
HAL Id: hal-02665349
https://hal.inrae.fr/hal-02665349v1

Submitted on 31 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical analysis of a PDE epidemiological model
applied to scrapie transmission

Najat Ziyadi, Said Boulite, My Lhassan Hbid, Suzanne Touzeau

To cite this version:
Najat Ziyadi, Said Boulite, My Lhassan Hbid, Suzanne Touzeau. Mathematical analysis of a PDE
epidemiological model applied to scrapie transmission. Communications on Pure and Applied Analysis,
2008, 7 (3), pp.659-675. �10.3934/cpaa.2008.7.659�. �hal-02665349�

https://hal.inrae.fr/hal-02665349v1
https://hal.archives-ouvertes.fr


COMMUNICATIONS ON Website: http://AIMsciences.org
PURE AND APPLIED ANALYSIS
Volume 7, Number 3, May 2008 pp. 659–675

MATHEMATICAL ANALYSIS OF A PDE EPIDEMIOLOGICAL

MODEL APPLIED TO SCRAPIE TRANSMISSION

Najat Ziyadi, Said Boulite and M. Lhassan Hbid

Department of Mathematics, Semlalia Faculty of Sciences, Cadi Ayyad University
P.O. 2390, 40001 Marrakesh, Morocco

Suzanne Touzeau
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Abstract. The aim of this paper is to analyse a dynamic model which de-
scribes the spread of scrapie in a sheep flock. Scrapie is a transmissible spongi-

form encephalopathy, endemic in a few European regions and subject to strict
control measures. The model takes into account various factors and processes,
including seasonal breeding, horizontal and vertical transmission, genetic sus-
ceptibility of sheep to the disease, and a long and variable incubation period.
Therefore the model, derived from a classical SI (susceptible-infected) model,
also incorporates a discrete genetic structure for the flock, as well as a con-
tinuous infection load structure which represents the disease incubation. The
resulting model consists of a set of partial differential equations which describe
the evolution of the flock with respect to time and infection load. To analyse
this model, we use the semigroup and evolution family theory, which provides
a flexible mathematical framework to determine the existence and uniqueness
of a solution to the problem. We show that the corresponding linear model has
a unique classical solution and that the complete nonlinear model has a global
solution.

1. Introduction. Scrapie is a transmissible spongiform encephalopathy (TSE) oc-
curring naturally in sheep and goat flocks. TSEs are slowly progressive, fatal, neuro-
degenerative disorders that are characterised by the accumulation in the brain of a
conformationally abnormal form of the prion protein PrP. Animal TSEs also include
bovine spongiform encephalopathy (BSE, or “mad cow disease”), which started in
the UK in 1985. Unlike BSE, there is no evidence that scrapie constitutes a human
health risk. However, experimental studies have shown that BSE can infect sheep
and produce similar clinical signs (only post-mortem tests on brain samples differ),
even if no natural contamination has been observed in sheep1. Therefore, scrapie
surveillance and eradication plans are implemented in Europe and a particular em-
phasis is put on the disease propagation studies.

Scrapie is a common pathology in European flocks, endemic in certain regions;
the first mention of the disease dates back to the 18th century. It is associated with
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1The first BSE case in a goat, a French animal culled in 2002, was confirmed in January 2005.
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a long incubation period (ca. 2 years) and polymorphisms of the PrP gene encoding
for the prion protein largely control the susceptibility and resistance of sheep to the
disease. However, the epidemiology of scrapie is still incompletely understood [6, 1],
particularly the transmission processes.

Scrapie can widely spread in a flock. Vertical transmission, i.e. maternal trans-
mission to lamb, is possible, but contamination may occur post-natally rather than
in utero. Horizontal transmission is likely to occur by the oral route since the
earliest detection of scrapie infectivity in naturally infected individuals is in the
digestive tract. However, there may be other routes of entry (e.g. scarification).
Presence of scrapie infectivity in the placenta suggests the possibility of increased
transmission during lambing via the ingestion of contaminated placental material.
This assumption is supported by a recent study by [13] based on a mathematical
model of scrapie transmission dynamics.

A mathematical model of transmission dynamics is a valuable tool to explore
biological hypotheses and to assess the efficiency of surveillance and control strate-
gies. Such a model allows to combine epidemiological, demographic, genetic and
management factors, which are essential to study diseases such as scrapie with long
incubation periods relative to lifespan. The model we analyse in this paper is derived
from a scrapie transmission model [12] in which the flock dynamics is represented
by a set of nonlinear first order hyperbolic partial differential equations (PDE). It
is an SI (susceptible–infected) model, with an additional discrete genotype struc-
ture for the population and a continuous infection load structure for the infected
individuals. It is described in more details in the following section.

