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a b s t r a c t

Aspergillus westerdijkiae is the main producer of several biologically active polyketide metabolites includ-

ing isoasperlactone and asperlactone. A 5298 bp polyketide synthase gene ‘‘aomsas” has been cloned in

Aspergillus westerdijkiae by using gene walking approach and RACE-PCR. The predicted amino acid

sequence of aomsas shows an identity of 40–56% with different methylsalicylic acid synthase genes found

in Byssochlamys nivea, P. patulum, A. terreus and Streptomyces viridochromogenes. Based on the reverse

transcription PCR and kinetic secondary metabolites production studies, aomsas expression was found

to be associated with the biosynthesis of isoasperlactone and asperlactone. Moreover an aomsas knockout

mutant ‘‘aoDmsas” of A. westerdijkiae, not only lost the capacity to produce isoasperlactone and asperlac-

tone, but also 6-methylsalicylic acid. The genetically complemented mutant ao+msas restored the biosyn-

thesis of all the missing metabolites. Chemical complementation through the addition of

6-methylsalicylic acid, aspyrone and diepoxide to growing culture of aoDmsasmutant revealed that these

compounds play intermediate roles in the biosynthesis of asperlactone and isoasperlactone.

1. Introduction

Aspergillus westerdijkiae is a producer of several biologically

active polyketide metabolites including isoasperlactone and asper-

lactone (Atoui et al., 2006; Balcells et al., 1995; Gaucher and Shep-

herd, 1968; Torres et al., 1998). These two metabolites belong to

the partially reduced or methylsalicylic acid (MSA) type polyketide

group and have same chemical structure but are different stereo-

chemically. Isoasperlactone and asperlactone are on one hand effi-

cient antimicrobial agents (Rosenbrook and Carney, 1970; Torres

et al., 1998), and on the other hand they contain ovicidal activities

against Nezara viridula (Balcells et al., 1995, 1998). It has been

reported that asperlactone and isoasperlactone presented a strong

anti-bacterial and anti-fungal activities when compared with other

antimicrobial agents (Balcells et al., 1998).

It has been previously demonstrated that during the biosynthe-

sis of MSA type polyketides, the first step is the formation of

6-methylsalicylic acid (6-MSA) by the condensation of one mole-

cule of acetyl-coA and three molecules of malonyl-coA (David

et al., 1995). This reaction is catalyzed by a multifunctional enzyme

system known as methylsalicylic acid synthase (MSAS). This en-

zyme has been reported to catalyze several MSA type polyketide

compounds like patuline in Penicillium patulum (Beck et al., 1990)

and Byssochlamys fulva (Puel et al., 2007) and avilamycin in Strep-

tomyces viridochromogenes (Gaisser et al., 1997).

Not much is known about the biosynthetic pathways of isoas-

perlactone and asperlactone, except for a hypothetical scheme pro-

posed by James and Andrew (1991). According to this scheme, the

isomeric metabolites aspyrone, isoasperlactone and asperlactone

are derived from a common biosynthetic precursor, the diepoxide.

James and Andrew (1991) further stated that asperlactone is

formed directly from the diepoxide, while isoasperlactone is

formed from diepoxide via aspyrone pathway (Fig. 1).

Many PKS genes have been sequenced in filamentous fungi

including A. fumigatus and A. niger (Metz et al., 2001; Niermanm

et al., 2005; Pel et al., 2007; Sebastian et al., 2007). It is therefore

possible to use the most conserved region among these PKS genes

(Fig. 2) as primers for a PCR based cloning strategy. For this pur-

pose, mainly the ketosynthase (KS) and acyle transferase (AT)

domains, i.e. the most conserved domains among different PKSs

(Fig. 2), have been utilized. The previously designed pairs of

degenerated primers KS1/KS2, LC1/LC2c and LC3/LC5c (Bingle

et al., 1999; Nicholson et al., 2001) has been already utilized in
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our laboratory to clone eight KS domains from different PKSs

(Atoui et al., 2006), including one from MSAS in A. westerdijkiae.

