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ABSTRACT

Aspergillus westerdijkiae is the main producer of several biologically active polyketide metabolites includ-
ing isoasperlactone and asperlactone. A 5298 bp polyketide synthase gene “aomsas” has been cloned in
Aspergillus westerdijkiae by using gene walking approach and RACE-PCR. The predicted amino acid
sequence of aomsas shows an identity of 40-56% with different methylsalicylic acid synthase genes found
in Byssochlamys nivea, P. patulum, A. terreus and Streptomyces viridochromogenes. Based on the reverse
transcription PCR and kinetic secondary metabolites production studies, aomsas expression was found
to be associated with the biosynthesis of isoasperlactone and asperlactone. Moreover an aomsas knockout
mutant “aoAmsas” of A. westerdijkiae, not only lost the capacity to produce isoasperlactone and asperlac-
tone, but also 6-methylsalicylic acid. The genetically complemented mutant ao+msas restored the biosyn-
thesis of all the missing metabolites. Chemical complementation through the addition of
6-methylsalicylic acid, aspyrone and diepoxide to growing culture of ao4msas mutant revealed that these

compounds play intermediate roles in the biosynthesis of asperlactone and isoasperlactone.

1. Introduction

Aspergillus westerdijkiae is a producer of several biologically
active polyketide metabolites including isoasperlactone and asper-
lactone (Atoui et al., 2006; Balcells et al., 1995; Gaucher and Shep-
herd, 1968; Torres et al., 1998). These two metabolites belong to
the partially reduced or methylsalicylic acid (MSA) type polyketide
group and have same chemical structure but are different stereo-
chemically. Isoasperlactone and asperlactone are on one hand effi-
cient antimicrobial agents (Rosenbrook and Carney, 1970; Torres
et al., 1998), and on the other hand they contain ovicidal activities
against Nezara viridula (Balcells et al., 1995, 1998). It has been
reported that asperlactone and isoasperlactone presented a strong
anti-bacterial and anti-fungal activities when compared with other
antimicrobial agents (Balcells et al., 1998).

It has been previously demonstrated that during the biosynthe-
sis of MSA type polyketides, the first step is the formation of
6-methylsalicylic acid (6-MSA) by the condensation of one mole-
cule of acetyl-coA and three molecules of malonyl-coA (David
et al.,, 1995). This reaction is catalyzed by a multifunctional enzyme

* Corresponding author. Fax: +33 (0)5 62 19 39 01.
E-mail address: lebrihi@ensat.fr (A. Lebrihi).

system known as methylsalicylic acid synthase (MSAS). This en-
zyme has been reported to catalyze several MSA type polyketide
compounds like patuline in Penicillium patulum (Beck et al., 1990)
and Byssochlamys fulva (Puel et al., 2007) and avilamycin in Strep-
tomyces viridochromogenes (Gaisser et al., 1997).

Not much is known about the biosynthetic pathways of isoas-
perlactone and asperlactone, except for a hypothetical scheme pro-
posed by James and Andrew (1991). According to this scheme, the
isomeric metabolites aspyrone, isoasperlactone and asperlactone
are derived from a common biosynthetic precursor, the diepoxide.
James and Andrew (1991) further stated that asperlactone is
formed directly from the diepoxide, while isoasperlactone is
formed from diepoxide via aspyrone pathway (Fig. 1).

Many PKS genes have been sequenced in filamentous fungi
including A. fumigatus and A. niger (Metz et al., 2001; Niermanm
et al,, 2005; Pel et al., 2007; Sebastian et al., 2007). It is therefore
possible to use the most conserved region among these PKS genes
(Fig. 2) as primers for a PCR based cloning strategy. For this pur-
pose, mainly the ketosynthase (KS) and acyle transferase (AT)
domains, i.e. the most conserved domains among different PKSs
(Fig. 2), have been utilized. The previously designed pairs of
degenerated primers KS1/KS2, LC1/LC2c and LC3/LC5c (Bingle
et al,, 1999; Nicholson et al., 2001) has been already utilized in
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Fig. 1. Proposed biosynthetic scheme of isoasperlactone and asperlactone in A.
westerdijkiae. Based on our results and the study of James and Andrew (1991), we
proposed a hypothetical biosynthetic scheme of isoasperlactone and asperlactone
biosynthesis. Straight arrow lines indicate our proposed scheme, dotted arrow lines
indicate biosynthetic scheme of James and Andrew (1991), while dashed arrow line
indicate steps that are shared in our proposed biosynthetic scheme and in the
scheme of James and Andrew (1991).