The mathematical analysis of such a PDE model is not standard. Its right-hand
side is non autonomous with integro-differential nonlinear terms. Most epidemio-
logical studies conducted on this or similar models are based on numerical analysis
and simulations, for instance to assess the basic reproduction number [10, 5], or to
estimate parameters and validate biological scenarios [9, 13]. Furthermore, to our
knowledge this type of model is not encountered outside the epidemiology field. So
a thorough mathematical analysis to determine the existence and validity of solu-
tions for this PDE model is lacking. It is the aim of this paper. The mathematical
framework chosen in this paper is the semigroup theory, which provides tools to
investigate the solvability of the PDE model, by exploiting the properties of the op-
erators constituting the associated Cauchy Problem [11, 4]. These techniques have
been used to analyse other PDE models, such as a blood production model [2], an
autonomous delay model with a physiological structure. In our model, we deal with
a non autonomous system, so we had to extend these results using the evolution
family theory.

After presenting the epidemiological model, we focus on the mathematical anal-
ysis and results, which are then discussed. To ease the understanding of the math-
ematical developments, Appendix A introduces basic definitions and theorems.

2. Description of the model. The model used here to represent the scrapie
spread within a flock is a deterministic SI (susceptible–infected) model, which is
adapted to represent the disease characteristics. The initial model was elaborated
for Scottish sheep flocks [12, 9] and further developed for a French outbreak in
the Langlade flock [13]. Compared to these previous papers, the model here is
simplified: the age variable is not retained; the infected population is not split into
two groups according to the transmission route, i.e. the horizontally infected sheep
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and the vertically infected sheep; the ram allele frequencies are supposed to be
known at each breeding season.

The flock is structured according to scrapie status (susceptible S or infected I),
PrP genotype g ∈ {1 . . .Ng} (determined by the polymorphisms at codons 136, 154
and 171 of the gene encoding for the prion protein) and, for the infected sheep only,
infection load θ ∈ [0, 1]. In the Langlade flock [3], 4 alleles were identified: VRQ,
ARQ, AHQ, ARR, from the most susceptible to the most resistant one, resulting
in Ng = 10 genotypes: VRQ-VRQ, VRQ-ARQ, etc. When a susceptible sheep
becomes infected, it is given an initial load, which is assumed to grow during the
incubation period until the maximum value 1 corresponding to the onset of clinical
signs is reached; the onset is followed by the culling of the animal. Variable initial
loads allow for variable incubation periods. The resulting sheep population densities
are Sg(t) and Ig(t, θ), where t represents the time.

The model does not discriminate by gender; since only a small number of breed-
ing rams are kept, only the population of ewes is considered. It incorporates the
following components: seasonal breeding and routine culling, genetic susceptibility,
a long and variable incubation period followed by culling, seasonal horizontal trans-
mission and vertical transmission. Hence, to represent the evolution through time
of the population densities with respect to infection load, the model consists of a set
of partial differential equations. But first we will describe the model components
and assumptions implied.

2.1. Demographic processes. There is no way to identify infected sheep, so all
sheep are bred and culled independently from their scrapie status. Moreover, we
assume that no genetic selection for disease resistance was performed on the ewes.
Routine culling represents all sources of mortality for the ewes, scrapie excluded.
So the culling rate µ is independent from the PrP genotype and is assumed to be
constant.

Breeding is seasonal. The birth rate b(t) represents the number of offspring
produced by a ewe per time unit during the lambing period; it is supposed to be
the same for all ewes and it is zero outside this period. The birth rate determines
the global inflow of lambs in the flock, but they need to be distributed among
the different genotypes. Therefore, a breeding matrix G(t) = (Ggg′ (t)) needs to
be introduced, giving the proportion of lambs of genotype g born from dams with
genotype g′ (or the probability for ewes g′ to give birth to lambs g) for g, g′ ∈
{1 . . .Ng}. We assume the following: (i) the sire allele frequencies fa(t) are known;
(ii) there is random mating between dams and sires. So for instance,























g′ = VRQ-VRQ, g = ARQ-ARR, ⇒ Ggg′ (t) = 0,

g′ = VRQ-VRQ, g = VRQ-ARQ, ⇒ Ggg′ (t) = fARQ(t),

g′ = VRQ-ARQ, g = ARQ-ARR, ⇒ Ggg′ (t) = fARR(t)/2,

g′ = VRQ-ARQ, g = VRQ-ARQ, ⇒ Ggg′ (t) = (fV RQ(t) + fARQ(t))/2,

etc., and so the breeding matrix is built.
A common control measure to eradicate scrapie is to apply genetic selection by

using resistant rams. It is implemented in the French, British and Dutch scrapie
plans, and is present in the EU recommendations. If only ARR-ARR rams are used
in a flock, then fARR(t) = 1 and all other frequencies are zero.
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2.2. Epidemiological processes. Note: In these paragraphs, a variable with a ′

usually refers to the contaminating animal, and a variable without to the susceptible
and yet to become infected sheep.