Recently one of these PKS genes has been found to be involved in

the biosynthesis of ochratoxine A (Bacha et al., 2009).

In this paper, we report sequencing and functional characteriza-

tion of the firstMSAS-type PKS gene ‘‘aomsas” identified inA.wester-

dijkiae. It is involved in the biosynthesis of two pharmacologically

important lactonic metabolites, i.e. isoasperlactone and asperlac-

tone. We also demonstrate that 6-methylsalicylic acid (6-MSA),

aspyrone and diepoxide are intermediates in their biosynthetic

pathway.

2. Materials and methods

2.1. Fungal strain and culture conditions

Aspergillus westerdijkiae NRRL 3174 strain was grown for sporu-

lation at 25 °C on potato dextrose agar for 7 days. Spores were col-

lected using a solution of 0.01% (v/v) Tween 80, counted by using

Thoma Bright line counting chamber (Optick labor), and stored at

ÿ20 °C in 25% (v/v) glycerol before use. Conidia were inoculated

(density �106/mL) into 250 mL Erlenmeyer flasks containing

100 mL synthetic medium (SAM) at 25 °C for 2–18 days, without

shaking. The composition of SAM (per liter of distilled water)

was: 3 g NH4NO3, 26 g K2HPO4, 1 g KCl, 1 g MgSO4�7H2O, 10 mL

mineral solution (composition per liter of distilled water: 70 mg

Na2B4O7�10H2O, 50 mg (NH4)6 Mo7O24�4H2O, 1000 mg FeSO4�7H2O,

30 mg CuSO4�5H2O, 11 mg MnSO4�H2O, 1760 mg ZnSO4�7H2O), and

50 g glucose. The pH of the medium was adjusted to 6.5 by the

addition of 2 N HCl. Mycelium was harvested by filtration through

a 0.45-lM filter, grounded in liquid nitrogen and then stored at

ÿ80 °C before nucleic acid extraction. Secondary metabolites were

extracted from filtrates of 2–18 days old cultures medium. Three

replications of each sample were analyzed.

2.2. Nucleic acid extraction

Rapid method of genomic DNA extraction (Lui et al., 2000) was

used for transformants screening by PCR. Large quantity genomic

DNA was extracted by CTAB extraction method (Gardes and Bruns,

1993). The quality and quantity of DNA were estimated by measur-

ing OD 260 nm/OD 280 nm and OD 260 nm, respectively.

Total RNA was extracted from A. westerdijkiae using the Tri-re-

agent (Euromedex France) DNA/RNA/Protein extraction kit. The

quality and quantity of RNA was checked by the OD 260 nm/OD

280 nm ratio and agarose gel electrophoresis according to standard

protocols (Sambrook et al., 1989).

2.3. Cloning of aomsas gene in A. westerdijkiae

Degenarated primers based Gene walking approach and RACE-

PCR was used to clone aomsas gene in A. westerdijkiae. Fig. 2 marks

positions while Table 1 lists all the primers used during this study.

The degenerated primer pair LC3/LC5c (Bingle et al., 1999) de-

signed for ketosynthase (KS) domains of MSAS-type PKSs was used

to isolate putative PKS gene fragment of 700 bp (Atoui et al., 2006).

The degenerated primers MS2 and MS4 targeting the conserved re-

gions GVSAMGFPW and GVVHAAGV were further used with spe-

cific primer MS1 allowed by PCR to clone an additional 2 kb of

the gene. Using the same strategy, an additional 1.3 kb down-

stream sequence of the aomsas gene was subsequently cloned. Fi-

nally the 50 and 30 extremity of the aomsas gene were subsequently

amplified by using a RACE-PCR approach on cDNA (kit supplied by

Invitrogen with 50-primer and 30-primer). Each time the PCR prod-

ucts obtained were cloned in pCR2.1-Topo vector (Invitrogen) and

sequenced. Alignments of the sequenced fragments were per-

formed to search for consensus.

