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a b s t r a c t

Recent evidences indicate that transcription in Plasmodium may be hard-wired and rigid, deviating
from the classical model of transcriptional gene regulation. Thus, it is important that other regulatory
pathways be investigated as a comprehensive effort to curb the deadly malarial parasite. Research in
post-translational modifications in Plasmodium is an emerging field that may provide new venues for
drug discovery and potential new insights into how parasitic protozoans regulate their life cycle. Here,
we discuss the recent findings of post-translational modifications in Plasmodium.
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. Introduction

Malaria is one of the deadliest infectious diseases of the world.
ach year, malaria infects over 300 million people world-wide and
auses an estimated one to two million deaths [1–3]. With the
ncrease of drug resistance to most of the widely used anti-malarial
rugs, it is imperative to better understand key regulatory ele-
ents driving the Plasmodium life cycle, eventually leading to the

iscovery of new drug targets.
The sequencing of the Plasmodia genomes, along with subse-

uent comparative bioinformatics approaches, transcriptome and
roteome analyses, have created a vast amount of information
egarding protein prediction and their hypothetical functions in
oth the human host and mosquito vector [4–7]. While microarray
nalyses have demonstrated a remarkable change in steady-state
RNA levels during parasite development, only relatively few reg-

latory motifs and transcription regulators have been uncovered
o far [8]. In addition, unlike other organisms, there seems to be few
ranscriptional changes in Plasmodium following exposure to exter-
al stimuli [3,9,10]. These findings imply that parasite transcription
ould be hard-wired [10]. This rigidity in transcription suggests
hat post-transcriptional and post-translational mechanisms are
ikely to play major roles in regulating the parasite life cycle.

By definition, post-translational modifications (PTMs) must
dd or subtract a specific mass difference and not be particular
o any one protein [11]. In addition to changing protein mass,
TMs can also alter the protein charge and conformation. Such
hanges modify the protein’s enzyme activity, binding affinity and
ydrophobicity [12]. The spectrum of the PTMs within a cell is

mmense and varies with respect to specificity and abundance. For
xample, some types of PTMs such as phosphorylation and ubiq-
itination are universally employed to regulate a broad host of
unctions, have relatively high abundance, and have a wide range of
arget substrates. On the other hand, some PTMs such as acetylation
re highly specific in their roles, have a relatively low abundance,
nd may target only a few proteins or even one target substrate
t a time. Furthermore, PTMs can either modify a protein at one
pecific amino acid residue or be associated with numerous differ-
nt residues. The potential diversity of protein modifications seem
imitless due to the fact that an individual protein can undergo a sin-
le modification or multiple types of modifications at several sites,
ossibly producing multiple protein isoforms, each with a unique
iological activity. One can easily see why PTMs are responsible
or a major increase in complexity from genome to proteome. For
xample, the human genome contains approximately 30,000 open
eading frames but is predicted to give rise to roughly 1.8 million
ifferent protein variants [13].

Furthermore PTMs are reversible and thus provide the flexibil-
ty and adaptability that are essential for mediating rapid cellular
esponses to the cell’s constantly changing conditions. Thus, post-
ranslational modifications are vital for the survival of all kinds
f cells, with Plasmodium not being an exception. Due to their
iversity, essentiality, and wide-spread roles, post-translational
odifications could present new major targets for effective and

pecific therapeutic intervention against the malarial parasite.
ere we present an overview of the major post-translational
odifications found so far in Plasmodium and discuss the recent

evelopments of this rapidly expanding field. A summary of the
ajor proteins involved in regulating PTMs in Plasmodium is also

resented in Fig. 1 and Table 1.
. Phosphorylation/dephosphorylation

Phosphorylation involves the reversible esterification of a phos-
hate group to an amino acid residue by protein kinases (PKs) that
ransfer a phosphoryl group from an ATP to hydroxyamino acid
mical Parasitology 168 (2009) 123–134

residues, mostly serine, threonine and tyrosine [14]. As the most
highly studied covalent modification of proteins in eukaryotic cells,
phosphorylation events can be linked to practically most functions
within a cell: cell growth, cell differentiation, receptor activations,
metabolic pathways, enzyme activities, cytoskeletal organiza-
tion, chromatin remodeling, protein activations/inhibitions and
protein–protein interactions. Approximately 1.5–2% of genes in an
eukaryotic genome are PK family genes, which reflects the impor-
tance of phosphorylation events. While protein kinases catalyze
the phosphorylation of protein residues, phosphatases hydrolyze
the phosphoester bond of the modified amino acid, restoring the
hydroxyamino acid to its unphosphorylated state [15]. In eukary-
otes, the number of protein phosphatases is relatively small when
compared to that of protein kinases. However, additional phos-
phatase regulatory proteins mediate specific regulation of these
enzymes and it is speculated that the number of phosphatase com-
plexes involved in regulatory pathways may exceed the protein
kinases repertoires [16].

2.1. Kinases

Several kinase inhibitors have been shown to inhibit Plasmod-
ium development at different stages of the life cycle [9,17–20]
validating the importance of phosphorylation in maintaining the
parasite. Depending on the stringency applied, computational anal-
yses retrieved 86–99 PK-related enzymes from the Plasmodium
falciparum (Pf) genome [21,22]. Phylogenetic studies have demon-
strated that most of the eukaryotic families of PKs are present in
the Plasmodium genome with the exception of two groups, ste-
20 (STE) and the tyrosine protein kinases (TyrK) families. The STE
family includes PKs involved in Mitogen-activated protein kinase
(MAPK) cascades and plays a central role in transduction signals
(see reference Ward et al., 2004 for further details). This group is
evolutionarily conserved and their absence in the parasite genome
may indicate that the mode of activation of the MAPK pathway in
the parasite differs from other eukaryotes. The TyrKs are known to
function in hormone-response receptor-linked pathways essential
for intercellular communication in multicellular organisms and are
therefore not expected in the malaria parasite.