Scrapie transmission depends on the susceptibility of the yet to become infected
sheep, the infectiousness of the contaminating animal and the season.

• For each genotype, the proportion of susceptible sheep exposed to scrapie
and that become infected is taken to be proportional to their relative genetic
susceptibility and to the force of infection, i.e. the sum of all infected animals
weighted by their infectiousness. The relative genetic susceptibility σg ∈ [0, 1]
is set to 0 if the genotype is fully resistant and to 1 for the most susceptible
genotype.

• The infectiousness of a sheep is supposed to be a function of the infection load
φ(θ′).

• As we assume that horizontal transmission mainly occurs during lambing pe-
riods, due to the ingestion of contaminated placental material, a seasonal
function s(t) is defined: s(t) = 1 during the lambing period and 0 6 s(t) ≪ 1
otherwise.

So the horizontal transmission rate, which represents the ratio of susceptible sheep
of genotype g infected by an infected sheep of infection load θ′ is

βg(t, θ
′) ∝ σg φ(θ′) s(t).

By definition, vertical/maternal transmission only occurs during lambing. So the
vertical transmission rate, defined as the proportion of lambs of genotype g con-
taminated by an infected dam of infection load θ′, is

γg(θ
′) ∝ σg φ(θ′), γg ∈ [0, 1].

Newly infected individuals are given an initial infection load, according to a dis-

tribution Θ(θ) (it verifies
∫ 1

0 Θ(θ)dθ = 1, for example a beta distribution). During
the incubation period, we assume that the infection load increases exponentially, at
a rate cg which only depends on the sheep genotype, as follows

dθ

dt
= cg θ.

At the end of the incubation period, when θ = 1, the sheep start showing clinical
signs and are culled. Hence, genotype-dependent distributions are obtained for the
incubation period.

2.3. Model equations. Let us note Sg(t) the number of susceptible sheep of geno-
type g at time t, and similarly Ig(t, θ) the density of infected sheep with infection
load θ. The PDE model describing the evolution of these population densities ac-
cording to the demographic and epidemiological processes described above, with
respect to time and infection load, is the following:

dSg(t)

dt
= − µSg(t) − Sg(t)

∑

g′

∫ 1

0

βg(t, θ
′)Ig′ (t, θ′) dθ′ (1)

+ b(t)
∑

g′

Ggg′(t)

(

Sg′(t) +

∫ 1

0

(1 − γg(θ
′))Ig′ (t, θ′) dθ′

)

, (2)
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∂Ig(t, θ)

∂t
+
∂cgθIg(t, θ)

∂θ
=− µIg(t, θ) + Θ(θ)

(

Sg(t)
∑

g′

∫ 1

0

βg(t, θ
′)Ig′ (t, θ′) dθ′ (3)

+ b(t)
∑

g′

Ggg′(t)

∫ 1

0

γg(θ
′)Ig′ (t, θ′) dθ′

)

. (4)

Infected sheep need to have a positive infection load, otherwise their incubation
period is infinite, so the associated boundary condition is

Ig(t, 0) = 0, (5)

and the initial condition is given by

Sg(0) = S0g, Ig(0, θ) = I0g(θ). (6)

In the following sections, “the model” will refer to equations (2-6) above. Unless
stated otherwise, all parameters, variables and functions are non negative. More-
over, the following conditions are satisfied throughout the paper:

• µ is positive;
• the birth function is continuous, i.e. b ∈ C([0,+∞));
• the components of the breeding matrix are integrable, i.e. Ggg′ ∈ L1([0,+∞));
• the vertical transmission rate is integrable, i.e. γg ∈ L1([0, 1));
• the horizontal transmission rate is continuous with respect to θ, i.e. βg(t, ·) ∈

C([0, 1]);
• the horizontal transmission rate is integrable with respect to time, i.e.
βg(·, θ) ∈ L1([0,+∞));

• the initial infection load distribution Θ verifies
∫ 1

0 Θ(θ)dθ = 1, is continuous
on [0, 1], positive for θ > 0 and Θ(0) = 0 (for example a beta distribution).