2.4. PCR and sequencing

PCR was performed with the Taq recombinant polymerase

(Invitrogen, USA). Amplification was carried out in a 50-lL reaction
mixture containing: 5 lL of Taq polymerase 10� buffer, 1.5 lL of

50 mM MgCl2, 1 lL of dNTP 10 mM of each (Promega), 1 lM of

each primer, 1.5 U of Taq, about 200 ng of DNA genomic, H2O up

to 50 lL. Reaction conditions were: 94 °C for 4 min, (94 °C for

45 s, 53 °C for 45 s and 72 °C for 1 min) � 30 cycles followed by

an incubation at 72 °C for 10 min. The amplified products were

examined by 1% (w/v) agarose gel. The PCR products were cloned

into pCR2.1-Topo vector according to the supplier’s instructions.

Sequencing of the fragments was performed by Genomexpress

(Grenoble, France).

2.5. Data analysis

The deduced amino acid sequence was determined using the

http://www.expasy.org/tools/dna.html site while protein–protein

Blast (Blastp) searches were conducted at the GenBank database:

http://www.ncbi.nlm.nih.gov. The alignments were conducted

using the website http://prodes.toulouse.inra.fr/multalin/multalin.

html.

Fig. 1. Proposed biosynthetic scheme of isoasperlactone and asperlactone in A.

westerdijkiae. Based on our results and the study of James and Andrew (1991), we

proposed a hypothetical biosynthetic scheme of isoasperlactone and asperlactone

biosynthesis. Straight arrow lines indicate our proposed scheme, dotted arrow lines

indicate biosynthetic scheme of James and Andrew (1991), while dashed arrow line

indicate steps that are shared in our proposed biosynthetic scheme and in the

scheme of James and Andrew (1991).



Fig. 2. Alignment of the deduced amino acid sequence of aomsas gene with other MSAS-type PKS gene. 6-MSAS involved in the biosynthesis 6-MSA in Byssochlamys nivea

(Accession No.: AAK48943), 6-MSAS involved in the biosynthesis of patulin in P. patulum (Accession No.: CAA39295), 6-MSAS in A. terreus (Accession No.: AAC49814) and PKS

responsible for orsellinic acid biosynthesis in Streptomyces viridochromogenes (Accession No.: AAK83194). Red boxes indicate conserved regions of different functional

domains. Flash arrows indicate positions of different specific and degenerated primers (Table 1) used in gene walking experiment. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)



2.6. Reverse transcription PCR

The expression of aomsas gene in A. westerdijkiae was examined

by using reverse transcription PCR (RT-PCR) with two specific

primers AoLC35-2L and AoLC35-2R designed from the KS domain

of aomsas gene (Table 1). For RT-PCR, total RNA was treated with

DNase I (Promega) to remove DNA contamination. cDNA was syn-

thesized from each sample with Advantage RT-for-PCR Kit (BD Bio-

sciences) according to the supplier’s manual. cDNA amplification

were performed using Taq recombinant polymerase (Invitrogen,

USA). Beta tubulin was used as positive control using primers TubF

and TubR (Table 1).

2.7. Plasmid construction and transformation

To construct TopoMShph, the aomsas gene replacement vector,

a 1995 bp amplified fragment containing SalI restriction site was

obtained using MSdF and MSdR primers (Fig. 4a and Table 1). This

fragment was ligated into pCR2.1-Topo plasmid generating the

TopoMS plasmid. TopoMS and pID2.1 plasmids were restricted

using SalI enzyme. The hph cassette (2.4 kb) obtained from

pID2.1 was ligated with the restricted TopoMS plasmid to produce

TopoMShph vector, in which the 50 and 30-ends of hph cassette are

flanked by aomsas gene fragments. To construct the complementa-

tion vector pAN-MSAS, PCR primers MSdF1 and MSdR1 were de-

signed to amplify a 5-kb aomsas gene fragment. The amplified

fragment was cloned in pAN8-1 plasmid containing phleomycine

resistance cassette.

