having a greater FPI than males.

Analysis of gene expression by RT-qPCR: effects of sex
and of diet

We used RT-qPCR to analyse the expression in the placenta of

20 genes located in seven imprinted clusters on five chromosomes.

We studied six pools of female foetuses and six pools of male

foetuses from mothers fed the CD, and seven pools of female

foetuses and seven pools of male foetuses from mothers fed the

HFD. Each pool comprised all the placentae from male or female

mice from the same litter (n = 3–7).

ANOVA indicated a main effect of sex on the expression of

three genes (Peg10, Slc22a1, Slc22a2; Table 2), males having a

weaker expression than females. Post hoc analysis (comparing two

groups) showed that the expression of four genes (Peg10, Asb4, Peg3

and Slc22a2) was significantly weaker in male offspring than in

female offspring and that the expression of Ascl2 was significantly

weaker in female offspring than in male offspring when the mother

was fed the CD (Table 2).

ANOVA indicated a main effect of diet on the expression of

three genes located within the same cluster on chromosome 17

(Slc22a1, Slc22a2, Slc22a3) and one gene on chromosome 12: Rtl1.

Slc22a2 expression was increased by the HFD, particularly in

males, whereas expression levels for Slc22a1 and Slc22a3 were

lower when the mother was fed the HFD. For Igf2r, we observed a

non-significant trend towards lower levels of expression when the

mother was fed the HFD (Table 2). No effect of diet was detected

for the expression of 16 transcripts (Gatm, Sgce, Peg10, Ppp1r9a,

Pon3, Pon2, Asb4, Peg3, Igf2P0, Igf2, H19, Ascl2, Gtl2, Dlk1, Dio3, and

Airn). No interaction between sex and diet was detected for any of

the genes analysed (Table 2).

Post-hoc analysis was carried out to check for a sexually

dimorphic response to diet in the two groups. Dlk1 and Dio3,

showed no global (ANOVA) differences, but the HFD significantly

decreased the expression of these genes in females only.

We used another statistical approach, supervised clustering

analysis, to confirm the discriminant value of the cluster of genes

on chromosome 17. The five genes for which RT-qPCR was

carried out that mapped to chromosome 17 (Slc22a1, Slc22a2,

Slc22a3, Igf2r, Airn) were studied with a linear discriminant

approach (Figure 1). Pooled samples from individuals were

projected on the first two discriminant axes, which accounted

for 99.6% of the inter-class variability (58.8% and 40.8%,

respectively). The compactness and distance of the inertia ellipses

confirm that the expression profiles for these five genes can be used

to discriminate between pool samples as a function of sex and diet,

although this discrimination seems to be better for animals in the

CD group than for those in the HFD group (Fig. 1A). As shown by

the correlation circle, Slc22a2 contributes mostly to sex discrim-

ination, being overexpressed in females and in the presence of a

HFD. By contrast, Slc22a1, Slc22a3 and Igf2r contribute mostly to

diet discrimination and are overexpressed in females and in the

presence of the CD. By contrast, Airn makes little contribution to

the discrimination axes (Fig. 1B).

Analysis of gene expression by in situ hybridization
The location of the mRNAs for Dio3, Rtl1, Dlk1, Slc22a1, Slc22a2,

and Slc22a3 was determined by in situ hybridisation, in four samples per

Table 1. Foetal and placental weights in the high-fat diet mouse model.

Female on CD
(n = 110)

Female on HFD
(n = 81)

Male on CD
(n = 99)

Male on HFD
(n = 103)

p, effect
of diet

p, effect
of sex

p, interaction
diet*sex

Foetal weight (g) 0.43960.006 0.44860.006 0.45360.007 0.45460.005 NS NS NS

Placental weight (g) 0.11660.002 0.12360.002 0.12760.002 0.13760.002 ,0.0001 ,0.0001 NS

Foetus/Placenta ratio 3.84660.058 3.71460.074 3.62960.070 3.37860.062 0.0039 ,0.0001 NS

Values are expressed as means 6 SEM and statistical significance is expressed as a p value from two-way ANOVA with post-hoc testing. NS: Not significant.
doi:10.1371/journal.pone.0014398.t001
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group. The expression of Slc22a1, Slc22a2 and Dio3 was too weak for

detection by this technique. In male and female placentae from animals

fed the CD, the expression of Slc22a3, Dlk1 and Rtl1 was detected in the

labyrinth zone, as previously reported (Figure 2). No difference

between males and females was found in the location of the signals in

CD and HFD samples. We investigated possible variation in the

proportions of the placental layers, using ISH images for Rtl1 to

measure the zone of expression (i.e. the labyrinth zone) and to compare

the area obtained with the total area of the placenta, for the four

different placentae of each group analysed. We detected no differences

(Figure 2D). These data strongly suggest that the variation in expression

of these imprinted genes is not due to differences in the relative size of

the labyrinth zone with respect to the other layers [71,72].