our laboratory to clone eight KS domains from different PKSs
(Atoui et al., 2006), including one from MSAS in A. westerdijkiae.
Recently one of these PKS genes has been found to be involved in
the biosynthesis of ochratoxine A (Bacha et al., 2009).

In this paper, we report sequencing and functional characteriza-
tion of the first MSAS-type PKS gene “aomsas” identified in A. wester-
dijkiae. It is involved in the biosynthesis of two pharmacologically
important lactonic metabolites, i.e. isoasperlactone and asperlac-
tone. We also demonstrate that 6-methylsalicylic acid (6-MSA),
aspyrone and diepoxide are intermediates in their biosynthetic
pathway.

2. Materials and methods
2.1. Fungal strain and culture conditions

Aspergillus westerdijkiae NRRL 3174 strain was grown for sporu-
lation at 25 °C on potato dextrose agar for 7 days. Spores were col-
lected using a solution of 0.01% (v/v) Tween 80, counted by using
Thoma Bright line counting chamber (Optick labor), and stored at
—20°C in 25% (v/v) glycerol before use. Conidia were inoculated
(density ~10%/mL) into 250 mL Erlenmeyer flasks containing
100 mL synthetic medium (SAM) at 25 °C for 2-18 days, without
shaking. The composition of SAM (per liter of distilled water)
was: 3 g NH4NOs, 26 g K,HPO,, 1g KCl, 1 g MgS04-7H,0, 10 mL
mineral solution (composition per liter of distilled water: 70 mg
N32B407*10H20, 50 mg (NH4)6 M07024*4H20, 1000 mg FESO4~7H20,

30 mg CuS04-5H,0, 11 mg MnSO4-H,0, 1760 mg ZnSO4-7H,0), and
50 g glucose. The pH of the medium was adjusted to 6.5 by the
addition of 2 N HCL. Mycelium was harvested by filtration through
a 0.45-pM filter, grounded in liquid nitrogen and then stored at
—80 °C before nucleic acid extraction. Secondary metabolites were
extracted from filtrates of 2-18 days old cultures medium. Three
replications of each sample were analyzed.

2.2. Nucleic acid extraction

Rapid method of genomic DNA extraction (Lui et al., 2000) was
used for transformants screening by PCR. Large quantity genomic
DNA was extracted by CTAB extraction method (Gardes and Bruns,
1993). The quality and quantity of DNA were estimated by measur-
ing OD 260 nm/OD 280 nm and OD 260 nm, respectively.

Total RNA was extracted from A. westerdijkiae using the Tri-re-
agent (Euromedex France) DNA/RNA/Protein extraction kit. The
quality and quantity of RNA was checked by the OD 260 nm/OD
280 nm ratio and agarose gel electrophoresis according to standard
protocols (Sambrook et al., 1989).

2.3. Cloning of aomsas gene in A. westerdijkiae

Degenarated primers based Gene walking approach and RACE-
PCR was used to clone aomsas gene in A. westerdijkiae. Fig. 2 marks
positions while Table 1 lists all the primers used during this study.
The degenerated primer pair LC3/LC5c (Bingle et al., 1999) de-
signed for ketosynthase (KS) domains of MSAS-type PKSs was used
to isolate putative PKS gene fragment of 700 bp (Atoui et al., 2006).
The degenerated primers MS2 and MS4 targeting the conserved re-
gions GVSAMGFPW and GVVHAAGYV were further used with spe-
cific primer MS1 allowed by PCR to clone an additional 2 kb of
the gene. Using the same strategy, an additional 1.3 kb down-
stream sequence of the aomsas gene was subsequently cloned. Fi-
nally the 5" and 3’ extremity of the aomsas gene were subsequently
amplified by using a RACE-PCR approach on cDNA (kit supplied by
Invitrogen with 5’-primer and 3’-primer). Each time the PCR prod-
ucts obtained were cloned in pCR2.1-Topo vector (Invitrogen) and
sequenced. Alignments of the sequenced fragments were per-
formed to search for consensus.