Several “orphan” PKs have also been identified in the Plasmod-
ium kinome. They display only limited similarities with yeast or
mammalian kinases. Examples of these atypical kinases include
the NIMA-related kinase Nek1 (PFL1370W) [17], twenty FIKK PK-
related proteins, found only in apicomplexan parasites [22,23], and
a family of calcium-dependant kinases (CDPKs) that are usually
found in plants and alveolate but not in metazoans [24]. In the
following section we briefly describe the key biological functions
identified so far for a few selected Plasmodium kinases.

2.1.1. Cell-cycle regulation
In eukaryotes, kinases are known to play a major role in cell-

cycle progression. This is particularly the case for cyclin-dependent
kinases (CDKs), several of which have been identified in the
Pf genome [22]. Two Pf CDKs, PfPK5 (MAL13P1.279) and Pfmrk
(PF10 0141), have been shown to be positively regulated by the
binding of Plasmodium and mammalian cyclins as well as negatively
regulated by CDK inhibitors [25–27]. These results demonstrate
that regulatory activities of CDKs are well-conserved across species.
While the targets of these Plasmodium kinases have not yet been
identified, it is speculated that such proteins might play a major
role in the regulation of the parasite schizogony and its nuclear

division cycles [28]. In vitro biochemical characterizations and crys-
tal structure analyses have uncovered possible unique regulatory
mechanisms of Plasmodium CDKs [27,29]. Such particularities indi-
cate an atypical mode of DNA replication/mitosis in the parasite
[30]. Furthermore, an atypical Pf orphan protein kinase, PfPK7
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Fig. 1. General depiction of the roles of a few selected proteins involved i

PFB0605w), that exhibits maximal homology to a MEKKK and a
ungal PKA has been shown to regulate parasite proliferation and
evelopment [31]. Discrepancies observed between parasite and
ost kinases may be exploited in the search of parasite-specific
inase inhibitors as potential anti-malarial drugs but would need
o be further validated in vivo.

.1.2. Cell proliferation and differentiation
MAPKs are known to be key players in signal transductions, cell

evelopment and differentiation in response to a variety of stim-
li [32]. Though no classical MAPK kinase has been identified in the
lasmodium genome, two atypical MAPK homologs have been char-
cterized, Pfmap-1 (PF14 0294) and Pfmap-2 (PF11 0147). While
he exact role of Pfmap-1 is still speculated, Pfmap-2 appears to
e essential for the completion of the parasite asexual erythro-

ytic cycle [33]. However in Plasmodium berghei (Pb), the Pfmap-2
rthologue seems to be essential to parasite exflagellation in the
osquitos midgut [34]. Discrepancies observed between these two

lasmodium species will need to be further clarified. Nonetheless,
t is possible to envision a complementation effect induced by
pecies-specific Plasmodium kinases.
t-translational modifications during the life cycle of the malaria parasite.

2.1.3. Sexual differentiation
Several identified Plasmodium kinases have been implicated in

sexual differentiation. In Pb, a calcium-dependant kinase (CDPK4,
PF07 0072 in Pf) has been shown to regulate gamete formation
with the initiation of DNA replication, ookinate gliding mobilities,
and mosquitos midgut invasion [35–37]. cGMP-dependant protein
kinase (PFPKG, PF14 0346 in Pf) seems to be essential for medi-
ating initiation of gametocytogenesis [18]. Finally, the Pb Pbnek-4
(MAL7P1.100 in Pf) has been shown to be critical for ookinate matu-
ration [38]. The detection of an increased number of protein kinases
involved in sexual differentiation demonstrates that PKs have a cru-
cial role in regulating gametocytogenesis. These preliminary results
provide a framework for identifying substrates of these Plasmodium
enzymes to further comprehend the signalling cascade involved in
sexual differentiation.

2.1.4. Parasite egress and invasion

In contrast to other pathogens, apicomplexans such as Plasmod-

ium can quickly exit and enter the cell using their own machinery.
Several steps involving a large collection of proteins are required
in erythrocytic egress and invasion [39]. From this collection, a few
protein kinases have been shown to have a role in controlling these
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Table 1
Genes that are putatively involved in post-translational modifications in Plasmodium.

Modification Type of protein Protein name Gene ID Putative role

Phosphorylation Casein kinase CK1 PF11 0377 Unknown [20]
Cyclin-dependent kinase PK5 MAL13P1.279 Cell-cycle regulation [25–27]
Cyclin-dependent kinase mrk PF10 0141 Cell-cycle regulation [25–27]
Serine/threonine protein
kinase

PK7 PFB0605w Proliferation and development [31]

Mitogen-activated protein
kinase

map-1 PF14 0294 Unknown [33]

Mitogen-activated protein
kinase

map-2 PF11 0147 Asexual cycle regulation [33]

Mitogen-activated protein
kinase

map-2 PB000659.00.0 Exflagellation in mosquito midgut [34]

Calcium-dependent kinase CDPK4 PF07 0072 DNA replication, ookinete gliding mobility, mosquito midgut
invasion [35–37]

cGMP-dependant protein
kinase

PKG PF14 0346 Gametocytogenesis initiation [18]

NIMA-related kinase nek-4 MAL7P1.100 Ookinete maturation [38]
Calmodulin-like protein kinase CDPK1 PFB0815w Secretion of microneme contents, formation of tight moving

junctions [40]
Protein kinase B PKB PFL2250c Parasite gliding [41]
Protein kinase A PKA PFI1685w Mediates erythrocyte anion channels and permeability of host

plasma membrane [44–45]
FIKK orphan kinases Multiple proteins Multiple genes Targets parasite proteins to host membranes [46]

Dephosphorylation Mg2+-dependent
serine/threonine protein
phosphatase 2C

PP2C Multiple genes Transcription elongation [55]

VH1 family phosphatases YVH1 Multiple genes Nuclear protein activity [56]
Protein phosphatase 1 PP1 Multiple genes Release of infection merozoites [57]
PPP-related protein
serine/threonine phosphatase

PP-� Multiple genes Cell-cycle control and signal transduction in sexual stages [50]

Lipidation Prenyl modifier PFT �-subunit PFL2050w Unknown [88]
Prenyl modifier PFT �-subunit PF11 0483 Unknown [88]