Sexual dimorphism in methylation of the DMR of the
Igf2r cluster in HFD mice

The RT-qPCR analysis detected two clusters (Dio3, Rtl1, Dlk1

on chromosome 12 and Slc22a1, Slc22a2, Slc22a3 on chromosome

17) displaying modified expression of genes involved in regulation

of homeostasis. We investigated the epigenetic mechanisms

potentially responsible for the changes in expression of these

genes, by exploring DMR methylation. Based on the results of the

supervised clustering analysis, showing greater discrimination with

the Igf2r cluster, we decided to analyse the methylation levels of the

DMR of this cluster. We used the bisulphite-sequencing method to

analyse a 490 bp fragment encompassing 30 CpG in the DMR

within intron 2 of the Igf2r gene [73] (Figure 3A). We studied DNA

from the placentae of 12 female and 9 male foetuses from mothers

fed the CD and 14 female and 15 male foetuses from mothers fed

the HFD, corresponding to three CD litters and four HFD litters.

We analysed 22 to 40 clones for each individual placenta, to

ensure that we had enough sequences for the reliable determina-

tion of % of methylation for each CpG.

The analysis of all 30 CpG, as a group, revealed no significant

difference between the sexes or between diets (Figure 3B). By

contrast, when we analysed each CpG separately, we found

significant differences in methylation between the sexes and

between the diets. Four clustered CpGs showed statistically

significant differences in DNA methylation when the group of

females placentae under the HFD were compared to the group of

Table 2. Placental mRNA levels for 17 candidate genes, determined by RT-qPCR, in the high-fat diet mouse model.

Gene
Chromo
some

Allele ex-
pression

Placenta-
specific
imprint

Female on CD
(n = 6 pools)

Female on HFD
(n = 7 pools)

Male on CD
(n = 6 pools)

Male on HFD
(n = 7 pools)

p, effect
of diet

p, effect
of sex

Gatm 2 M + 0.210±0.053 0.138±0.021 0.149±0.059 0.116±0.028 NS NS

Sgce 6 P 59.675±5.563 56.960±3.065 50.619±5.186 59.216±7.426 NS NS

Peg10 6 P 1.214±0.0711 1.172±0.092 0.892±0.1181 1.005±0.124 NS 0.0296

Ppp1r9a 6 M + 1.220±0.112 1.171±0.112 0.922±0.096 1.088±0.144 NS NS

Pon3 6 M + 0.458±0.087 0.517±0.101 0.613±0.110 0.419±0.045 NS NS

Pon2 6 M + 1.039±0.146 1.063±0.116 0.910±0.114 0.960±0.150 NS NS

Asb4 6 M 10.480±0.9322 8.315±1.042 7.629±0.6392 8.795±0.931 NS NS

Peg3 7 P 2.806±0.5493 1.822±0.281 1.579±0.0973 1.885±0.294 NS NS

Igf2P0 7 P 10.534±1.664 7.389±1.002 8.133±2.103 8.354±1.329 NS NS

Igf2 7 P 13.26±1.05 12.70±0.76 12.31±0.81 11.87±1.09 NS NS

H19 7 M 11.82±0.57 11.19±0.56 11.07±1.16 10.93±0.73 NS NS

Ascl2 7 M + 6.8±0.359 10.56±1.57 11.57±0.629 11.32±1.73 NS NS

Dlk1 12 P 0.857±0.1508 0.449±0.0628 0.496±0.124 0.360±0.055 NS NS

Gtl2/Meg3 12 M 33.750±4.553 30.796±4.770 26.952±5.139 32.124±6.670 NS NS

Rtl1 12 P 1.564±0.353 0.952±0.142 1.140±0.236 0.811±0.095 0.0405 NS

Dio3 12 P 2.385±0.3424 1.576±0.1764 1.641±0.536 1.224±0.147 NS NS

Igf2r 17 M 0.701±0.104 0.542±0.075 0.523±0.113 0.430±0.020 NS NS

Airn 17 P 8.622±0.830 10.030±1.454 11.665±1.108 10.513±1.375 NS NS

Slc22a1 17 M/P 0.042±0.0065 0.028±0.0035 0.029±0.003 0.022±0.002 0.0100 0.0146

Slc22a2 17 M + 0.528±0.0786 0.970±0.248 0.209±0.0766.7 0.573±0.0867 0.0182 0.0333

Slc22a3 17 M + 0.620±0.127 0.368±0.066 0.485±0.099 0.296±0.024 0.0148 NS

The 18S RNA was used as an endogenous control, to normalise the amount of template for each gene. Values are expressed as means 6 SEM and statistical significance
is expressed as a p value following two-way ANOVA with post-hoc testing. Superscripts indicate significant differences between groups with the same superscript in
post-hoc tests:
1: 0.0413;
2: 0.0303,
3: 0.0426,
4: 0.0499,
5: 0.0421,
6: 0.0179,
7: 0.0130,
8: 0.0222,
9: 0.0001.
NS: Not significant.
doi:10.1371/journal.pone.0014398.t002
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male placentae under a HFD (numbers 1, 2, 3, 4 with 17%, 16%,

17%, 16%, respectively) (Figure 3D). For CpG2, only females

showed a difference in methylation under the HFD (Figure 3C).

Five clustered CpGs (number 7, 8, 9, 10, 12 with 18%, 12%, 19%,

17%, 19%, respectively) and CpG20 (16%) showed statistically

significant differences in DNA methylation when the group of

females placentae under a CD were compared to the group of

male placentae under a CD (Figure 3E).