A further hypothesis can be set: it is verified when the birth function, breeding
matrix and horizontal transmission rate are continuously differentiable with respect
to time, i.e.

b, Ggg′ , βg(·, θ) ∈ C1(0,+∞). (7)

We will now turn to the mathematical analysis of the PDE model.

3. Mathematical analysis. In this section, we aim at proving the existence and
uniqueness of a solution to the model. The preliminary step consists in rewriting
the model to obtain a standard abstract formulation, which is easier to handle. We
can then tackle the mathematical analysis gradually. First, we consider the linear
problem associated to the model and proceed in two steps: the autonomous problem,
which corresponds to a population affected only by mortality, and which is treated
thanks to the semigroup theory; the non autonomous problem, which corresponds
to a population affected by mortality, birth and vertical transmission, and which is
handled with the perturbation theory. Second, we consider the nonlinear problem:
the horizontal transmission term is introduced; the existence of a local and then a
global solution is investigated.

To ease the understanding of this mathematical analysis, which is detailed below,
Appendix A provides some basic definitions and theorems.
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3.1. Abstract formulation. The model (2-4) consists of a system of 2 ×Ng dif-

ferential equations. The solution of the model is a vector u(t, ·) =
(

S(t)
I(t,·)

)

of size

(2 ×Ng, 1), where

S(t) =







S1(t)
...

SNg
(t)






∈ R

Ng and I(t, ·) =







I1(t, ·)
...

INg
(t, ·)






∈ X1

respectively represent the vector of susceptible sheep and the vector of infected
sheep. X1 is defined as the space of continuous functions on [0, 1] vanishing at 0
and with values in RNg . So the boundary condition (5) is included in the definition
of space X1. The solution space is therefore X = RNg ×X1.
X1 is endowed with the supremum norm ‖ · ‖∞, defined by

‖y‖X1
= ‖y‖∞ =

Ng
∑

i=1

‖yi‖∞ =

Ng
∑

i=1

sup
x∈[0,1]

|yi(x)| , for y = (yi)i=1,...,Ng
∈ X1.

X = RNg ×X1 is then endowed with the norm ‖ · ‖, defined by

∥

∥

∥

∥

(

x
y

)∥

∥

∥

∥

X

=

∥

∥

∥

∥

(

x
y

)∥

∥

∥

∥

=

Ng
∑

i=1

|xi| +

Ng
∑

i=1

‖yi‖∞ , for

{

x = (xi)i=1,...,Ng
∈ R

Ng ,

y = (yi)i=1,...,Ng
∈ X1.

To lighten the notations, in the following paragraphs and sections, we will write
for every fixed t: u(t, ·) = u(t), I(t, ·) = I(·) = I and S(t) = S.

In order to simplify the model formulation, we gather all equations in one and
separate the linear and nonlinear terms. Let u0 = u(0) be the initial condition at
t = 0, corresponding to equation (6). We can then formulate the abstract Cauchy
problem associated to the model as follows:







du(t)

dt
= Au(t) + V(t)u(t) + H(t, u(t)) for t > 0,

u(0) = u0.
(ACP)

The definition and interpretation of operators A, V(t), and H(t, ·) are given below.
Roughly, A corresponds to the non scrapie mortality process, V to the birth process,
including vertical transmission, and H to horizontal transmission.

A is a matrix operator given by

A =

(

AS 0
0 AI

)

,

with

AS = −µId,

Id being the identity matrix, and

AI : X1 −→ X1

ϕ 7−→ AIϕ(·) =

(

−cg ·
∂ϕg

∂θ
(·) − (µ+ cg)ϕg(·)

)

g=1,...,Ng

;

AS represents the mortality process related to the susceptible class and AI the
mortality plus the conservation law of the infected class.
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The non autonomous operator V is defined as follows:

V(t) =

(

L(t) M(t)
0 N(t)

)

,

with:

L(t) : R
Ng −→ R

Ng

S 7−→ L(t)S =



b(t)

Ng
∑

g′=1

Ggg′ (t)Sg′





g=1,...,Ng

,

M(t) : X1 −→ R
Ng

I 7−→M(t)I =



b(t)

Ng
∑

g′=1

Ggg′ (t)

∫ 1

0

(1 − γg(θ
′))Ig′ (θ′)dθ′





g=1,...,Ng

,

N(t) : X1 −→ X1

I 7−→ N(t)I(·) =



Θ(·)b(t)

Ng
∑

g′=1

Ggg′ (t)

∫ 1

0

γg(θ
′)Ig′ (θ′)dθ′





g=1,...,Ng

,

where L(t) represents the birth of susceptible lambs from susceptible ewes, M(t)
the birth of susceptible lambs from infected ewes, and N(t) the birth of infected
lambs from infected ewes, i.e. the vertical transmission.