Ubiquitination Ubiquitin pUB PFL0585w Polyubiquitin gene that provides the ubiquitin monomers that
are covalently attached to proteins. Cell-cycle regulation [106]

Ubiquitin UbS27a PF13 0346 Ubiquitin moiety that provide the ubiquitin monomers for
attachment to proteins. Cell-cycle regulation [108]

Ubiquitin UbL40 PF14 0027 Ubiquitin moiety that provide the ubiquitin monomers for
attachment to proteins. Cell-cycle regulation [108]

SUMO PfSUMO PFE0285c Ubiquitin-like peptide that is covalently attached to proteins
for DNA repair, cell-cycle regulation, nuclear localization and
protein stability [110]

E2 conjugating enzyme UBC13 PFE1350c Was found to be phosphorylated by PfPK9. Role in cell-cycle
has to be validated in Plasmodium [111]

Deubiquitylating/DeNeddylating
enzyme

UCH54 PF14 0576 Has dual deubiquitylating and deNeddylating activity. May
have roles in maintaining stable apical membrane epithelial
Na+ channels [118]

Cleavage/Processing Serine protease Subtilisin-1 (SUB1) PFE0370c Activates SERA proteins. Primary regulator of egress [143]
Subtilisin-2 (SUB2) PF11 0381 Shedding of MSP-1 and PfAMA-1 after invasion [151]
Subtilisin-3 (SUB3) PFE0355c Ubiquitous role [144]
ROM-1 PF11 0150 Shedding of adhesins [147]
ROM-1 PB000352.00.0 May have roles in invasion [149]
ROM-4 PFE0340c Shedding of adhesins [146]
SP1 PF13 0118 Cleavage of transit peptide [123]

Cysteine protease Falcipain-1 PF14 0553 Putative role in invasion [153]
Falcipain-2 PF11 0165 Hemoglobinase & role in egress [132]
Falcipain-3 PF11 0162 Hemoglobinase [132]
SERA-4 PFB0345c Expressed in the PV at the late schizont stage [140]
SERA-5 PFB0340c Role in merozoite egress [139]
SERA-6 PFB0335c Expressed in the PV at the late schizont stage [140]
SERA-8 PFB0325c Sporozoite release from oocystes [141]
DPAP3 PFD0230c Primary regulator of egress [142]
Calpain MAL13P1.310 Unknown [132]

Metallo protease Falcilysin PF13 0322 Hemoglobinase [125]

Aspartic protease Plasmepsin I PF14 0076 Initiate degradation of hemoglobin [133]
Plasmepsin II PF14 0077 Initiate degradation of hemoglobin & role in egress [133]
Plasmepsin IV PF14 0075 Cleavage of denatured globin [133]
Histo-aspartic
protease (HAP)

PF14 0078 Cleavage of denatured globin [133]
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arasitic processes. The calmodulin-like PK (CDPK1, PFB0815w in
f) is required for the secretion of the parasite microneme contents
nd the formation of tight moving junctions [40]. Two compo-
ents of the acto-myosin motor complex, the myosin A tail domain

nteracting protein (MTIP) and the glideosome-associated pro-
ein 45 (GAP45) have been identified to be CDPK1 substrates. In
ddition, PfPKB (PFL2250c) [41], an important member of the phos-
hatidylinositol 3-kinase-dependent signaling pathway, has been

mplicated to regulate parasite gliding mechanisms [42,43]. How-
ver, validating the role of PfCDPK1 and PfPKB in vivo remains to
e established.

.1.5. Host–parasite interaction
Recent works have begun to reveal the importance of Plasmod-

um PKs in modulating the erythrocyte membranes of infected
osts. PfPKA (PFI1685w) has been shown to alter both the activity
f an erythrocyte anion channel and the permeability of the host
lasma membrane [44,45]. Interestingly, the members of the
lasmodium FIKKs orphan kinases possess a Plasmodium export
lement (PEXEL) motif [46] that target parasite proteins to the
ost membrane [47,48]. Immuno-microscopy reveals that many
IKK proteins can be found in the erythrocyte cytoplasm and
olocalized with Maurer’s clefts protein. This finding suggests
he importance of these FIKKs in the remodeling of the infected
rythrocyte membrane [46].

While it is increasingly apparent that a significant number of
rotein kinases regulate major parasite cell cycle and differen-
iation events, our understanding of their targeted substrates is
xtremely limited. In order to comprehend the function and essen-
iality of each kinase, a systematic biological approach involving
everse genetics, chemical genetics and phosphoproteome studies
ill need to be developed.

.2. Phosphatases

A total of twenty-seven malaria protein phosphatases (PP)
ave been identified in the Pf genome (reviewed by [49]). The

dentified Plasmodium PP clustered with the four major estab-
ished eukaryotic PP families: the Metallophosphatases (PPP),
he Serine/Threonine Phosphatases (PPM), the Protein Tyro-
ine Phosphatases (PTP) and the NLI Interacting Factor-like
hosphatases (NIF). Protein sequence information as well as
iochemical characterizations studies of several of these PPs

n Plasmodium have validated their phosphatase activities and
evealed significant differences with other eukaryotic organisms
49–52].

The use of phosphatase inhibitors have shown that Plasmod-
um PPs are essential and may be involved in invasion [53] and
ell growth [54]. Protein–protein interaction and localization stud-
es have highlighted a role of Plasmodium PPs in transcriptional
longation [55], nuclear protein activity [56] and the release of
nfectious merozoites [57]. Interestingly, highly conserved eukary-
tic phosphatases seem to be either missing or too divergent
o be detected in the Plasmodium genome. Among the miss-
ng phosphatases are the CDC25 homologue (known to play a

ajor role in cell cycle control) [58], the cdc14 phosphatase
regulates mitotic events) [59] and tyrosine phosphatases [60]
though there is a report of a possible PRL tyrosine phosphatase)
61]. These findings further validate the phylogenetic distance
bserved between Plasmodium spp. and its vertebrate host. The

dentification of PP regulatory subunits, as well as their specific
ubstrates, will need to be further investigated. However, it has
ecome evident that these PPs are essential to the parasite and
hould be considered as potential targets for new anti-malarial
trategies.
ical Parasitology 168 (2009) 123–134 127

3. Acetylation

Acetylation is the addition of an acetyl functional group onto a
protein substrate. Acetyltransferases transfer an acetyl group from
acetyl coenzyme A onto conserved N-terminal lysine residues. The
result of acetylation usually modifies DNA binding properties, pro-
tein stability, and protein–protein interactions.