We checked for the presence of binding sites/responsive

elements for chromatin remodelling factors and transcription

factors (GenomatixH) in the Igf2r DMR (File S1). We identified

potential consensus binding sites for more than 15 different factors

in the region encompassing CpGs 1 to 4, which were differentially

methylated as a function of diet. Binding sites or responsive

elements for the following transcription factors/chromatin remod-

elling factors are compatible with the Igf2r DMR, from nucleotides

4 to 129: Pax4, Smarca3, Vbp, Pax6, Yy1, Oct1, Nrf2/Arp, Ppar/

Rxr, Egr3, Rxr, Mzf1, Sry/Sox9, Gcm1, Stat6, Nudr/Deaf-1.

Several of the corresponding genes, present in the Ensembl

database, have been shown to display significant levels of

expression in the placenta (Pax4, Smarca3, Nrf2/Arp, Ppar/Rxr,

Egr3, Rxr, Stat6), consistent with a potential role for these factors.

For the Dlk1, Rtl1, Dio3 and Gtl2 cluster, we used the more rapid

and quantitative pyrosequencing approach, which had already been

optimised in our laboratory. We identified statistically significant

differences in methylation for two CpGs, at positions 1 and 8 in the

DMR, with an effect of sex (CpG 1 and 8; p = 0.044 and p = 0.045)

and an effect of diet (CpG 1; p = 0.034). However, in contrast to the

Igf2r DMR, these differences were not large enough (less than 10%)

for us to be able to speculate about their role (data not shown).

Sexual dimorphism in global DNA methylation in mouse
tissues and placenta

Global DNA methylation was assessed by the LUMA

technique, in which the ratio of genomic DNA digested by the

methylation-sensitive enzyme HpaII to that digested with the

methylation-insensitive enzyme MspI indicates the level of cytosine

demethylation. Figure 4A shows the distribution of relative methy-

lation in five different tissues of six-month-old female mice fed the

CD. The tissues studied were the liver (females n = 41), skeletal

muscle (gastrocnemius) (females n = 10), kidney (females n = 20),

and testis (males n = 39), together with the placenta at E15.5 (15

males and 25 females, n = 40). As previously reported, we found

that the level of global DNA methylation in the placenta was

markedly different from that in other somatic tissues (p,0.001)

[74,75,76]. Differences between tissues were also observed in the

% methylation, except between the liver and testis and between

the muscle and kidney (Figure 4A). An effect of sex was observed

under the CD. Male placentae displayed lower levels (3.3%) of

methylation than female placentae (p = 0.035). Diet had an effect

on global % methylation, but only in females (2.4% p = 0.032).

Female placentae from mothers fed the HFD displayed lower

levels of methylation (Figure 4B). The levels of methylation of

SINE/B1 and LINE1, common repetitive elements, were assessed

by bisulphite-pyrosequencing. No differences were observed for

the entire collection of sequences explored (data not shown),

demonstrating that the difference in global methylation observed

was not due to these repetitive sequences [77].

Discussion

It has been suggested that changes in imprinted gene dosage in

the placentae may compromise the prenatal control of nutritional

resources [78]. However, the underlying mechanisms remain

unclear. This study is the first to demonstrate that the placentae of

male and female foetuses from mothers fed a HFD display changes

in both the expression of selected imprinted genes from different

clusters, and in genome-wide and CpG-specific DNA methylation,

with these changes differing between the sexes.

Experimental and epidemiological studies in humans and

animal models have demonstrated that predisposition to impaired

Figure 1. Linear discriminant supervised clustering analysis. The five genes mapping to chromosome 17 for which RT-qPCR was carried out
(Slc22a1, Slc22a2, Slc22a3, Igf2r, Air) were studied by a linear discriminant approach. (A) Pooled results from individuals were projected onto the first two
discriminant axes, which accounted for 99.6% of the inter-class variability. Inertia ellipses represent intra-class variability for each group. Discrimination power
increases with the compactness and distance of the ellipses. (B) The correlation circle indicates the contribution of the five genes to the discriminant axes.
doi:10.1371/journal.pone.0014398.g001
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glucose tolerance, blood pressure and coronary heart disease, are

associated with either low or high FPI [9,10,11,12,13,14,

23,79,80,81]. We show here that FPI is sexually dimorphic.

Female mice have a higher FPI than male mice. Moreover, we

show, for a large number of animals (n = 81 to 110 per group), that

feeding the mother a HFD for the first 15 days of gestation only is

sufficient to increase placental weight significantly, for both males

and females. However, this treatment had no effect on fetal

weight, for the foetuses of either sex. Consequently, FPI was also

affected by diet, with the HFD reducing FPI in both males and

females. It would therefore be interesting to investigate the

changes in the respective size of the placenta and foetus at term

following the administration of a HFD to pregnant mice [82].

Indeed the FPI changes should not be overestimated since we are

looking at E15.5, not at term as in published human data.

Altogether the impaired nutrient transfer from the placenta to the

foetus, as reflected by the sex- and diet-specific alterations of the

FPI, is consistent with the role of placenta in utero in sexual

dimorphic programming and subsequent impaired responses in

adulthood [81].