Let us denote the horizontal transmission rates by the following matrix:

K(t, ·) =







β1(t, ·) 0
. . .

0 βNg
(t, ·)






∈ X1.

The nonlinear terms, representing the horizontal transmission process in the model,
are gathered in the H operator defined by

H(t, ·) : X −→ X
(

S
I

)

7−→ H

(

t,

(

S
I

))

=

(

−
∫ 1

0

∑Ng

g′=1 Ig′ (θ′)K(t, θ′)dθ′ S

+
∫ 1

0

∑Ng

g′=1 Ig′ (θ′)K(t, θ′)dθ′ SΘ

)

.

Hence, (ACP) is a non autonomous semilinear Cauchy problem, in which the
linear non autonomous term V(t) represents the birth and the vertical transmission
and the nonlinear term H(t, ·) represents the horizontal transmission. Because of
this non linearity, we first study the linear problem associated to (ACP) and defined
as follows:







du(t)

dt
= Au(t) + V(t)u(t) for t > 0,

u(0) = u0.
(ACPL)

Remark 1. There is no horizontal transmission in (ACPL). Biologically, it would
be more realistic to neglect the vertical transmission term, which in a scrapie out-
break contributes far less to the disease spread than the horizontal term. However,
the difficulties implied by the nonlinear operator make us start the analysis by the
linear problem (ACPL). So for mathematical reasons, we first neglect the horizontal
transmission term.
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3.2. Existence and uniqueness of a solution to the linear problem. We
propose to establish the existence and uniqueness of the solution to the linear prob-
lem (ACPL). A way to achieve this goal is first to treat the corresponding au-
tonomous problem, and then to use a perturbation method to solve (ACPL). The
semigroup theory is particularly well suited for the autonomous Cauchy problems
and the evolution family for the non autonomous case.

3.2.1. Study of the autonomous case. Let us define the autonomous linear abstract
Cauchy problem by







du(t)

dt
= Au(t) for t > 0,

u(0) = u0.
(ACPL’)

where the domain of the operator A is defined as D(A) = D(AS) ×D(AI).

Lemma 3.1. A is an infinitesimal generator of a strongly continuous semigroup

with domain D(A).

Proof. AS is an infinitesimal generator of a continuous semigroup defined on
D(AS) = RNg and denoted by TAS

(t) = etAS = diag(e−µt).
Theorem A.7 given in Appendix A shows that the operator AI defined on do-

main D(AI) = {f ∈ X1 ∩ C
1((0, 1],RNg) | lim

θ→0
θf ′(θ) = 0} generates a continuous

semigroup denoted by (TAI
(t))t>0 and given by

TAI
(t)ϕg(·) =

(

e−(µ+cg)tϕg(· e
−cgt)

)

g=1,...,Ng

.

A is a matrix operator with domain D(A) = D(AS) × D(AI), thus it is also an
infinitesimal generator of a continuous semigroup (TA(t))t>0 given by

TA(t) =

(

TAS
(t) 0

0 TAI
(t)

)

, ∀t > 0. (8)

The generator A determines the semigroup (TA(t))t>0 uniquely. Therefore, the
solution of (ACPL’) exists, is given by u(t) = TA(t)u0 and is unique. The semigroup
theory also allows us to deduce the properties of the solution from the semigroup
properties.

Lemma 3.2. The semigroup (TA(t))t>0 is positive and exponentially stable.

Proof. It is obvious by construction that (TAS
(t))t>0 and (TAI

(t))t>0 are positive
semigroups. Let ( S

I ) ∈ X . As cg > 0, we have

‖TA(t) ( S
I ) ‖ 6 e−µt

Ng
∑

i=1

|Sg| + e−µt

Ng
∑

i=1

sup
θ∈[0,1]

|Ig(θe
−cgt)|.

As cgt > 0, then θe−cgt ∈ [0, 1] and supθ∈[0,1] |Ig(θe
−cgt)| = supθ∈[0,1] |Ig(θ)|. Hence,

‖TA(t) ( S
I ) ‖ 6 e−µt‖ ( S

I ) ‖,

so

‖TA(t)‖ 6 e−µt.