Acetylation of actin at the N-terminus is a highly conserved PTM
that has also been reported in Pf [62]. In addition to actin, Plas-
modium histones are found to be acetylated at their N-terminal
lysine residues [63]. Histone PTMs are a vital part of the ‘histone
code’ hypothesis that proposes specific combinations of PTMs that
modify chromatin structure and act as platforms for the binding
of transcriptional regulators of gene expression. Consistent with
other eukaryotes, Plasmodium histone acetylation is believed to
play a major role in transcriptional regulation. In a genome-wide
investigation of histone modifications and their relationship with
transcriptional activation/silencing, Cui et al. (2007) [64] employed
a combination of immunoprecipitation and DNA microarray detec-
tion (ChIP-chip) to show that acetylation of histone H3 (H3K9ac)
was associated with active genes across the Pf genome. PfGCN5
was the first characterized histone acetyltransferase (HAT) subunit
identified in Plasmodium. Recombinant PfGCN5 displayed histone
H3 acetylase activity in vitro and exists as a catalytic subunit of P.
falciparum HAT complex. PfADA2, the yeast transcriptional coacti-
vator homolog, has been characterized as another component of
the trimeric catalytic core [65]. In vitro pull-down and yeast two-
hybrid experiments suggest that PfADA2 and PfGCN5 are present
in complex(es) and may have conserved chromatin remodeling
functions. Natural compounds that inhibit HAT activity are being
explored as potential antimalarials [66]. However, because HATs
are conserved across species, toxicity studies will have to be further
investigated.

Pf HDAC1 and PfSir2, two of the five putative Plasmodium His-
tone Deacetylases (HDACs), have been partially characterized in
Plasmodium [67]. PfSir2, a yeast homolog of the silent information
regulator 2 (SIR2) was found to bind to parasite telomeres and cause
histone de-acetylation and silencing of the var multi-gene family
[68]. Inhibitors of HDAC activity have also been investigated for
potential antimalarial drugs [69,70].

4. Methylation

Methylation is catalyzed by methyltransferases that attach
a methyl group onto its substrate. Such modification increases
lipophilicity and reduces the substrate solubility in water.
Methylation is associated with the regulation of gene expres-
sion and protein activity. In Plasmodium, the most com-
monly methylated subtrates are the parasite histones. Genome-
wide analysis of histone modification showed that H3K9me3
is associated with gene silencing [64]. Recently, chromatin
immunoprecipitation of transcriptionally active var gene loci
assessed the enrichment of histone H3 di- and trimethyla-
tion marks (H3K4me2 and H3K4me3) in the 5′ flanking region
[71].

At least nine Plasmodium histone methyltransferases (HMT)
(containing a SET-domain, characteristic of histone lysine methyl-
transferase), and two Plasmodium demethylases (containing a
JumonjiC-domain, characteristic of Histone Lysine Demethylases
(HDMs)) have been identified in silico. Phylogenetic analy-

sis divided putative histone lysine methyltransferases (HKMTs)
into five subfamilies with different putative substrate speci-
ficities. HKMTs and HDMs not only have substrate specificity
but also specificity for different methyl states (mono-, di-, tri-)
[72].
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. Lipidation

Lipidation is the covalent binding of a lipid group to a peptide
hain and can change the activity and/or cellular localization of
he modified protein. Often times, the attachment of a hydropho-
ic chain can help to anchor soluble proteins, or proteins with
eak membrane-affinity, to the inner face of a membrane. Some

xamples of lipidation include N-myristoylation, prenylation, GPI-
nchor addition, and palmitoylation. Discussed below are a couple
f post-translational modifications via lipidation that have been
tudied so far in Plasmodium.

.1. GPI-anchoring

The glycosylphosphatidylinositol (GPI) anchor is a glycolipid
oiety that is added to the C-terminal of proteins after translation.

uch modified proteins are attached to the outer leaflet of the cell
embrane. GPI-anchored proteins are ubiquitous among eukary-

tic organisms and represent a very functionally diverse group that
s being extensively studied in a wide-array of organisms.

Anchoring with GPI is the major type of glycosylation that
re found in Plasmodium [73]. It is commonly postulated that
lasmodium proteins are glycosylated by the erythrocytic machin-
ry (combinatorial metabolism) during the exchanges that occur
etween the parasitophorous vacuole and the erythrocyte cyto-
lasm [74]. In the human host, the parasite’s GPI anchors have been

inked to the pathobiology of the disease [75] and are associated
ith increased levels of TNF-� leading to a systemic inflamma-

ion reaction [76,77]. It has been found that resistance to malaria
n endemic areas is associated with the production of circulant
ntibodies directed against the parasite’s GPI anchors [75] and
re common targets for vaccine research. Also, most P. falciparum
erozoite surface proteins are GPI-anchored and are involved in

rythrocyte recognition and attachment to erythrocytes before
nvasion (reviewed by [78]). GPIs may also be involved in post-
nvasion processes. The P. falciparum GPI-anchored rhoptry protein
f34 (PFD0955w) is suspected to play a role in the formation of the
arasitophorous vacuole [79,80].

In the mosquito host (Anopheles spp.), P. falciparum GPIs may
lay a direct role in immune response [81,82]. The immune
esponse in Anopheles gambiae is elicited by the parasite GPIs
esulting in a significant reduction in fecundity (diminished egg
roduction) [83]. The role of such effect on the host–parasite inter-
ctions remains open to discussion. The authors propose that the
arasite may use its GPIs to trigger the mosquito immune response
nd “mis-direct” the specificity of the response against other
athogen-associated molecular patterns rather than ookinetes or
icroneme proteins essential for parasitic processes. Furthermore,

he mosquito stage GPI anchored surface proteins P25 (PF10 0303)
nd P28 (PF10 0302) are shed during ookinete maturation and
lay an important role in midgut invasion [84–86]. Finally, the GPI
nchor of the circumsporozoite protein (PFC0210c) plays a crucial
ole in sporogenesis [87]. Due to their general importance, GPIs
nd their biosynthesis pathway are being investigated as potential
argets to antimalarial strategies.