The aomsas gene inactivation and complementary mutant pro-

duction were achieved by preparing protoplasts of the correspond-

ing strains and transforming with TopoMShph (Fig. 3b) and pAN-

MSAS, respectively, as previously described (Jaoanne et al., 2007;

O’Callaghan et al., 2003). Lysing enzyme (40 mg/mL) (Sigma) was

used for the preparation of protoplasts.

2.8. Screening of the transformants

The aomsas disrupted mutants (aoDmsas) were initially selected

on YES medium (20 g/L of yeast extract, 1 M sucrose) supple-

mented with 150 lg/mL of hygromycin B, while the genetically

complemented mutants (ao+msas) were selected on YES medium

supplemented with 120 lg/mL phleomycin. These mutants were

further screened through PCRs, using two hph gene specific prim-

ers hph2R and hph2F (Table 1) and aomsas gene specific primers

MSdF1, MSdR1 and MSdR. Total genomic DNA from wild type A.

westerdijkiae, aoDmsas and ao+msas strains were digested with en-

zymes BalI and SmaI and were subjected to southern hybridization

(Southern, 1975) to confirm aomsas gene disruption and genetic

complementation. These restriction enzyme were chosen because

they cut the 50-flanking region of the aomsas (position 2054 bp

and 2850 bp) but do not cut the hph cassette or 30-flanking end

of the aomsas gene (Fig. 4b). The digested DNA was then trans-

ferred to nylon membrane (Amersham, France) and probed with

radioactively labeled DNA fragments of aomsas1 gene ‘‘PM” ampli-

fied through primer pair 30MsF/30MsR (probe position is shown in

Fig. 4b).

2.9. Extraction of secondary metabolites

For secondary metabolites extraction of wild type A. westerdij-

kiae, aoDmsas and ao+msas mutants, 30 mL filtrate sample of the

culture medium was acidified with 200 lL of 12 N HCl, mixed with

30 mL chloroform and vigorously shaken for 10 min. The solvent

phase was then decanted, dried under vacuum and re-dissolved

in 0.5 mL methanol. Twenty microliters of the sample was then

further analyzed by HPLC.

2.10. High-performance liquid-chromatography (HPLC) analysis

The HPLC apparatus consisted of a solvent delivery system, with

both fluorescence (kex = 332 nm; kem = 466 nm) and UV detectors

(BIO-TEK, Milan, Italy). The analytical column used was a

150 � 4.6 mm Uptisphere 5 lm C18 ODB fitted with a guard col-

umn of 10 � 4 mm. The column temperature was 30 °C. Kroma

3000 (BIO-TEK) was the data acquisition system. Injections were

done with an auto-injector (BIO-TEK, Milan, Italy) and the injection

volume was 20 lL. The samples were analyzed by linear gradient

elution using 0.2% glacial acetic acid in 99.8% water (v/v) (A) and

100% acetonitrile (HPLC grade) (B). The crude extract was analyzed

using a linear elution gradient over 45 min at a flow rate of 1 mL/

min, starting from 10% to 50% solvent B over the first 30 min, con-

tinued by a linear gradient to 90% of B in 5 min, followed by an iso-

cratic flow of 90% solvent B for 8 min, and a return to initial

conditions over the last 2 min of the run.

Table 1

Oligonucleotide primers.

Primer name Sequence (50–30)