2.4. PCR and sequencing

PCR was performed with the Tag recombinant polymerase
(Invitrogen, USA). Amplification was carried out in a 50-LL reaction
mixture containing: 5 pL of Taq polymerase 10x buffer, 1.5 puL of
50 mM MgCl,, 1 pL of ANTP 10 mM of each (Promega), 1 uM of
each primer, 1.5 U of Taq, about 200 ng of DNA genomic, H,O up
to 50 pL. Reaction conditions were: 94 °C for 4 min, (94 °C for
455, 53 °C for 45 s and 72 °C for 1 min) x 30 cycles followed by
an incubation at 72 °C for 10 min. The amplified products were
examined by 1% (w/v) agarose gel. The PCR products were cloned
into pCR2.1-Topo vector according to the supplier’s instructions.
Sequencing of the fragments was performed by Genomexpress
(Grenoble, France).

2.5. Data analysis

The deduced amino acid sequence was determined using the
http://www.expasy.org/tools/dna.html site while protein-protein
Blast (Blastp) searches were conducted at the GenBank database:
http://www.ncbi.nlm.nih.gov. The alignments were conducted
using the website http://prodes.toulouse.inra.fr/multalin/multalin.
html.
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Fig. 2. Alignment of the deduced amino acid sequence of aomsas gene with other MSAS-type PKS gene. 6-MSAS involved in the biosynthesis 6-MSA in Byssochlamys nivea
(Accession No.: AAK48943), 6-MSAS involved in the biosynthesis of patulin in P. patulum (Accession No.: CAA39295), 6-MSAS in A. terreus (Accession No.: AAC49814) and PKS
responsible for orsellinic acid biosynthesis in Streptomyces viridochromogenes (Accession No.: AAK83194). Red boxes indicate conserved regions of different functional
domains. Flash arrows indicate positions of different specific and degenerated primers (Table 1) used in gene walking experiment. (For interpretation of the references to
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Table 1
Oligonucleotide primers.

Primer name Sequence (5'-3")

LC3 GCIGA(A/G)CA(A/G)ATGGA(T/C)CCICA

LC5¢ GTIGAIGTIGC(G/A)TGIGC(T/C)TC

MS1 GCCGCCGGCGTTGACCCGATGAC

MS2 CGGCCIAAGGIAA(T/C)ICCITG

MS3 CTTAGCAAATCATTCACCATGGAC

MS4 (C/TYT(G/C)(A/G)(T/C)(C/T)(A/T)TCCAGCACGCCIGC
MS5 ATCCAAACGCTAGACCAACTCGGC

MS6 CATTTTCGATCGCCTGCCATGCC

MSdF1 ATGCCTTTCTTGGATCCGTCCTCG

MSdR1 CTAGGCAGCTAGTTTCTCCGCGAAC

MSdF CCGATCGTGTTCAGATCTTGACCTTCCTGATG
MSdR ACTAAGTTGGGGATGTCCTGAGATGACGAGA
AOLC35-2R CTGGAGGATCTCGCTGATGT

AoLC35-2L TTTGATCGACCATTGTGTGC

3'MsR CGGGGGCAATGAGATATGAAAAAG

3'MsF GAACCCGCTCGTCTGGCTAAG

hph2R CTGGATGCAGCAACCTCTAT

hph2F CTGAGATGACGAACTTGAC

TubF CTCGAGCGTATGAACGTCTAC

TubR AAACCCTGGAGGCAGTCGC

2.6. Reverse transcription PCR

The expression of aomsas gene in A. westerdijkiae was examined
by using reverse transcription PCR (RT-PCR) with two specific
primers AoLC35-2L and AoLC35-2R designed from the KS domain
of aomsas gene (Table 1). For RT-PCR, total RNA was treated with
DNase I (Promega) to remove DNA contamination. cDNA was syn-
thesized from each sample with Advantage RT-for-PCR Kit (BD Bio-
sciences) according to the supplier’'s manual. cDNA amplification
were performed using Taq recombinant polymerase (Invitrogen,
USA). Beta tubulin was used as positive control using primers TubF
and TubR (Table 1).