.2. Prenylation

Prenylation, also known as isoprenylation, is the post-
ranslational modification of proteins by covalent attachment near
he carboxyl terminal of isoprenyl lipids, a 15 carbon farnesyl or a

0 carbon geranylgeranyl group [88]. The attachment of isoprenyl

ipids creates a hydrophobic tail that promotes membrane associa-
ion and plays an important role in cell signal transduction, vesicle
rafficking, and cell-cycle progression [89]. Unlike animals, fungi
nd archeabacteria, which use the classical mevalonate pathway
mical Parasitology 168 (2009) 123–134

for isoprenoid synthesis, the Plasmodium synthesizes its isoprenoid
precursors via the 1-deoxy-D-xylulose 5-phosphate (DOXP) path-
way within its apicoplast, a plastid-like organelle [90].

Prenylation is mediated by three enzymes: protein farnesyl-
transferase (PFT), protein geranylgeranyltransferase type I and type
II. PFT in Plasmodium has been characterized by partial purification
of protein farnesyltransferase, PfPFT, and radiolabeling of preny-
lated proteins [88]. Prenylation precursors are incorporated into
asexual synchronized parasites in a stage-specific manner with the
highest amount occurring from trophozoite to schizont, and sch-
izont to ring transitions. Dolichylation, the addition of 11 isoprene
units, has also been reported in P. falciparum during trophozoite
and schizont stages [91].

Pharmaceutical companies have invested into the development
of PFT inhibitors for the treatment of cancer with a few drugs in
clinical trials. Interestingly, PFT inhibitors have been found to be
potent antimalarials [92] and validate farnesylation as essential in
the malaria parasite. Drug development for antimalarials is taking
a ‘piggy-back’ approach since the concentrations needed to inhibit
parasites are significantly lower than that of mammalian cells [89].

5.3. Palmitoylation

Palmitoylation is the covalent attachment of fatty acids to cys-
teine residues of proteins, often giving soluble proteins (or proteins
with weak membrane avidity) a hydrophobic membrane anchor
[93]. In P. falciparum, a 45 kDa gliding-associated protein (GAP45)
was found to be both palmitoylated and N-myristoylated [94]. It is
hypothesized that GAP45 may play a role in binding acto-myosin
motors to the outer face of the inner membrane complex, which
is implicated as the underlying force driving both gliding motility
and host cell invasion in Plasmodium merozoites.

6. Ubiquitination

Ubiquitin is a highly conserved 76 amino acid peptide found
in eukaryotic organisms. Beyond the more familiar association
with protein degradation, the modification of proteins by ubiqui-
tin conjugation is known to serve as a regulatory signal for cell
proliferation, cell-stress response, transcription, cell death, DNA
repair, intracellular trafficking, endocytosis and signal transduction
[95]. The reversible conjugation of ubiquitin to the lysine residues
in target proteins is controlled by a series of enzymes: ubiquitin
activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and
ubiquitin ligases (E3) [96]. Ubiquitin is activated by E1 and trans-
ferred to E2. Then, ubiquitin is either transferred to a monomeric
E3 that catalyzes ubiquitination of the target substrate or ubiqui-
tinated E2 forms a complex with the E3 to catalyze ubiquitination
of the substrate. Deubiquitinating enzymes (DUBs) serve to reverse
ubiquitin-conjugation by removing ubiquitin from substrate pro-
teins and also help to replenish the free ubiquitin pool.

Diverse forms of ubiquitin modifications have been reported,
each potentially mediating a specific function. K48-linked poly-
ubiquitin chains to substrates often serve as signals for targeted
protein degradation via the ubiquitin/proteasome system [97].
In Plasmodium, several studies have validated the essentiality of
the proteasome and protein turnover in regulating the cell cycle
progression. A collection of proteasome inhibitors has shown
promising results in impeding the parasites [98–103].

Apart from protein degradation, poly-ubiquitination via K63-

linkages seems to play important roles in DNA damage tolerances,
endocytosis, ribosomal protein synthesis, and inflammatory
response [104]. In addition to poly-ubiquitination, proteins can
either be mono-ubiquitinated, which is the attachment of a sin-
gle ubiquitin to a protein, or multi-ubiquitinated, which is the
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ttachment of individual ubiquitin to a substrate at multiple sites.
oth mono- and multi-ubiquitination are reported to have non-
roteolytic roles such as endocytosis [105] and DNA repair [106]. In
he following sections, we briefly describe what has been reported
o far concerning ubiquitination in Plasmodium.

.1. Ubiquitin and ubiquitin-like proteins

The P. falciparum poly-ubiquitin gene, PfpUB (PFL0585w) is
resent as a single-copy on chromosome 12 with five tandem
epeats of the ubiquitin open reading frame [107]. Translation of
fpUB comprises of five ubiquitin monomers that have sequence
dentities of no less than 94% to that of other eukaryotic species.
T-PCR and northern analysis revealed that steady-state transcript

evels of PfpUB are expressed at all stages of the intraerythrocytic
ycles with significant increases at the late trophozoite and sch-
zont stages. Under heat shock, polypeptide levels of PfpUB and
biquitinated adducts showed dramatic increases without a sig-
ificant increase in steady-state transcript levels. This observation
uggests that the heat shock response appears to be maintained at
he level of translation [107].

Two additional ubiquitin moieties, UbS27a and UbL40, fused to
he ribosomal proteins L40 (PF13 0346) and S27a (PF14 0027)
ave also been identified in the P. falciparum genome [108,109].
xpression data indicate that these ubiquitin genes are expressed
hroughout the P. falciparum life cycle [5,7]. Interestingly, though
he Pf UbL40 shows high protein sequence fidelity with other
ukaryotic species, Pf UbS27a harbors significant divergences within
he ubiquitin domain [109].