As µ > 0, (TA(t))t>0 is exponentially stable, i.e. the operator converges to zero
when t→ ∞.
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Therefore, the solution of (ACPL’) is positive for every positive initial condition
and vanishes at infinity. Moreover, it has some regularity (C1(0,+∞)) because it
is classical solution for u0 ∈ D(A).

So the model without birth and transmission admits a unique regular, positive
solution which vanishes at infinity.

3.2.2. Study of the non autonomous case. We now return to the linear non au-
tonomous problem (ACPL) to establish the same mathematical results. We intro-
duce the birth term V as a perturbation of the autonomous problem (ACPL’). Using
the evolution family theory again allows us to explicitly obtain the solution of the
problem according to the evolution family and the initial condition. Consequently,
the properties of the evolution family induce those of the solution.

Proposition 1. (A + V(t))t>0 generates an evolution family.

Proof. V(t) is bounded operator and is strongly continuous, hence by using the
perturbation theory [11] and Lemma 3.1, we deduce the result above.

Let (U(t, s))t>s>0 be the evolution family generated by A+V(t). TA(t))t>0 being
the semigroup defined in (8), the solution of problem (ACPL) is given by

u(t) = U(t, 0)u0, with: U(t, 0) = TA(t) +

∫ t

0

TA(t− s)V(s)U(s, 0)ds.

We deduce the following theorem.

Theorem 3.3. For all u0 =
(

S0

I0

)

with S0 ∈ RNg and I0 ∈ X1, there exists a unique

mild solution u(·) to (ACPL). This solution is continuous and satisfies

u(t) = TA(t)u0 +

∫ t

0

TA(t− s)V(s)u(s)ds. (9)

Moreover, if assumption (7) is satisfied and I0 ∈ D(AI), then u is a classical

solution to (ACPL).

Remark 2. A mild solution of the initial value problem (ACPL) is a continuous
solution of the integral equation (9). If the solution is continuously differentiable,
it is a classical solution.

The solution obtained satisfies positivity and stability properties given by the
following proposition.

Proposition 2. The evolution family (U(t, 0))t>0 is positive and if ‖V‖ < µ then

it is exponentially stable.

Proof. In equation (9), we obtain an implicit formulation of the solution to (ACPL),
which doesn’t allow us to deduce any positivity result. Another way to express this
solution is to use the Dyson-Phillips series

U(t) =
+∞
∑

n=0

Un(t, 0),

where the sequence (Un(t, 0))n∈N is defined for all x ∈ X by

U0(t, 0) = TA(t),

Un+1(t, 0)x =

∫ t

0

TA(t− s)V(s)Un(s, 0)xds.
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From Lemma 3.2, we know that (TA(t))t>0 is positive, so U0(t, 0)t>0 is positive as
well. Let x ∈ X , x positive, and assume that Un(t, 0)t>0 is positive. V is positive
by construction, so

TA(t− s)V(s)Un(s, 0)x > 0 ∀s > 0,
∫ t

0

TA(t− s)V(s)Un(s, 0)xds > 0 ∀s ∈ [0, t].

It follows that Un+1(t, 0)t>0 is positive. Hence, Un(t, 0)t>0 is positive for all n ∈ N.
From Lemma 3.2, we also have that (TA(t))t>0 is exponentially stable, so we

deduce that

U0(t, 0) 6 e−µt and ‖Un(t, 0)‖ 6 e−t(µ−‖V‖) ‖V‖n−1tn−1

(n− 1)!
,

which implies that U(t) =
∑+∞

n=0 Un(t, 0) is convergent.

+∞
∑

n=0

Un+1(t, 0) =

+∞
∑

n=0

∫ t

0

TA(t− s)V(s)Un(s, 0)ds =

∫ t

0

TA(t− s)V(s)U(s)ds,

so U(t) =

+∞
∑

n=0

Un(t, 0) = TA(t) +

∫ t

0

TA(t− s)V(s)U(s)ds.

This shows that U(t) = U(t, 0) which implies that U(t, 0)t>0 is positive.
From equation (9), we deduce that

‖U(t, 0)x‖ 6 e−µt‖x‖ +

∫ t

0

e−µ(t−s)‖V‖ ‖U(s, 0)‖ds ‖x‖,

so ‖U(t, 0)‖ 6 e−µt +

∫ t

0

e−µ(t−s)‖V‖ ‖U(s, 0)‖ds.

The Gronwall-Bellman inequality, given by Lemma A.6 in Appendix A, leads to

‖U(t, 0)‖ 6 e−t(µ−‖V‖),

hence the result.