2.7. Plasmid construction and transformation

To construct TopoMShph, the aomsas gene replacement vector,
a 1995 bp amplified fragment containing Sall restriction site was
obtained using MSdF and MSdR primers (Fig. 4a and Table 1). This
fragment was ligated into pCR2.1-Topo plasmid generating the
TopoMS plasmid. TopoMS and pID2.1 plasmids were restricted
using Sall enzyme. The hph cassette (2.4 kb) obtained from
pID2.1 was ligated with the restricted TopoMS plasmid to produce
TopoMShph vector, in which the 5 and 3’-ends of hph cassette are
flanked by aomsas gene fragments. To construct the complementa-
tion vector pAN-MSAS, PCR primers MSdF1 and MSdR1 were de-
signed to amplify a 5-kb aomsas gene fragment. The amplified
fragment was cloned in pAN8-1 plasmid containing phleomycine
resistance cassette.

The aomsas gene inactivation and complementary mutant pro-
duction were achieved by preparing protoplasts of the correspond-
ing strains and transforming with TopoMShph (Fig. 3b) and pAN-
MSAS, respectively, as previously described (Jaoanne et al., 2007;
O’Callaghan et al., 2003). Lysing enzyme (40 mg/mL) (Sigma) was
used for the preparation of protoplasts.

2.8. Screening of the transformants

The aomsas disrupted mutants (aoAmsas) were initially selected
on YES medium (20 g/L of yeast extract, 1 M sucrose) supple-
mented with 150 pg/mL of hygromycin B, while the genetically
complemented mutants (ao+msas) were selected on YES medium
supplemented with 120 pg/mL phleomycin. These mutants were
further screened through PCRs, using two hph gene specific prim-
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Fig. 3. Kinetic production of secondary metabolites and expression of aomsas gene
in A. westerdijkiae. (a) Kinetic production of isoasperlactone, asperlactone and 6-
MSA in a growing culture of A. westerdijkiae at 25 °C in synthetic medium during a
time course of 2-18 days. (b) Profile of aomsas gene expression (upper panel) by RT-
PCR. Beta tubuline was used as loading control (bottom panel).

ers hph2R and hph2F (Table 1) and aomsas gene specific primers
MSdF1, MSdR1 and MSdR. Total genomic DNA from wild type A.
westerdijkiae, ao Amsas and ao+msas strains were digested with en-
zymes Ball and Smal and were subjected to southern hybridization
(Southern, 1975) to confirm aomsas gene disruption and genetic
complementation. These restriction enzyme were chosen because
they cut the 5'-flanking region of the aomsas (position 2054 bp
and 2850 bp) but do not cut the hph cassette or 3'-flanking end
of the aomsas gene (Fig. 4b). The digested DNA was then trans-
ferred to nylon membrane (Amersham, France) and probed with
radioactively labeled DNA fragments of aomsas1 gene “PM” ampli-
fied through primer pair 3'MsF/3'MsR (probe position is shown in
Fig. 4b).

2.9. Extraction of secondary metabolites

For secondary metabolites extraction of wild type A. westerdij-
kiae, aoAmsas and ao+msas mutants, 30 mL filtrate sample of the
culture medium was acidified with 200 pL of 12 N HCl, mixed with
30 mL chloroform and vigorously shaken for 10 min. The solvent
phase was then decanted, dried under vacuum and re-dissolved
in 0.5 mL methanol. Twenty microliters of the sample was then
further analyzed by HPLC.