In addition to ubiquitin, ubiquitin-like proteins (UBLps) have
een identified as modifiers of cellular-processes. Though a num-
er of UBLps (ISG15, FAT10, UFM1, FUB1) that are typical in higher
ukaryotes were not found in Plasmodium, gene expression data
uggests that SUMO, NEDD8, HUB1, URM1 and ATG8 are expressed
t all life-cycle stages [108,110].

Recently, Issar et al. (2008) [111] were the first to investigate and
haracterize SUMO within P. falciparum. Amino acid sequence com-
arisons revealed that P. falciparum gene PFE0285c (PfSUMO) has
ignificant sequence homology to that of known SUMO orthologs
rom other eukaryotic organisms such as yeast, human, mouse and
accharomyces pombe, while immunoblot analysis confirmed the
resence of SUMO in P. falciparum. In addition, enzyme homology
earches have identified P. falciparum orthologs of all the neces-
ary members of the SUMO pathway. Using LC-MS/MS analysis,
ore than 20 putative SUMO substrates of P. falciparum proteins
ere identified. These protein substrates varied from histones to

ranscription factors to RNA helicases, which implicates a wide-
anging regulatory scope of SUMO. Immunofluorescence assays
ndicate that PfSUMO localizes to distinctive subcellular compart-

ents within the P. falciparum and also in the host cell cytoplasm
ithin the parasite-derived structures called Maurer’s clefts.

.2. Ubiquitin enzymes

Computational studies have identified over a hundred proteins
redicted to be involved in the reversible conjugation of ubiquitin
r ubiquitin-like proteins in P. falciparum alone [108,110].

.2.1. Ubiquitin activating enzymes (E1)
Eight putative E1 have been identified in the parasite genome

108]. While primary sequence identity has been observed in the

ore ubiquitin activating enzyme domain, sequences outside of this
ore diverge rapidly as the functional requirements for these E1
nzymes change to specifically interact with their respective E2
onjugating enzymes. Sequence analysis indicates the existence
f Plasmodium E1 paralogs for UBA1 and UBA1-like proteins, and
ical Parasitology 168 (2009) 123–134 129

UBA2, UBA3, UBA4, ATG7 proteins, which mediate the activation
of ubiquitin-like proteins SUMO, NEDD8, URM1, and ATG8, respec-
tively.

6.2.2. Ubiquitin conjugating enzymes (E2)
Fourteen putative E2 paralogs were found in P. falciparum [108].

They exhibited extensive conservation with other eukaryotic E2
proteins. Gene expression data for nine of the fourteen Plasmod-
ium E2s reveal a diverse pattern of steady-state mRNA at different
stages of the intraerythrocytic cycle, suggesting the existence of a
temporal profile of delivering ubiquitin or UbLps to different E3s,
indicating a potential additional level of temporal control in ubiq-
uitination during the parasite’s life cycle.

Recently, a Pf homolog (PfUBC13) of the E2 ubiquitin-
conjugating enzyme 13 (UBC13) was characterized and found to be
a substrate of the Pf protein kinase PfPK9 [112]. Reverse-phase HPLC
and in vitro ubiquitination assay show that PfPK9 phosphorylates
PfUBC13 at S106 and suppresses ubiquitin conjugating activity.
Though the physiological role of PfUBC13 is unknown, the highly-
conserved UBC13 (coupled with an ubiquitin E2-variant protein)
assembles K63-linked ubiquitin chains [113], which mediate non-
proteolytic pathways [114]. UBC13’s conjugating activity regulates
various cellular processes such as DNA repair [115], tumor suppres-
sor p53 activity [116], and mitotic progression [117].

6.2.3. Ubiquitin ligating enzymes (E3)
Though Plasmodium E1 and E2 enzymes exhibited strong con-

served homology with other E1 and E2 enzymes from other
eukaryotes, Plasmodium E3 ligases were found to be highly diver-
gent and the most abundant. Within the 54 putative E3 ligases
identified, all superfamilies (HECT, RING, U-box, and cullin) of E3
ligases are represented within P. falciparum with E3 RING finger
proteins making up the majority of the Plasmodium E3 ligases [108].

Functional annotation analysis reveals that these Plasmodium
ligases have a wide array of potential roles including cell cycle reg-
ulation, trafficking, DNA repair, chromatin structure, and mRNA
transport. However several of these proteins seem to be specific
to the Apicomplexa phylum. While the functional analysis of these
parasite-specific putative E3s will need to be further validated in
vitro and in vivo, two selected E3 ligases seem to be essential to the
parasite erythrocytic cycle and have already shown in vitro ubiqui-
tination activity validating further the importance of this pathway
in parasite development (Chung and Le Roch, unpublished data).

6.2.4. Deubiquitinating enzymes
While ubiquitin ligases catalyze the attachment of ubiquitin

and UbLs, DUBs hydrolyze ubiquitin and UbLps [118]. Depending
on the computational tools employed, 18 or 29 Plasmodium DUBs
were found [108,110]. Five distinct gene families were identified:
the ubiquitin C-terminal hydrolases (UCHs); the ubiquitin-specific
peptidases (USPs/UBPs); the ovarian tumor (OTU) domain proteins;
the Josephin or Machado-Joseph disease (MJD) proteins and the
JAMM (Jab1/MPN domain-associated metalloisopeptidase) domain
proteins. In addition, DUBs for UbLps including SUMO, ATG8, and
NEDD8 have also been identified.

PfUCH54 was the first DUB characterized in P. falciparum [119].
Using electrophilic probes that detect enzymes capable of remov-
ing ubiquitin and other ubiquitin-like proteins, PfUCH54 was found
to possess both deubiquitination and deneddylation activity. Using
known active site residues and crystal structure of homologous
DUBs, PfUCH54 was found to have high homology to UCHL3 [119],

an enzyme that has been reported to also have dual deubiquiti-
nating and deneddylating activity [120]. Though the function of
PfUCH54 is not known, mouse UCHL3 is required to maintain a
stable apical membrane epithelial sodium channel, facilitating the
dynamic recycling of sodium channels at the apical surface [121].
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Though functional analysis studies will need to further val-
date the roles of ubiquitination pathways in Plasmodium, E3
igases and DUBs may represent a good target for new therapeutic
nterventions due to their diversity and potential involvement in
arasite-specific pathways.