LC3 GCIGA(A/G)CA(A/G)ATGGA(T/C)CCICA

LC5c GTIGAIGTIGC(G/A)TGIGC(T/C)TC

MS1 GCCGCCGGCGTTGACCCGATGAC

MS2 CGGCCIAAGGIAA(T/C)ICCITG

MS3 CTTAGCAAATCATTCACCATGGAC

MS4 (C/T)T(G/C)(A/G)(T/C)(C/T)(A/T)TCCAGCACGCCIGC

MS5 ATCCAAACGCTAGACCAACTCGGC

MS6 CATTTTCGATCGCCTGCCATGCC

MSdF1 ATGCCTTTCTTGGATCCGTCCTCG

MSdR1 CTAGGCAGCTAGTTTCTCCGCGAAC

MSdF CCGATCGTGTTCAGATCTTGACCTTCCTGATG

MSdR ACTAAGTTGGGGATGTCCTGAGATGACGAGA

AoLC35-2R CTGGAGGATCTCGCTGATGT

AoLC35-2L TTTGATCGACCATTGTGTGC

30MsR CGGGGGCAATGAGATATGAAAAAG

30MsF GAACCCGCTCGTCTGGCTAAG

hph2R CTGGATGCAGCAACCTCTAT

hph2F CTGAGATGACGAACTTGAC

TubF CTCGAGCGTATGAACGTCTAC

TubR AAACCCTGGAGGCAGTCGC

Fig. 3. Kinetic production of secondary metabolites and expression of aomsas gene

in A. westerdijkiae. (a) Kinetic production of isoasperlactone, asperlactone and 6-

MSA in a growing culture of A. westerdijkiae at 25 °C in synthetic medium during a

time course of 2–18 days. (b) Profile of aomsas gene expression (upper panel) by RT-

PCR. Beta tubuline was used as loading control (bottom panel).



Secondary metabolites of A. westerdijkiae were detected by

comparing the elution time and maximum absorption of UV with

the standard isoasperlactone and asperlactone (Alexis-biochemi-

cals, France) and 6-methylsalicylic acid (ACROS, USA). These stan-

dards were used at a concentration of 10 lg/mL. 6-Methylsalicylic

acid (maximum absorption kmax = 205, 240, 302 nm) were released

at 5 min and isoasperlactone/asperlactone (maximum absorption

kmax = 220 nm) were released between 7 min and 9 min.

2.11. Chemical complementation study of aoDmsas mutants

The aoDmsas mutants were inoculated in 250 mL Erlenmeyer

flask containing 100 mL SAMmedium and incubated at 25 °C. After

72 h 0.7 mM each of 6-MSA, aspyrone and diepoxide were added

independently to separate growing cultures of aoDmsas mutants

and again incubated at 25 °C without shaking. After 4 days from

precursor addition secondary metabolites were extracted for HPLC

analyses.

2.12. Sequence accession number

The sequence obtained was deposited in GenBank under the

Accession No. AY540947.

3. Results

3.1. aomsas is a MSAS-type polyketide gene of A. westerdijkiae

With the intent of extending the 700 bp KS domain fragment of

a MSAS-type PKS gene identified by Atoui et al. (2006) in A. west-

erdijkiae, we adopted the degenerated primers based gene walking

and RACE-PCR techniques. The specific primers MS1, MS3, MS5 and

MS6 and degenerated primers MS2 and MS4 (Table 1) allowed the

sequencing of a complete 5298 bp aomsas gene (Fig. 2). The aomsas

gene displayed a unique open reading frame (ORF) of 1766 amino

acids. Alignment of the amino acid sequence of aomsas with other

PKS gene displayed an identity of 56% to 6-MSAS gene involved in

the biosynthesis 6-MSA in Byssochlamys nivea, 54% to 6-MSAS gene

involved in the biosynthesis of patulin in P. patulum and 50% to a

hypothetical 6-MSAS gene in A. terreus (Fig. 2). The aomsas also dis-

played a significant identity of 40% with the PKS responsible for

orsellinic acid biosynthesis in Streptomyces viridochromogenes. Like

other 6-MSAS gene, aomsas contained characteristic conserved do-

mains of fungal type I PKSs (Fig. 2). These domains were (from N

terminus to C terminus) b-ketoacyl synthase, acyltransferase,

dehydratase, b-ketoacyl reductase, and an acyl carrier protein. No

thioesterase or enoyl-reductase domains were found in aomsas

gene.

3.2. Asperlactone and isoasperlactone productions and aomsas gene

expression in A. westerdijkiae

In liquid synthetic medium (SAM), without shaking at 25 °C, A.

westerdijkiae presented two exponential growth phases from day 3

to day 5 (early exponential growth phase) and day 6 to day 9 (late

exponential growth phase), followed by a stationary phase from

day 9 onward (Fig. 3a). Asperlactone and isoasperlactone were

simultaneously excreted from day 4 and reach a maximum level

at day 9 and day 10, respectively. We have further observed that

6-MSA was transitorily produced in very low quantity between

day 6 and day 8 and then disappeared (Fig. 3a).