2.10. High-performance liquid-chromatography (HPLC) analysis

The HPLC apparatus consisted of a solvent delivery system, with
both fluorescence (Jex = 332 nm; Jem =466 nm) and UV detectors
(BIO-TEK, Milan, Italy). The analytical column used was a
150 x 4.6 mm Uptisphere 5 um C18 ODB fitted with a guard col-
umn of 10 x 4 mm. The column temperature was 30 °C. Kroma
3000 (BIO-TEK) was the data acquisition system. Injections were
done with an auto-injector (BIO-TEK, Milan, Italy) and the injection
volume was 20 pL. The samples were analyzed by linear gradient
elution using 0.2% glacial acetic acid in 99.8% water (v/v) (A) and
100% acetonitrile (HPLC grade) (B). The crude extract was analyzed
using a linear elution gradient over 45 min at a flow rate of 1 mL/
min, starting from 10% to 50% solvent B over the first 30 min, con-
tinued by a linear gradient to 90% of B in 5 min, followed by an iso-
cratic flow of 90% solvent B for 8 min, and a return to initial
conditions over the last 2 min of the run.
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Fig. 4. Schematic representation of aomsas gene disruption in A. westerdijkiae. (a)
Using primer pair MsdF/MsdR (Table 1), 1995 bp aomsas fragment containing Sall
restriction site (indicated by triangle) was amplified from a 5.298 kb aomsas gene.
PCR product was cloned into pCR2.1-Topo plasmid to generate plasmid TopoMS.
pID2.1 plasmid vector was restricted with Sall (indicated by triangle) to obtain hph
cassette (2.4 kb). TopoMS was restricted with Sall and ligated with hph cassette to
genarate TopoMShph transformation vector. Different colors on the aomsas gene
indicate different functional domains, i.e. p-ketoacyl synthase (KS), acyltransferase
(AT), dehydratase (DH), B-ketoacyl reductase (KR), and an acyl carrier protein (ACP).
(b) Protoplasts of A. westerdijkiae were prepared and aomsas gene was disrupted
using TopoMShph vector to obtain ao4msas mutants. The small red line below
aoAmsas indicates position of radioactively labeled probe, i.e. PM: aomsas gene
specific probe amplified by using primer pair AoLC35-2R/AoLC35-2L. Positions of
the restriction sites of Smal and Sall are indicated by triangles. (c) Genomic DNA of
wild type A. westerdijkiae, aoAmsas and ao+msas transformants were digested with
Smal and Ball restriction enzymes and probed with radioactively labeled aomsas
fragment (PM). In the wild type a 2.8 kb band was detected. In transformant ectMS
the 2.8 kb band is intacted and an additional band was revealed showing an ectopic
insertion of the replacement construct. In the transformants aoAmsas1 and
aoAmsas1 the 2.8 kb band is replaced by the expected 5.2 kb band. In the
genetically complemented mutant ao+msas the 5.2 kb band is replaced by the wild
type 2.8 kb band.

Secondary metabolites of A. westerdijkiae were detected by
comparing the elution time and maximum absorption of UV with
the standard isoasperlactone and asperlactone (Alexis-biochemi-
cals, France) and 6-methylsalicylic acid (ACROS, USA). These stan-
dards were used at a concentration of 10 pg/mL. 6-Methylsalicylic
acid (maximum absorption Amax = 205, 240, 302 nm) were released
at 5 min and isoasperlactone/asperlactone (maximum absorption
Jmax = 220 nm) were released between 7 min and 9 min.

2.11. Chemical complementation study of aoAmsas mutants

The aoAmsas mutants were inoculated in 250 mL Erlenmeyer
flask containing 100 mL SAM medium and incubated at 25 °C. After
72 h 0.7 mM each of 6-MSA, aspyrone and diepoxide were added
independently to separate growing cultures of ao4msas mutants
and again incubated at 25 °C without shaking. After 4 days from
precursor addition secondary metabolites were extracted for HPLC
analyses.