. Protein cleavage and processing

Proteases are major virulence factors in parasitic diseases as
argely reviewed by [122] and [123]. Five main classes of proteases
ave been identified: (1) cysteine proteases, (2) serine proteases,
3) threonine proteases, (4) aspartic proteases, and (5) metallo-
roteases. A computational analysis identified 92 proteases in the
enome of P. falciparum, 83 of them being transcribed during the
rythrocytic cell cycle and 67 being translated during the parasite’s
ife cycle [124]. Proteases are commonly involved in a wide array of
iological processes such as lysosomal proteolysis, precursor pro-
ein processing or trafficking.

In Plasmodium, trafficking is a vital biological process, especially
ith regards to targeting proteins to the apicoplast. Trafficking
athways leading to the apicoplast have not yet been elucidated
ut are known to involve the presence of both a signal peptide and
transit peptide that are processed along the pathway [125]. Wu et
l. identified a serine protease Signal Peptidase 1 (SP1, PF13 0118)
hat could be responsible for the cleavage of signal peptides [124].
n addition, metalloprotease falcilysin (PF13 0322 in P. falciparum)
126] has been recently implicated in transit peptide cleavage
127].

Another important parasite-specific pathway is the PEXEL-
ediated pathway that targets parasite proteins to the surface

f infected erythrocytes. This pathway is thought to promote
arasite evasion from the host immune system [128]. Chang et
l. (2008) demonstrated that exported proteins are processed at
heir N-terminal end [129]. This processing involves acetylation
nd cleavage of the PEXEL motif in the endoplasmic reticu-
um. The authors suggest that this N-terminal processing may be

ore generally utilized for many exported soluble proteins. How-
ver, the protease responsible for such cleavage remains to be
dentified.

In Plasmodium, various proteases play key roles in hemoglobin
egradation, egress and invasion during the parasite erythrocytic
ycle. The roles of such proteases were usually determined from
nhibitor studies, which emphasize the potential to target such
nzymes by anti-malarial drugs.

.1. Hemoglobin degradation

The degradation of hemoglobin involves various proteases
alled hemoglobinases [130] and provides the essential amino acids
hat are taken up by the parasite [122,131,132].

The cysteine proteases falcipain-2 (PF11 0165) and falcipain-
(PF11 0162) are known to play a role in the early steps of

emoglobin degradation within the parasite food vacuole (see
133] for a review). In addition to these cysteine proteases, degra-
ation of hemoglobin seems to involve metallo (falcilysin) and
spartic proteases such as plasmepsins [131]. Four plasmepsins are
resent and active in the food vacuole of P. falciparum, plasmepsin
(PF14 0076), II (PF14 0077), IV (PF14 0075) and a histo-aspartic
rotease (HAP, PF14 0078) [134–136]. It was postulated that plas-
epsins I and II are matured and released in the food vacuole
y protein cleavage [134,137]. A recent study demonstrated that
alcipain-2 and falcipain-3 are responsible for plasmepsins prepro-
essing and that auto-processing can occur when falcipain activities
re inhibited, providing an alternative pathway to activate plas-
epsins [138].
mical Parasitology 168 (2009) 123–134

7.2. Parasite egress

Parasite proteases are also known to trigger the degradation
of parasite and host membranes, leading to the egress of infec-
tious parasites. The role of these proteases in cell egress has been
recently reviewed [139]. Briefly, the proteases implicated in para-
site egress are falcipain II, plasmepsin II and putative papain-like
SERA proteases. SERA proteins are a family of nine members, which
are activated by a subtilisin-like serine protease SUB1 (PFE0370c).
Among them are SERA-4 (PFB0345c), SERA-5 (PFB0340c, [140])
and SERA-6 (PFB0335c), which are essential proteins that are
expressed in the parasitophorous vacuole of the late trophozoite
and schizont stage (erythrocytic cycle) [141]. Additionally, SERA-
8 (PFB0325c), another member of the SERA protein family, is
essential for sporozoite release from oocytes (mosquito stage)
[142].

The involvement of the subtilisin-family serine protease
PfSUB1 and the cysteine protease dipeptidyl peptidase 3 (DPAP3,
PFD0230c) as primary regulators of parasite egress have been
recently evidenced using serine and cysteine protease inhibitors
[143]. Just prior to egress, the essential serine protease PfSUB1
is discharged from the exonemes into the parasitophorous vac-
uole space [144]. Inhibition of both DPAP3 and PfSUB1 blocks the
processing of the serine repeat antigen protein SERA-5, which cor-
relates with the inhibition of membrane rupture. In Plasmodium,
two other subtilisin serine proteases of unknown function can be
found: PfSUB2 (PF11 0381) and PfSUB3 (PFE0355c) (reviewed in
[145]). PfSUB2 is believed to play an important role in the ery-
throcytic cycle while PfSUB3 appears to be more ubiquitous as it
is expressed during the asexual blood stage, in gametocytes and in
sporozoites [6].

7.3. Parasite invasion

The critical role of proteases in merozoite invasion of ery-
throcytes has been largely studied and reviewed [39,146]. Briefly,
invasion involves contact, interaction and junction between the
merozoite and the red blood cell surface via adhesins and vari-
ous GPI-anchored proteins, such as PfAMA-1 and MSPs followed
by the active entry of the parasite within the host. In order for
invasion to be completed, these interactions are interrupted by
the shedding of the protein coat covering the merozoite surface
made of various MSPs and adhesins. The proteases involved in
such removal are called sheddases. For example, the adhesins Duffy
binding ligand erythrocyte-binding antigen (DBL-EBP) 175 (EBA-
175, MAL7P1.176) is shed from the merozoite at around the point
of invasion by the rhomboid protease PfROM4 (PFE0340c) [147].
Rhomboid proteases are ubiquitous intramembrane serine pro-
teases (see [148–150] for an extensive description of the different
types of rhomboid proteases). Also, sporozoite invasion of hepato-
cytes is reported to be mediated by the shedding of PfAMA-1 and
the thrombospondin-related adhesive protein (TRAP) by a serine
protease [151].