Sexual dimorphism for imprinted genes
Only a few studies have reported the differential expression of

individual gene products in human male and female placentae

[42,43,44,45]. Five of the 20 genes analysed in this study displayed

sexual dimorphism when the mother was fed the CD: Peg10, Asb4,

Peg3, Slc22a2, Ascl2. This proportion of sexually dimorphic genes is

similar to that reported for other tissues or developmental stages

[40,41].

In a similar study performed at E12.5, in mice fed a low-fat diet,

a very high-fat diet or an intermediate chow diet, Mao et al.

observed that female placentae displayed more striking changes in

gene expression with diet than male placentae [12]. This greater

reactivity of females was also observed in total embryonic cells

taken from mice at E10.5, before sexual differentiation [39].

Remarkably, these cells responded differently to the applied

dietary stressors, even before the production of foetal sex

hormones. In our study, carried out at E15.5, six genes (Slc22a1,

Slc22a2, Slc22a3, Rtl1, Dlk1 and Dio3) displayed changes in

expression pattern when the mother was fed the HFD. We

observed sex-specific sensitivity to the HFD, with effects limited to

or more pronounced in the female placenta for Dlk1, Dio3, Slc22a1

or to the male placenta for Slc22a2 only. Our results are therefore

consistent with previous findings that female placentae display

more striking changes in gene expression in response to maternal

diet than male placentae. As suggested by Penaloza et al., this

difference in cell behaviour and sensitivity appears to be driven by

the genetic sex of the cells from the outset, with the effects of

factors such as hormones subsequently being superimposed on this

difference [39]. Concerning the chromosome 17 cluster, (Slc22a2,

Slc22a1 and Slc22a3), the sex steroid hormone oestrogen down-

regulates renal organic cation transport in animals and may

contribute to sex-related differences in xenobiotic accumulation

and excretion [83,84,85]. However, caution is required when

extrapolating transport-related sex differences between species and

organs. These data on sexual dimorphism in organic cation

transport are nonetheless potentially interesting when trying to

understand the differences between the sexes in terms of the

response in the placenta. For the chromosome 12 cluster, an effect

of diet was observed for the paternally expressed Dlk1, Rtl1 and

Dio3 genes, but not for the maternally expressed Gtl2/meg3 genes,

with female placentae again more sensitive than male placentae to

the effects of the HFD.

One potential limitation of our study is that the placenta

contains mixed cell populations. Changes in the proportions of the

different cell populations could generate the differences observed,

independently of changes in DNA methylation or gene expression

in a single cell population [86]. Most expression studies in mice

have analysed whole placentae [12,34,87,88], but this analysis

should ideally be based on an isolated cell population, making it

possible to draw direct conclusions [89,90]. We addressed this

concern, by performing in situ hybridisation to visualise the

expression of six genes that were differentially expressed and

belonged to two clusters of dysregulated imprinted genes, on

chromosomes 12 and 17. We detected no difference in the location

of the signals or in the size of the zone of expression, for Rtl1, Dlk1

and Slc22a3, between the male and female offspring of mice fed

the CD and HFD. We cannot exclude the possibility of ectopic

Figure 2. Analysis of gene expression by in situ hybridization.
Detection by in situ hybridisation of Slc22a3 (A), Dlk1 (B) and Rtl1 (C) in
of the placentae of female (F) or male (M) mouse embryos from
mothers fed a control (CD) or high fat (HFD) diet. No difference in the
distribution of these RNAs was observed, all of which were restricted to
the labyrinth layer. The histograms (D) show the proportion of the
labyrinth, this area being similar between the four groups.
doi:10.1371/journal.pone.0014398.g002
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expression below the level of detection of this technique, but our

data strongly suggest that the variation in expression of these

genes, which are principally expressed in the labyrinth zone, is not

due to a gross enlargement or reduction of the labyrinth zone with

respect to the other layers.

Function of the dysregulated imprinted genes
The body has various broad-specificity transporters for the

elimination of environmental toxins and metabolic waste products.

The non-neuronal monoamine transporters are polyspecific

organic cation transporters (Oct1, 2, and 3 or Slc22a1, 2, and 3).

They control signal transmission by removing released transmit-

ters, such as dopamine, noradrenaline, adrenaline, 5-hydroxy-

tryptamine and histamine, from the extracellular space [91,92].

Monoamine concentrations are normally kept low in the placenta.

In humans, pre-eclampsia, which is characterized by high blood

pressure and proteinuria, is one of the most common causes of

perinatal and maternal morbidity and mortality. Monoamine

transporters may protect against this condition by preventing

vasoconstriction in the placental vascular bed, thereby ensuring

stable blood flow to the foetus. In pre-eclampsia, hyperactivity of

the sympathetic nervous system and high levels of circulating

vasoactive substances, such as monoamines, have been observed.

SLC22A3 expression levels have been shown to be significantly

lower in pre-eclamptic placentae than in normal placentae [93].

Defective expression of the genes encoding these monoamine

transporters might account for the high concentrations of

monoamines in patients with pre-eclampsia. The low level of

expression of Slc22a3 reported here may have led to similar

disturbances in vasoconstriction and nutrient transport, account-

ing for the lower FPI.