Remark 3. Under assumption ‖V‖ < µ, the evolution family (U(t, 0))t>0 is expo-
nentially stable. So the solution to (ACPL), thus the population, does not explode
and tends to zero in infinite time. This result is quite obvious: if birth, including
vertical transmission, is lower than mortality in the flock, we expect the population
to become extinct.

Having established the existence and uniqueness of the solution to the linear
problem (ACPL) and having given some results on the asymptotic behaviour of
the solution, we are now interested in establishing similar results for the nonlinear
problem (ACP).

3.3. Existence and uniqueness of the solution to the nonlinear problem.

In general, studying semilinear abstract Cauchy problems is not obvious, as the
handling of their nonlinear part, which is non autonomous and depends on the
solution, presents serious difficulties. This type of problem is, to our knowledge,
only addressed by Pazy [11]. There, if the nonlinear term can be considered as a
Lipschitz perturbation of the generator of a strongly continuous semigroup in the
autonomous case, or of an evolution family in the non autonomous one, some results
apply. First, the existence and uniqueness of a solution can be proved on a finite
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time interval: solutions are local. Furthermore, if one can show that the solution is
bounded, then the upper limit of the time interval is infinite and the local solution
becomes a global solution defined on [0,+∞). These results are summarised in
Theorem A.8 in Appendix A.

In this section, we first look for a local solution to (ACP), defined on a time
interval [0, tmax). In the second part of this section, we determine conditions that
ensure tmax = +∞, or in other words that the solution is global. Lemmas and
proofs are given in Appendix B.

3.3.1. Local solution. We show in Lemma B.1 in Appendix B that the semilinear
part V(t)·+H(t, ·) is a Lipschitz perturbation of the continuous semigroup TA(t))t>0

given by equation (8). Therefore, using Theorem A.8, also given in Appendix A,
we can deduce the existence and uniqueness of a mild solution to problem (ACP).
Hence we obtain the following theorem.

Theorem 3.4. For all initial condition in X, there exists an interval of time

[0, tmax) in which the problem (ACP) has a unique mild solution.

We only obtain a local solution here, so we will now turn to the global existence
of the solution.

3.3.2. Global solution. We are now interested to show that the local solution can
become global, and this by showing that it is bounded. Let us set t ∈ [0, t′] ⊂
[0, tmax) such that 0 6 t′ < tmax.

Let Pg(t) = Sg(t) +
∫ 1

0 Ig(t, θ)dθ, g = 1, . . . , Ng be the components of the total
population vector P (t). By integrating equation (4) over θ and summing it with
equation (2), we obtain that

dPg

dt
(t) = −µPg(t) + b(t)

Ng
∑

g′=1

Ggg′ (t)Pg(t) − cgIg(t, 1).

We denote by c the diagonal matrix with coefficients cg. Then P satisfies the
following differential equation:

dP (t)

dt
= (−µId + b(t)G(t))P (t) − cI(t, 1).

c and I being non negative, we have

dP (t)

dt
6 (−µId + b(t)G(t))P (t),

which implies that

P (t) 6 P̄ (t) with: P̄ (t) = exp

(

−µtId +

∫ t

0

b(σ)G(σ)dσ

)

P (0). (10)

Remark 4. P̄ (t) corresponds to the total population size without scrapie. It has
to be larger than P (t), the total population size with infection, as the presence of
the disease increases the total mortality. Moreover, the following inequalities are

verified: S(t) 6 P (t) 6 P̄ (t) and
∫ 1

0 I(t, θ)dθ 6 P (t) 6 P̄ (t).

Let us set b̄ = supt∈[0,tmax) b(t) and β̄(t) = maxθ∈[0,1] β(t, θ). Let us also note that

all the components of G and the vertical transmission rate γg(·) are by definition
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less than 1. Taking all this into consideration, equation (4) implies that

∂I

∂t
(t, θ) 6 −

∂cθI

∂θ
(t, θ) − µI(t, θ) + Θ(θ)

[

β̄(t)P̄ (t) + b(t)Id

] Ng
∑

g′=1

P̄g′ (t),

6 AII(t, θ) + Θ(θ)

[

β̄(t)P̄ (t) + b(t)Id

] Ng
∑

g′=1

P̄g′(t).

Let us define

D(t)(·) = Θ(·)

[

β̄(t)P̄ (t) + b(t)Id

] Ng
∑

g′=1

P̄g′ (t).

As Θ is continuous on [0, 1], we can also define

D̄(t) = sup
θ∈[0,1]

D(t)(·) and Θ̄ = sup
θ∈[0,1]

Θ(·).

We then have

D(t)(·) 6 D̄(t) = Θ̄

[

β̄(t)P̄ (t) + b(t)Id

] Ng
∑

g′=1

P̄g′(t).