Double cleavage of MSPs is required for invasion and probably
involves serine proteases 9 See Harris, Yeoh et al. (2005) [152] for
further details 0. Very recently, it was suggested that MSP-1, MSP-
6 and MSP-7 undergo proteolytic maturation catalyzed by PfSUB1
before egress, maturation that is essential for further processing of
MSPs involved in invasion [153].

A role of cysteine proteases (falcipain) in erythrocyte invasion
has also been proposed but remains elusive. Inhibitors of falcipain-

1 (PF14 0553) block invasion of host red blood cells [154] whereas
parasites with a disrupted falcipain-1 gene were not affected in
terms of asexual growth [155]. More recently, the presence of an
endogenous cysteine protease inhibitor in Pf, falstatin, has been
identified [156]. The presence of such an endogenous inhibitor may
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e another level of proteolytic control of certain parasite/host pro-
eases in order to facilitate erythrocyte invasion.

Proteolytic processing is finally involved in the maturation of
roteins secreted by the merozoite-specific organelles, rhoptries.
hoptry-associated proteins (RAP) are believed to play a role in

nvasion and are activated upon proteolytic cleavage. For exam-
le, the rhoptry-associated protein RAP-1 is maturated in vivo by
ultiple processing steps [157–159].

. Concluding remarks

In addition to the PTMs presented above, there are several other
TMs in Plasmodium that are being investigated but, due to space-
onstraints, are unable to be fully expanded upon in this review.
owever, we would like to briefly mention a few. For example,
Plasmodium cathepsin-C-like protein is reported to be modi-

ed via O-sulfonation [160]. Also, polyglutamylation of tubulin
as found in the microtubule organizing centers and post-mitotic
icrotubular structures of Plasmodium [161]. Lastly, several chap-

rone proteins, involved in the proper folding of proteins, have been
escribed in Plasmodium and are reported to be involved in roles
uch as trafficking [162–165].

Today, transcriptional studies make up a significant amount
f publications that are dedicated to understanding mechanisms
egulating the Plasmodium developmental cycle. However, recent
vidences suggest that Plasmodium may not follow the clas-
ical transcriptional model and may have rigid transcription
achinery, which may indicate the need to reallocate inves-

igative efforts into other fields in order to better understand
he parasite’s life-cycle regulation. With the exception of phos-
horylation/dephosphorylation, post-translational modifications

n Plasmodium have been understudied and are largely overshad-
wed by the classical view that proteins are mainly regulated at the
ranscriptional level. With further investigation, post-translational
egulation may reveal to be a bigger factor in parasite development
han previously thought.

For example, though it is apparent that proteases are necessary
o destabilize host cell membranes during invasion and egress, the

echanisms of how these proteases are activated and tightly con-
rolled temporally are yet unclear. However, there are increasing
eports that PTMs may play a major role in both malarial invasion
nd egress. As already described above, it is suggested that addi-
ional proteases, such as SUB proteases, may act as regulators of
gress by processing, and thereby activating, distinct effector pro-
eins or signal transduction pathways [139,144]. In addition, it is
eported that Pf protein kinases, such as CDPK, may also be involved
n regulating invasion and egress [19].

Besides having a major regulatory role within the parasite, PTMs
ay also play key roles outside the parasite by manipulating the

ost’s signaling pathways thereby usurping normal cellular pro-
esses for survival and escape from immune responses. Currently,
here are an increasing number of reports that show PTMs to
lay an integral role in host–pathogen interactions, or cross-talk,

n bacteria, viruses and protozoa [166–168]. For example, it has
een shown that host organisms employ a wide range of post-
ranslational modifications to initiate their immune responses in
rder to avoid invasion by pathogens. For instance, host cells use
biquitination in defense strategies as a way to degrade para-
itic proteins and also to activate inflammatory and anti-apoptotic
enes in a non-degradative fashion [169]. As a countermeasure,

t has been shown that pathogens are able to avoid and exploit
hese ubiquitination defense strategies by secreting proteins of
heir own that either deubiquitinate or inhibit the host ubiquitinat-
ng enzymes [169,170]. It is also reported that bacterial pathogens
re able to provoke histone modifications (via acetylation and
ical Parasitology 168 (2009) 123–134 131

phosphorylation) and chromatin remodeling in host cells, thereby
manipulating the host’s transcriptional programming and dimin-
ish the host innate immune response [167]. The utilization of PTMs
within host–pathogen interactions for the purposes of pathogenic
growth and immune evasion is an emerging field, which may prove
to be both widespread and diverse in the mechanisms at work.

The utilization of PTMs to manipulate host cell signaling and
immune response may also be true in Plasmodium. In P. falciparum,
it is reported that kinases and phosphatases were found among the
320+ proteins predicted to be secreted from the parasite [48]. More
recently, over 30 proteins have been validated to be secreted from
the Pf, of which 27 proteins are novel extracellular proteins [171].
Several post-translational modifiers, such as kinases, phosphatases,
and proteases, were confirmed to be among the secreted proteins.
Furthermore, preliminary functional analysis suggests that these
secreted proteins are possibly involved in immune evasion and
signaling [171].

Our current understanding of the roles and extent of PTMs
within Plasmodium is still greatly limited due to the relative novelty
and inherent challenges of this particular field. More genome-
wide approaches, along with their proper biological validation,
will provide significant advances in filling the gaps of our present
understanding of the regulatory mechanisms driving this deadly
parasite. Though there is still much more to uncover, current
reports collectively show that Plasmodium PTMs have vital roles
in all aspects of the parasites’ life cycle, including host–pathogen
interactions. Because of the numerous types and virtually incalcu-
lable combinations of PTMs, the possibilities of regulation at the
post-translational level are vast. In addition to being vitally essen-
tial, many Plasmodium PTM proteins are both highly divergent and
specific to the parasite, making Plasmodium PTM proteins excel-
lent candidates for drug targeting. Thus, Plasmodium PTMs may
open new venues for drug discovery and may prove to be more
significant in the regulation of this deadly parasite than previously
acknowledged.
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