Tracking the transcriptional signals of aomsas gene during dif-

ferent growth stages of A. westerdijkiae in SAM medium, we

Fig. 4. Schematic representation of aomsas gene disruption in A. westerdijkiae. (a)

Using primer pair MsdF/MsdR (Table 1), 1995 bp aomsas fragment containing SalI

restriction site (indicated by triangle) was amplified from a 5.298 kb aomsas gene.

PCR product was cloned into pCR2.1-Topo plasmid to generate plasmid TopoMS.

pID2.1 plasmid vector was restricted with SalI (indicated by triangle) to obtain hph

cassette (2.4 kb). TopoMS was restricted with SalI and ligated with hph cassette to

genarate TopoMShph transformation vector. Different colors on the aomsas gene

indicate different functional domains, i.e. b-ketoacyl synthase (KS), acyltransferase

(AT), dehydratase (DH), b-ketoacyl reductase (KR), and an acyl carrier protein (ACP).

(b) Protoplasts of A. westerdijkiae were prepared and aomsas gene was disrupted

using TopoMShph vector to obtain aoDmsas mutants. The small red line below

aoDmsas indicates position of radioactively labeled probe, i.e. PM: aomsas gene

specific probe amplified by using primer pair AoLC35-2R/AoLC35-2L. Positions of

the restriction sites of SmaI and SalI are indicated by triangles. (c) Genomic DNA of

wild type A. westerdijkiae, aoDmsas and ao+msas transformants were digested with

SmaI and BalI restriction enzymes and probed with radioactively labeled aomsas

fragment (PM). In the wild type a 2.8 kb band was detected. In transformant ectMS

the 2.8 kb band is intacted and an additional band was revealed showing an ectopic

insertion of the replacement construct. In the transformants aoDmsas1 and

aoDmsas1 the 2.8 kb band is replaced by the expected 5.2 kb band. In the

genetically complemented mutant ao+msas the 5.2 kb band is replaced by the wild

type 2.8 kb band.



observed that expression of the gene started from day 3 onwards,

stayed constant at maximum level between day 4 and 9 and then

stopped after day 11 (Fig. 3b).

3.3. aomsas gene code for 6-MSA, isoasperlactone and asperlactone in

A. westerdijkiae

Following transformation of A. westerdijkiae with TopoMShph

vector (Fig. 4b), one hundred and twenty transformants were

obtained. Forty transformants were screened by two consecutive

PCRs on genomic DNA in order to monitor the integration of hph

gene into the genome of A. westerdijkiae. In only two out of the

selected forty transformants the hph cassette was detected by

the two PCR tests (5% transformation efficiency was obtained).

Digested genomic DNA from the wild type A. westerdijkiae and

the two aoDmsas transformants were subsequently analyzed by

southern blotting. In the wild type A. westerdijkiae a signal corre-

sponding to 2.8 kb fragment of aomsas gene was observed when

its digested genomic DNA was probed with PM (Fig. 4c, lane 1).

Probing of the aomsas disrupted mutants, i.e. aoDmsas1 and aoDm-

sas2, with PM probe resulted into an expected signal of 5.2 kb

(2.8 kb correspond to aomsas + 2.4 kb correspond to hph cassette)

(Fig. 4c, lane 3 and 4, respectively). We have also observed one ec-

topic mutant, i.e. ectMS, where the transformation construct was

inserted into a non targeted region (Fig. 4c, lane 2).