2.12. Sequence accession number

The sequence obtained was deposited in GenBank under the
Accession No. AY540947.

3. Results
3.1. aomsas is a MSAS-type polyketide gene of A. westerdijkiae

With the intent of extending the 700 bp KS domain fragment of
a MSAS-type PKS gene identified by Atoui et al. (2006) in A. west-
erdijkiae, we adopted the degenerated primers based gene walking
and RACE-PCR techniques. The specific primers MS1, MS3, MS5 and
MS6 and degenerated primers MS2 and MS4 (Table 1) allowed the
sequencing of a complete 5298 bp aomsas gene (Fig. 2). The aomsas
gene displayed a unique open reading frame (ORF) of 1766 amino
acids. Alignment of the amino acid sequence of aomsas with other
PKS gene displayed an identity of 56% to 6-MSAS gene involved in
the biosynthesis 6-MSA in Byssochlamys nivea, 54% to 6-MSAS gene
involved in the biosynthesis of patulin in P. patulum and 50% to a
hypothetical 6-MSAS gene in A. terreus (Fig. 2). The aomsas also dis-
played a significant identity of 40% with the PKS responsible for
orsellinic acid biosynthesis in Streptomyces viridochromogenes. Like
other 6-MSAS gene, aomsas contained characteristic conserved do-
mains of fungal type I PKSs (Fig. 2). These domains were (from N
terminus to C terminus) B-ketoacyl synthase, acyltransferase,
dehydratase, B-ketoacyl reductase, and an acyl carrier protein. No
thioesterase or enoyl-reductase domains were found in aomsas
gene.

3.2. Asperlactone and isoasperlactone productions and aomsas gene
expression in A. westerdijkiae

In liquid synthetic medium (SAM), without shaking at 25 °C, A.
westerdijkiae presented two exponential growth phases from day 3
to day 5 (early exponential growth phase) and day 6 to day 9 (late
exponential growth phase), followed by a stationary phase from
day 9 onward (Fig. 3a). Asperlactone and isoasperlactone were
simultaneously excreted from day 4 and reach a maximum level
at day 9 and day 10, respectively. We have further observed that
6-MSA was transitorily produced in very low quantity between
day 6 and day 8 and then disappeared (Fig. 3a).

Tracking the transcriptional signals of aomsas gene during dif-
ferent growth stages of A. westerdijkiae in SAM medium, we



observed that expression of the gene started from day 3 onwards,
stayed constant at maximum level between day 4 and 9 and then
stopped after day 11 (Fig. 3b).

3.3. aomsas gene code for 6-MSA, isoasperlactone and asperlactone in
A. westerdijkiae

Following transformation of A. westerdijkiae with TopoMShph
vector (Fig. 4b), one hundred and twenty transformants were
obtained. Forty transformants were screened by two consecutive
PCRs on genomic DNA in order to monitor the integration of hph
gene into the genome of A. westerdijkiae. In only two out of the
selected forty transformants the hph cassette was detected by
the two PCR tests (5% transformation efficiency was obtained).
Digested genomic DNA from the wild type A. westerdijkiae and
the two ao4dmsas transformants were subsequently analyzed by
southern blotting. In the wild type A. westerdijkiae a signal corre-
sponding to 2.8 kb fragment of aomsas gene was observed when
its digested genomic DNA was probed with PM (Fig. 4c, lane 1).
Probing of the aomsas disrupted mutants, i.e. aoA4msas1 and aoAm-
sas2, with PM probe resulted into an expected signal of 5.2 kb
(2.8 kb correspond to aomsas + 2.4 kb correspond to hph cassette)
(Fig. 4c, lane 3 and 4, respectively). We have also observed one ec-
topic mutant, i.e. ectMS, where the transformation construct was
inserted into a non targeted region (Fig. 4c, lane 2).