The Dio3, Rtl1, Dlk1 genes of the other cluster were expressed

less strongly under a HFD than under a control diet. Interestingly,

the maternally expressed Gtl2 gene was not affected, precluding

the involvment of this gene in the changes in gene expression of

the paternally expressed Dio3, Rtl1, and Dlk1 genes [94]. The Rtl1

gene (retrotransposon-like 1), plays a determinant role in the foeto-

maternal interface of mouse placenta [95]. Rtl1 is essential for the

maintenance of foetal capillaries, and both its loss and its

overproduction cause late-foetal or neonatal death in mice [72].

There is evidence to suggest that genomic imprinting and gene

expression at the Dlk1/Dio3 imprinted domain may play a role in

controlling adipocyte proliferation and differentiation [96,97].

However, the roles of Dio3 and Dlk1 in placenta remain unknown.

Figure 3. Schematic diagram of the Igf2r region on mouse chromosome 17. (A), Box plot representing global methylation (B), specific CpG2
(C), sexual dimorphism under HFD (D), and sexual dimorphism under CD (E) obtained by bisulphite sequencing analysis of the DMR Igf2r
encompassing 30 CpGs. The 30 CpGs are underlined. CpGs displaying sex-specific methylation under HFD and CD are shown in bold. Differences
between methylation profiles were analysed by Mann-Whitney tests (p,0.05). F = female, M = male.
doi:10.1371/journal.pone.0014398.g003
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Thus, the decrease in the expression of Slc22a3 and Rtl1 under a

HFD may contribute to changes in vascular function, resulting in

the misregulation of nutrient transfer to the foetus. This led us to

explore the DMR of these two clusters.

Differential CpG methylation of the Igf2r DMR
The transporter genes Slc22a2 and Slc22a3 are imprinted

specifically in mouse placenta [32]. The promoters of the

repressed paternal alleles of these genes do not display DNA

methylation [98]. The Igf2r imprint control element (ICE), which

is a DMR containing 30 CpG, plays a crucial role in regulating

many imprinted genes in this cluster. We therefore investigated

whether adaptation of the nutrient supply to foetal demand in

pregnant mice fed a HFD involved the ICE/DMR regulating

these important placental transporter systems. We decided to

investigate methylation of the DMR, despite previous reports that

the difference in methylation is associated with regulation of

monoallelic expression, rather than with expression levels per se.

In an analysis of all 30 CpG of the ICE together, we found no

statistically significant difference between the sexes or the two

diets. However, we observed sex- and diet-specific differential

methylation of individual CpGs within two subregions of the

DMR. Significantly different levels of methylation between the

sexes were found for the first four CpGs in foetuses from mothers

fed the HFD. Similarly, different levels of methylation between the

sexes were found for the next five CpG and for CpG 20, in

foetuses from mothers fed the CD. CpG 2 was the only CpG

displaying both dietary and sexual dimorphism.

Bioinformatic analysis suggested that the CpGs displaying sex-

and diet-specific differential methylation in the DMR might lie

within recognition elements or binding sites for transcription

factors or factors involved in chromatin remodelling, or within a

higher-order chromatin architecture: Pax4, Smarca3, Nrf2/Arp,

Ppar/Rxr, Egr3, Rxr, Stat6. PPAR-alpha and -gamma agonists

increase Slc22a1 gene transcription, thereby increasing the levels of

the corresponding protein and increasing cellular organic cation

uptake [99]. These data suggest that PPAR/RXR is one of the

most likely candidate transcription factors, as the HFD contains

well-known lipid ligands for these nuclear receptors. It is also

tempting to speculate that the factors binding to this subregion

may also interact with each other in a fatty acid-controlled

transcriptional process. The helicase-like transcription factor

(HLTF/SMARCA3) belongs to the SWI/SNF family of proteins.

These proteins remodel chromatin in various cellular processes.

Another member of the SMARC (SWI/SNF-related matrix-

associated actin-dependent regulator of chromatin) family has

recently been shown to function as a coactivator of another

member of the nuclear receptor family [100]. However, it must be

kept in mind that high-fat also correlates with low carbohydrate in

the present diet, thus potentially influencing pathways involved in

growth such as the insulin- and related signaling pathways.

It remains unclear whether and how these altered methylation

profiles directly affect the expression profiles of the imprinted

genes Slc22a2, and Slc22a3 and that of the non-imprinted Slc22a1

gene. The silencing of the paternal allele of the three imprinted

genes (Igf2r, Slc22a2 and Slc22a3) requires the expression, in cis, of

Airn, which overlaps with the promoter of one of these genes (Igf2r)

[101]. We observed no change in Airn and Igf2r expression, a

decrease in Slc22a1 and Slc22a3 expression and an increase in

Slc22a2 expression in the placenta in mice fed the HFD. [98]. Sex-

and diet-specific changes in the methylation of groups of CpGs in

the DMR may alter the influence of Airn RNA in different ways for

the three genes (Igf2r, Slc22a2 and Slc22a3). The promoters of these

genes display no differential DNA methylation, therefore, histone

modifications, which are likely to underlie the regulation of

placental imprinted genes, may constitute an avenue of investiga-

tion. However, we were unable to study such modifications due to

the mode of placenta sampling in this study.