Wild type A. westerdijkiae, aoDmsas1, aoDmsas2 and ectMS,

were grown on solid CYA and liquid SM media, no difference was

observed in their colony sizes, growth patterns, visual pigments

and conidial counts. Filtrate of the 10 days old culture of wild type

A. westerdijkiae, aoDmsas and ectMS mutants were used to extract

secondary metabolites. The HPLC profiles of the extracted second-

ary metabolites revealed that inactivation of aomsas gene by the

insertion of hph cassette disrupt the production of isoasperlactone,

asperlactone (Fig. 5a) and the transitory biosynthesis of 6-MSA. No

impact of the ectopic insertion was observed on the biosynthesis of

secondary metabolites (data not shown).

To confirm the role of aomsas gene, genetic complementation of

the two aoDmsas mutants were performed with pAN-MSAS trans-

formation vector (containing aomsas gene fragment and phleomy-

cine gene cassette). Filtrate of the 10 days old culture of positively

tested complemented mutant ao+msas were used to extract sec-

ondary metabolites. HPLC profile of ao+msas mutant revealed that

re-insertion of aomsas gene restored the productions of asperlac-

tone, isoasperlactone and 6-MSA (Fig. 5a).

3.4. 6-MSA, diepoxide and aspyrone are intermediates of

isoasperlactone and asperlactone

Chemical complementation was performed by independent

incorporation of 6-MSA (0.7 mM), diepoxide (0.7 mM) and aspy-

rone (0.7 mM) to separate growing cultures of aoDmsas mutants.

HPLC profile and UV spectra of the chemically complemented

mutants revealed that addition of 6-MSA, diepoxide and aspyrone

produced similar effects and restored the biosynthesis of both iso-

asperlactone and asperlactone (Fig. 5b).

4. Discussion

From the analyses of fungal PKS gene sequences, Bingle et al.

(1999) suggested that these genes could be divided into two sub-

classes designated as WA-type and MSAS-type or partially reduced

type. They designed two pairs of degenerated primers, i.e. LC1/LC2c

and LC3/LC5c for the amplification of fungal PKS genes in each of

these subclasses. We have previously utilized LC3/LC5c pair of pri-

mer to clone a 700 bp KS domain of aomsas gene in A. westerdijkiae

(Atoui et al., 2006). After prolongation of this fragment by gene

walking approach to a complete 5298 bp gene and alignment in

database with other PKS genes, we have observed that the amino

acid sequence of aomsas has high degree similarities to fungal

MSAS-type PKS genes (Fig. 2). The different conserved domains

identified in aomsas further confirmed that this gene belongs to

the MSAS-type subclass (Fig. 2). These observations are in accor-

dance to the findings of Bingle et al. (1999), who stated that the

degenerated pair of primers LC3/LC5c has the capability to amplify

fungal MSAS-type PKS genes.

To understand the role of aomsas gene in A. westerdijkiae, we

first investigated the kinetic production of secondary metabolites

and the expression of the aomsas gene. We have observed that

both transcriptional signals of aomsas and biosynthesis of asper-

Fig. 5. Secondary metabolites study. (a) Secondary metabolites were extracted

from 10 days old cultures of wild type, aoDmsas and ao+msas strains of A.

westerdijkiae. HPLC traces of the lactonic metabolites, i.e. isoasperlactone (eluted at

6 min) and asperlactone (eluted at 9 min) were compared. (b) Separate growing

cultures of aoDmsas mutant in synthetic medium at 25 °C were independently

complemented with 0.7 mM 6-each of methylsalicylic acid, aspyrone and diepox-

ide. Secondary metabolites were extracted from 8 days old cultures and analyzed by

tracking the HPLC traces.