Wild type A. westerdijkiae, aoAmsas1, aoAmsas2 and ectMS,
were grown on solid CYA and liquid SM media, no difference was
observed in their colony sizes, growth patterns, visual pigments
and conidial counts. Filtrate of the 10 days old culture of wild type
A. westerdijkiae, aoAmsas and ectMS mutants were used to extract
secondary metabolites. The HPLC profiles of the extracted second-
ary metabolites revealed that inactivation of aomsas gene by the
insertion of hph cassette disrupt the production of isoasperlactone,
asperlactone (Fig. 5a) and the transitory biosynthesis of 6-MSA. No
impact of the ectopic insertion was observed on the biosynthesis of
secondary metabolites (data not shown).

To confirm the role of aomsas gene, genetic complementation of
the two aoAmsas mutants were performed with pAN-MSAS trans-
formation vector (containing aomsas gene fragment and phleomy-
cine gene cassette). Filtrate of the 10 days old culture of positively
tested complemented mutant ao+msas were used to extract sec-
ondary metabolites. HPLC profile of ao+msas mutant revealed that
re-insertion of aomsas gene restored the productions of asperlac-
tone, isoasperlactone and 6-MSA (Fig. 5a).

3.4. 6-MSA, diepoxide and aspyrone are intermediates of
isoasperlactone and asperlactone

Chemical complementation was performed by independent
incorporation of 6-MSA (0.7 mM), diepoxide (0.7 mM) and aspy-
rone (0.7 mM) to separate growing cultures of ao4msas mutants.
HPLC profile and UV spectra of the chemically complemented
mutants revealed that addition of 6-MSA, diepoxide and aspyrone
produced similar effects and restored the biosynthesis of both iso-
asperlactone and asperlactone (Fig. 5b).

4. Discussion

From the analyses of fungal PKS gene sequences, Bingle et al.
(1999) suggested that these genes could be divided into two sub-
classes designated as WA-type and MSAS-type or partially reduced
type. They designed two pairs of degenerated primers, i.e. LC1/LC2c
and LC3/LC5c for the amplification of fungal PKS genes in each of
these subclasses. We have previously utilized LC3/LC5c¢ pair of pri-
mer to clone a 700 bp KS domain of aomsas gene in A. westerdijkiae
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Fig. 5. Secondary metabolites study. (a) Secondary metabolites were extracted
from 10days old cultures of wild type, aoAdmsas and ao+msas strains of A.
westerdijkiae. HPLC traces of the lactonic metabolites, i.e. isoasperlactone (eluted at
6 min) and asperlactone (eluted at 9 min) were compared. (b) Separate growing
cultures of ao4msas mutant in synthetic medium at 25 °C were independently
complemented with 0.7 mM 6-each of methylsalicylic acid, aspyrone and diepox-
ide. Secondary metabolites were extracted from 8 days old cultures and analyzed by
tracking the HPLC traces.

(Atoui et al., 2006). After prolongation of this fragment by gene
walking approach to a complete 5298 bp gene and alignment in
database with other PKS genes, we have observed that the amino
acid sequence of aomsas has high degree similarities to fungal
MSAS-type PKS genes (Fig. 2). The different conserved domains
identified in aomsas further confirmed that this gene belongs to
the MSAS-type subclass (Fig. 2). These observations are in accor-
dance to the findings of Bingle et al. (1999), who stated that the
degenerated pair of primers LC3/LC5c¢ has the capability to amplify
fungal MSAS-type PKS genes.

To understand the role of aomsas gene in A. westerdijkiae, we
first investigated the kinetic production of secondary metabolites
and the expression of the aomsas gene. We have observed that
both transcriptional signals of aomsas and biosynthesis of asper-