For the Dlk1, Rtl1, Dio3 and Gtl2 cluster, in contrast to the Igf2r

DMR, the differences in DNA methylation were modest.

However, as shown very recently by Kagami et al, there is an

additional functional DMR in this cluster. The IG-DMR, the

DMR studied in the present report, and the Gtl2-DMR function

as imprinting control centers in the placenta and the body,

respectively [102].

Diet-induced changes in DNA methylation in placenta
The maternal HFD leads to a global hypomethylation in

placenta compared to the maternal CD. This hypomethylation is

statistically significant in females only. Could this hypomethylation

Figure 4. Box plot representing global methylation of the genome. Results obtained by LUMA, in five different tissues from six-month-old
mice on the CD (liver, muscle, kidney, testis and placenta) at E15.5 (A), and from the placentae of female and male foetuses from mothers fed the CD
or the HFD (B). Differences between methylation profiles were analysed by Mann-Whitney tests (p,0.05). Completely unmethylated DNA would have
an HpaII/MspI ratio of 1.0, whereas 100% methylated DNA would have an HpaII/MspI ratio close to zero [121].
doi:10.1371/journal.pone.0014398.g004
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be due to a reduction in methyl donor supply in the diet? To our

knowledge, according to reports on food intake of high energy

diets during gestation in rodents, the mothers either adjust their

food intake in terms of calories regardless of the diet [103] or

increase the caloric intake [104,105]. In the case of the HFD and

CD used in the present study (Research diets HFD D12492 and

CD D12450B) the supply in vitamines is the same (40 kcal for

4057 kcal diet). Therefore, although the average daily food intake

was not measured we can assume that the supply in vitamins B9

and B12 was not decreased in the HFD animals. Thus it is difficult

to relate the hypomethylation observed to either an identical or

increased level of vitamin supply. A global hypomethylation was

also observed in brains of offspring of HF fed mice mothers [106].

However it remains difficult to speculate about the potential role of

the highfat/low carbohydrate composition of the diet on the one-

carbon metabolism, in the absence of relevant mechanisms to

account for a potential link.

Sexual dimorphism and global methylation
To our knowledge, this is the first report of sexual dimorphism for

DNA methylation in the placenta under a control diet. This

dimorphism may be due to the presence of an inactive X (Xi)

chromosome in the female. In mouse extraembryonnic tissues, X

chromosome inactivation is imprinted to occur selectively on the

paternal X chromosome [107]. However, Weber et al. overturned

previous views by showing that Xi was hypermethylated at only a

subset of gene-rich regions and, unexpectedly, displayed overall

hypomethylation with respect to its active counterpart [108].

Hellman et al. have shown that the active X (Xa) chromosome in

females has levels of allele-specific methylation twice those of Xi. A

bipartite methylation-demethylation program results in Xa-specific

hypomethylation at gene promoters and hypermethylation at gene

bodies in both male and female active Xa chromosomes [109].

We investigated this difference in methylation further, by

assessing the methylation levels of the two major repetitive

elements containing most of the genomic 5-methylcytosine bases:

LINE-1 (long interspersed nucleotide element-1) and SINE-1

(short interspersed nucleotide element-1), represented by human

Alu elements and the homologous mouse B1 elements. The

methylation levels of both LINE-1 and SINE-1 have been

reported to be a good indicator of cellular 5-methylcytosine level

(i.e., global DNA methylation level) [110,111]. In our placenta

model, no difference in the level of LINE-1 or B1 repetitive

element methylation was observed between the sexes or between

the diets, CD and HFD. These differences are therefore probably

located in non-genic regions, gene bodies and centromeric

heterochromatin.

It has been suggested that the inherently lower level of

methylation in the placenta than in other tissues [74,75,76] may

render this organ highly susceptible to the effects of environmental

factors, altering epigenetic patterns [32,36,112,113,114]. Consis-

tent with this hypothesis, there have been several reports of global

changes in DNA methylation in the placenta associated with

IUGR, pre-eclampsia or undernutrition in the mother [36,112,

113,115]. Surprisingly, in this study, only females were sensitive to

the HFD, resulting in undermethylation. These observations in

mouse support the suggestion put forward by V. Clifton that

sexually dimorphic differences in the growth and survival of the

foetus are mediated by the sex-specific function of the human

placenta [37,38].

Conclusion
Evidence in favour of non-genetic transgenerational inheritance

is accumulating, in some cases with conspicuous, marked sexual

dimorphism both for the mode of transmission and for the

resulting effects [41]. Finely tuned aspects of the developmental

programme, specific to one sex, may be more sensitive to specific

environmental challenges, particularly during developmental

programming and gametogenesis, but also throughout the

individual’s life, under the influence of sex steroid hormones.

These findings highlight the importance of studying both sexes in

epidemiological protocols or dietary interventions, both in humans

and in experimental animal models. They pave the way to

explorations concerning the possible targeting, by fatty acids and

other nutrients, of conspicuous regions in the genome harbouring

binding sites for the recruitment of diet- and tissue-specific

chromatin remodelling complexes.