lactone, isoasperlactone and 6-MSA occur within the exponential

growth phase of A. westerdijkiae (Fig. 3). These observations sug-

gest that aomsas could be related to the biosynthesis of asperlac-

tone and/or isoasperlactone and/or 6-MSA. It has been reported in

the literature that MSAS-type PKS genes are involved in the bio-

synthesis of several olyketide metabolites varying greatly in their

functions. An MSAS-type PKS gene 6msas has been found to be in-

volved in the biosynthesis myctoxine patuline in P. patulum,

P. urticae and Byssochlamys fulva (Beck et al., 1990; Bu’Lock

et al., 1968; Puel et al., 2007). Another MSAS gene AviM has been

found to be involved in the biosynthesis of antibiotic avilamycin

in S. viridochromogenes (Gaisser et al., 1997). The MSAS gene

has also been reported to induce the production plant defense

compound salicylic acid in tobacco (Nasser et al., 2001). Although

A. westerdijkiae is a non-producer of patuline, avilamycin and

salicylic acid but this do not preclude the possibility of having

an MSAS-type PKS gene in its genome. A precedent of such a sit-

uation is provided by Geisen (1996), who used a multiplex PCR

method to identify sequences homologous to aflatoxin biosynthe-

sis gene in the non-producing species of Aspergillus and Penicil-

lium (Geisen, 1996).

Insertional inactivation remained the key technique for func-

tional characterization of various fungal pks genes (Atoui et al.,

2006; Bacha et al., 2009; O’Callaghan et al., 2003). So we followed

similar technique to produce aomsas knockout mutants

‘‘aoDmsas1” and ‘‘aoDmsas2”. These mutants were found deficient

in the biosynthesis of two end product lactonic metabolites, i.e.

isoasperlactone and asperlactone (Fig. 4a), and one compound of

intermediate nature, i.e. 6-MSA. These observations confirmed that

aomsas played an important role in the biosynthesis of 6-MSA, iso-

asperlactone and asperlactone. We further proved these results by

performing genetic complementation, where the genetically com-

plemented mutant ao+msas restored the biosynthesis of all the

missing metabolites (Fig. 4a).

It has been previously demonstrated through NMR studies that

diepoxide and aspyrone are intermediates in the biosynthetic

pathway of isoasperlactone and asperlactone in A. melleus (Fig. 1)

(James and Andrew, 1991). These authors further stated that asper-

lactone is directly biosynthesized from the diepoxide, while in the

biosynthesis isoasperlactone the diepoxide is first converted to

aspyrone and then aspyrone to isoasperlactone. They also sug-

gested an alternate rout for the biosynthesis isoasperlactone with-

out the involvement of aspyrone. Chemical complementation of

the asperlactone/isoasperlactone deficient mutant, i.e. aoDmsas,

through incorporation of 6-MSA, diepoxide and aspyrone clearly

shown that, these products are intermediates in the biosynthetic

pathway of asperlactone and isoasperlactone (Fig. 5b). Indeed each

of the incorporated metabolite restored simultaneously the bio-

synthesis of both asperlactone and isoasperlactone. Aspyrone and

diepoxide are never observed in the culture medium of wild type

A. westerdijkiae. This could probably be due to a quick conversion

of these compounds to their final products (asperlactone and isoas-

perlactone), avoiding an intracellular accumulation and extracellu-

lar excretion.

Based on our results and the findings of James and Andrew,

(1991) we proposed a biosynthetic scheme for the biosynthesis

of isoasperlactone and asperlactone (Fig. 1). According to this

scheme, during the early biosynthetic steps aomsas gene induces

the production of 6-MSA, which is then converted to diepoxide.

The diepoxide could then follow two routes, one that leads directly

to the production of asperlactone while the second leads to the

production of isoasperlactone via aspyrone pathway. We have ob-

served during chemical complementation experiment that even

incorporation of aspyrone without diepoxide restored the produc-

tion asperlactone and isoasperlactone in aoDmsas mutant. Previ-

ously James and Andrew, (1991) did not proposed this scheme;

they proposed aspyrone as intermediate of isoasperlactone but

not of asperlactone. Hence we proposed that diepoxide and aspy-

rone could be enter-convertible compounds which could lead to

the production of both asperlactone and isoasperlactone. Our

observations are in accordance to the previous findings, suggesting

that lactonic metabolites asperlactone and isoasperlactone could

be derived from a common biosynthetic precursor, a diepoxy inter-

mediate (Sorensen and Simpson, 1986).

This new aomsas gene can be used for further experiments, as a

starting material for the identification of asperlactone/isoasperlac-

tone gene cluster.
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