lactone, isoasperlactone and 6-MSA occur within the exponential
growth phase of A. westerdijkiae (Fig. 3). These observations sug-
gest that aomsas could be related to the biosynthesis of asperlac-
tone and/or isoasperlactone and/or 6-MSA. It has been reported in
the literature that MSAS-type PKS genes are involved in the bio-
synthesis of several olyketide metabolites varying greatly in their
functions. An MSAS-type PKS gene 6msas has been found to be in-
volved in the biosynthesis myctoxine patuline in P. patulum,
P. urticae and Byssochlamys fulva (Beck et al., 1990; Bu'Lock
et al., 1968; Puel et al., 2007). Another MSAS gene AviM has been
found to be involved in the biosynthesis of antibiotic avilamycin
in S. viridochromogenes (Gaisser et al., 1997). The MSAS gene
has also been reported to induce the production plant defense
compound salicylic acid in tobacco (Nasser et al., 2001). Although
A. westerdijkiae is a non-producer of patuline, avilamycin and
salicylic acid but this do not preclude the possibility of having
an MSAS-type PKS gene in its genome. A precedent of such a sit-
uation is provided by Geisen (1996), who used a multiplex PCR
method to identify sequences homologous to aflatoxin biosynthe-
sis gene in the non-producing species of Aspergillus and Penicil-
lium (Geisen, 1996).

Insertional inactivation remained the key technique for func-
tional characterization of various fungal pks genes (Atoui et al,,
2006; Bacha et al., 2009; O’Callaghan et al., 2003). So we followed
similar technique to produce aomsas knockout mutants
“aoAmsas1” and “aoAmsas2”. These mutants were found deficient
in the biosynthesis of two end product lactonic metabolites, i.e.
isoasperlactone and asperlactone (Fig. 4a), and one compound of
intermediate nature, i.e. 6-MSA. These observations confirmed that
aomsas played an important role in the biosynthesis of 6-MSA, iso-
asperlactone and asperlactone. We further proved these results by
performing genetic complementation, where the genetically com-
plemented mutant ao+msas restored the biosynthesis of all the
missing metabolites (Fig. 4a).

It has been previously demonstrated through NMR studies that
diepoxide and aspyrone are intermediates in the biosynthetic
pathway of isoasperlactone and asperlactone in A. melleus (Fig. 1)
(James and Andrew, 1991). These authors further stated that asper-
lactone is directly biosynthesized from the diepoxide, while in the
biosynthesis isoasperlactone the diepoxide is first converted to
aspyrone and then aspyrone to isoasperlactone. They also sug-
gested an alternate rout for the biosynthesis isoasperlactone with-
out the involvement of aspyrone. Chemical complementation of
the asperlactone/isoasperlactone deficient mutant, i.e. aoAmsas,
through incorporation of 6-MSA, diepoxide and aspyrone clearly
shown that, these products are intermediates in the biosynthetic
pathway of asperlactone and isoasperlactone (Fig. 5b). Indeed each
of the incorporated metabolite restored simultaneously the bio-
synthesis of both asperlactone and isoasperlactone. Aspyrone and
diepoxide are never observed in the culture medium of wild type
A. westerdijkiae. This could probably be due to a quick conversion
of these compounds to their final products (asperlactone and isoas-
perlactone), avoiding an intracellular accumulation and extracellu-
lar excretion.

Based on our results and the findings of James and Andrew,
(1991) we proposed a biosynthetic scheme for the biosynthesis
of isoasperlactone and asperlactone (Fig. 1). According to this
scheme, during the early biosynthetic steps aomsas gene induces
the production of 6-MSA, which is then converted to diepoxide.
The diepoxide could then follow two routes, one that leads directly
to the production of asperlactone while the second leads to the
production of isoasperlactone via aspyrone pathway. We have ob-
served during chemical complementation experiment that even
incorporation of aspyrone without diepoxide restored the produc-
tion asperlactone and isoasperlactone in aoAmsas mutant. Previ-
ously James and Andrew, (1991) did not proposed this scheme;

they proposed aspyrone as intermediate of isoasperlactone but
not of asperlactone. Hence we proposed that diepoxide and aspy-
rone could be enter-convertible compounds which could lead to
the production of both asperlactone and isoasperlactone. Our
observations are in accordance to the previous findings, suggesting
that lactonic metabolites asperlactone and isoasperlactone could
be derived from a common biosynthetic precursor, a diepoxy inter-
mediate (Sorensen and Simpson, 1986).

This new aomsas gene can be used for further experiments, as a
starting material for the identification of asperlactone/isoasperlac-
tone gene cluster.
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