Materials and Methods

Ethics statement
All experiments on animals were conducted in accordance with

the European Communities Council Directive of 1986 (86/609/

EEC). Our laboratory has accreditation from the French Ministry

of Agriculture for experimentation with mice (No. A 75-15-02).

Approval of full details of the study by an ethics committee is not

required under French laws.

Experimental design and nutritional treatments
Four-week-old DBA/2 male and C57BL/6J female mice were

obtained from HarlanH and housed in groups until mating. All

animals were maintained under controlled light (12 h light/12 h

dark cycle, light on at 07:00) and temperature (2262uC) conditions.

The mice were allowed access to water and the control diet ad

libitum. After two weeks of adaptation, DBA/2 male mice were

mated with C57BL/6J female mice in the evening. The following

day (day 0.5), if a vaginal plug was observed, females were fed

either a HFD or a CD ad libitum for 15 days. The pregnant females

were killed at E15.5, and placentas and foetuses were dried,

weighed and frozen in liquid nitrogen before storage at 280uC.

Diets were supplied in pellet form by Research Diets (New

Brunswick, USA; CD: D12450B, HFD: D12492). For the CD,

10% of calories were in the form of fat, 20% were in the form of

protein and 70% were in the form of carbohydrates. For the HFD,

60% of calories were in the form of fat, 20% were in the form of

protein and 20% were in the form of carbohydrates [116].

DNA was extracted from the leg of mouse foetuses, using the

DNeasy Tissue Kit (Qiagen). The sex of the foetus was determined

by PCR of the SRY gene, as previously described [117].

RNA extraction
Total RNA was extracted from rodent placenta with the

RNeasy Mini kitH (Qiagen S.A., Courtaboeuf, France) and its

concentration was determinated by measuring absorbance at

260 nm. RNA quality was assessed by agarose gel electrophoresis.

Reverse transcription-quantitative PCR (RT-qPCR)
We determined mRNA levels for the genes of interest by reverse

transcription followed by quantitative PCR (RT-qPCR). First-

strand cDNAs were synthesised from 2(mg of total RNA in the

presence of 50 ng random hexamers (GE Healthcare, Saclay,

France), 400 nM dNTPs and 200 U SuperscriptTM II RNase H

Reverse Transcriptase (Invitrogen, Cergy-Pontoise, France),

according to the manufacturer’s instructions. We checked that

there was no DNA contamination by amplifying the 101 bp of the

Ucp2 gene, using forward 59-TGTCGAAGCCTACAAGAC-

39and reverse 59-CAGCACAGTTGACAATGG-39primers.
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RT-qPCR analyses were carried out with the Absolute Blue

qPCR SYBr Green Rox Mix (Thermo Scientific, Courtaboeuf,

France), using an ABI PRISM 7300 apparatus, according to the

manufacturer’s instructions. Each reaction was carried out in a

final volume of 25ml, in triplicate. Standard curves were generated

for each run from 10-fold dilutions of cDNAs, to determine primer

efficiency. Controls lacking reverse transcriptase were carried out

alongside quantitative RT-qPCR for experimental samples, with

SYBr Green. The controls consistently yielded no amplification

below 40 cycles, using the above protocol. The 18S rRNA control

was used to normalise the amount of template for each sample.

Data were analysed with Microsoft Excel. The list of primers and

real-time PCR assay conditions are available upon request.

Bisulphite-cloning-sequencing methylation assay
DNA was isolated from mouse placentae using the DNeasy

Tissue Kit (Qiagen). The isolated DNA was then treated with

sodium bisulphite, using the EZ DNA Methylation Gold Kit

(Proteigene, Saint-Marcel, France). The bisulphite-converted

DNA was amplified by semi-nested PCR, using the primers Igf2r

13B-4, Igf2r 13B-2 and Igf2r 13B-5, as previously described [73].

The PCR products were purified with the Qiaquick PCR

purification kit (Qiagen, Courtaboeuf, France), cloned with the

PMOSblue Blunt Ended Cloning Kit (GE Healthcare, Saclay,

France) and sequenced. The bisulphite treatment was more than

98% efficient. Quality control was carried out and methylation

profiles were analysed with BiQ Analyzer software [118].

Bisulphite quantitative pyrosequencing methylation
assay

We treated 1 mg of genomic DNA with sodium bisulphite, using

EpiTectH 96 bisulphite (Qiagen, Courtaboeuf, France) according

to the manufacturer’s instructions. Quantitative DNA methylation

analysis of the bisulphite-treated DNA was performed by

pyrosequencing or, in the case of several sequencing primers, by

serial pyrosequencing [119]. Regions of interest were amplified

from 25 ng of bisulphite-treated mouse genomic DNA, with 5

pmol of forward and reverse primers, one of which was

biotinylated. Assays for the Dlk1-Rtl-Dio3-Gtl2 cluster were

performed as previously described [120].

DMR assays for the B1 repeat, as a surrogate for global DNA

methylation changes, were performed as previously described

[111] (Table 3). Primers for the LINE-1 element were designed to

amplify nucleotides 64-326 of the consensus sequence (GenBank:

D84391.1). Standard reaction conditions were HotStar Taq

buffer, 1.6 mM MgCl2, 100 mM dNTPs and 2U HotStar Taq

polymerase (Qiagen, Courtaboeuf, France) in a 25 ml volume. The

PCR program consisted of 50 cycles of 30 s at 95uC, 30 s at the

annealing temperature and 20 s at 72uC. Purification of the PCR

product with streptavidin Sepharose HP beads (GE Healthcare,

Uppsala, Sweden) and hybridization of the biotinylated PCR

products and the sequencing primer were conducted as described

in the PSQ96 sample preparation guide, using a vacuum filtration

sample transfer device (Pyrosequencing AB, Uppsala, Sweden).

Sequencing was performed on a PSQ 96MA system with the

PyroGold SQA reagent kit, according to the manufacturer’s

instructions, and the results were analyzed with Q-CpG software

V.1.0.9 (Pyrosequencing AB) [119].

Luminometric methylation assay (LUMA)
This assay was performed as previously described [121]. Briefly,

genomic DNA (200 to 500 ng) was cleaved with HpaII+EcoRI, and

MspI+EcoRI in two separate reactions in 96-well pyrosequencing

plates. Digestion reactions were run in the PSQ96 MA system

(Biotage AB). Peak heights were calculated with PSQ96 MA

software. The HpaII/EcoRI and MspI/EcoRI ratios were calculated

as (dGTP+dCTP)/dATP for the corresponding reactions. DNA

methylation was assessed by calculating the HpaII/MspI ratio or,

more precisely, by calculating the (HpaII/EcoRI)/(MspI/EcoRI)

ratio.

Statistical analysis
All data are expressed as means 6 standard error (SEM). The

effects of sex and diet on expression of the 18 genes tested were

assessed by two-way ANOVA with post hoc testing (p,0.05),

carried out with Statview (SAS Institute, Inc., Cary, NC).

Supervised clustering analysis, using a linear discriminant

approach, was performed with the ade4 package (http://pbil.

univ-lyon1.fr/ADE-4) in the R statistical environment (http://

www.r-project.org/). Differences between methylation profiles

were analysed by carrying out Mann-Whitney tests with Statview.

In situ hybridisation
Sections (12 mm thick) of some control and HFD placentae

(n = 4) were mounted on gelatin-coated slides, dried and kept at

280uC. In situ hybridisation was performed as previously

described [122]. The Dlk1 probe was kindly provided by Dr. A.

Ferguson-Smith (Cambridge, UK) and the Slc22a3 probe was

provided by Dr. D. Barlow (Vienna, Austria). Dio3, Rtl1, Slc22a1

and Slc22a2 probes were obtained by PCR on placental cDNA

with the following primers: Dio3-F ATTCACCCTATGT-

CATCCCCCAGC and Dio3-R TCCTGAGAGCAAGCCAAA-

AACG at 54uC, Rtl1-F GCCCAGGAACACTATGTGGAAC-

TC and Rtl1-R AAGTCTCATCATCTGCCTCCCTCG at

Table 3. Bisulphite pyrosequencing analysis of repeated B1 and LINE sequences.

Regions PCR primers
Product
length

Hybridization

temperature (6C)
Sequencing
primers

CpG
number

Sequence
length

B1 repetitive
elements

Forward: GGTGGTGGTGGTGGTTGAGATAG
Reverse: AATAACACACACCTTTAATCCCAACACT

147 69 Primer 1
TTTGTAGATTAGGTTGGTTT

3 45

LINE1 Forward: AGAATTTGATAGTTTTTGGAATAGG
Reverse: ACTACCTCAATACCTCTATACTTCC

262 61 Primer 1
GGTAGTATTTTGTGTGGGT

6 63

Primer 2
GATTTAAGTTATAGTAGTAG

5 35

Primer 3
TTGAATAGGTGAGAGGG

2 38

doi:10.1371/journal.pone.0014398.t003
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65uC, Slc22a1-F GAAGAGAACCACTCAAGCGGTAAGG and

Slc22a2-R AGACAAGCGAGGGTCACATTCAAC at 54uC,

Slc22a2-F AGACAGGTTTGGGCGGAAGTTC and AAGCA-

GAAGTTGGGCAGAGTCACG at 54uC. PCR fragments (489,

400, 435 and 315 bp, respectively) were inserted into pCR II

vectors according to the TOPO TA cloning protocol (Invitrogen).

The probes were linearised and labelled with [35S]-dUTP

(1,300 Ci/mmol, Amersham Biosciences, Germany), with the

Sp6/T7 Transcription Kit (Roche Diagnostics, Germany).

Controls included hybridisation with a sense probe; no specific

hybridisation signal was observed under these conditions, for any

of the sense probes. For each probe, all the slides were placed

against a single X-ray film (Biomax-MR, Kodak, France). All

autoradiographs were digitised during the same session. For

Slc22a3, Dlk1 and Rtl1, the signal was measured for 4 slides per

placenta and 4 placentae per group. The results are expressed in

OD x mm2. The measure of the proportion of the labyrinth

corresponds to Rtl1 signal surface to total surface ratio.

Supporting Information

File S1 Search for potential transcription factor binding sites in

the 490 bp of the DMR, including the 30 CpGs, with Genomatix.

Found at: doi:10.1371/journal.pone.0014398.s001 (0.09 MB

DOC)
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