Applying Lemma B.2 given in Appendix B to the previous inequality, we deduce
that

I(t, ·) 6 TAI
(t)I0(·) +

∫ t

0

TAI
(t− s)D(s)(·)ds.

Since the function θ 7−→ I(t, θ) is continuous on [0, 1], for all t ∈ [0, tmax)

‖I(t, ·)‖∞ 6 |TAI
(t)| sup

θ∈[0,1]

|I0(θ)| +

∫ t

0

|TAI
(t− s)| |D̄(s)|ds.

then

‖u(t)‖ = |S(t)| + ‖I(t, ·)‖∞,

6 |P̄ (t)| + |TAI
(t)| sup

θ∈[0,1]

|I0(θ)| +

∫ t

0

|TAI
(t− s)| |D̄(s)|ds.

(11)

We denote by f(t) the right-hand side of this inequality. Taking into account
that b, β(·, θ), β̄ and by construction P̄ are continuous functions from [0,+∞) to
[0,+∞), we deduce that f is also a continuous function from [0,+∞) to [0,+∞).
Particularly, for all t ∈ [0, t′] with 0 6 t′ < +∞, f(t) is continuous and bounded.
Consequently, ‖u(t)‖ is bounded for t in bounded intervals, which means that ‖u(t)‖
cannot be infinite in bounded time intervals. By using Theorem A.8, we deduce
that tmax = +∞.

We have shown by Theorem A.8 that the solution u(t) ( S
I ) of the nonlinear

problem (ACP) is a local mild solution. We have proved that this local solution is
bounded on bounded time intervals. Then Theorem A.8 allows us to conclude that
the maximum time interval on which the solution exists is infinite. In other words
the mild solution is a global solution.

Remark 5. In this general case, the initial value problem (ACP) has a solution
for all t ∈ [0,+∞). A particular case is when we have b̄ 6 µ which corresponds to
a situation when we impose in the flock a rate of mortality larger than birth. The
solution is in this case asymptotically becomes extinct in the course of the time.
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Indeed, under the condition b̄ 6 µ we deduce from (10) that P̄ (t) → 0 and from
(11) that ‖u(t)‖ → 0 when t→ ∞, as (TAI

(t))t>0 is exponentially stable.

4. Discussion. The aim of this paper was to perform a mathematical analysis of
a PDE model applied to the within-flock transmission of scrapie.

The model is based on a realistic model that has been applied to Scottish and
French flocks, with a few simplifying hypotheses: no age structure is introduced,
the animals infected by the vertical or the horizontal route are not distinguished.
The latter simplification is not restrictive, as within a flock the route of infection of
an animal cannot be determined; separating the infected sheep by route is mainly
useful to test the efficiency of control strategies targeting a particular route. Adding
a continuous age structure to the flock would be more interesting, as the flock
management and possibly the transmission are age-dependent. The model also
considers the ram allele frequencies as an exogenous input (G is a function of t)
unlinked to the flock allele frequencies; as artificial insemination is frequently used
and as scrapie plans in Europe impose genetic selection for scrapie resistance in
scrapie-affected farms (mainly implemented by ram selection), this assumption is
reasonable.

After formulating the model in terms of an abstract Cauchy problem, the math-
ematical analysis was done in two stages: first, the linear case was treated, which
corresponds to the initial model without horizontal transmission; then the complete
nonlinear model was studied. Using classical tools of the semigroup and evolu-
tion family theory, we have shown that the linear model admits a unique, positive
and regular solution. The handling of the nonlinear case was less obvious: to our
knowledge, very few works have been published on this type of semilinear, non au-
tonomous, integro-differential model. We have shown that the model has a unique
global solution. We were able to show that a local solution and is in addition a
global solution. We have mentioned a fairly restrictive case, corresponding roughly
to a situation in which birth is lower than mortality: in this case, we have also
shown that the population is bounded and becomes extinct, which can logically be
expected.

A further study, which exceeds the scope of this paper, would be necessary to
analyse more in depth the asymptotic behaviour of the model; global attractors
a positive equilibrium could possibly exist for certain levels of infection. From a
control point of view, the birth and culling function could be used to stabilise the
model; in a flock, this is actually how the population is set. Our future work includes
this type of study.

Furthermore, it would be interesting to produce similar results under more gen-
eral conditions, in particular when adding a continuous age structure to the model.
We would then need to adapt the semigroup/evolution family approach to treat
the semilinear problem with non autonomous boundary conditions arising from this
more general model. We are also interested in carrying on in this direction.

Finally, we would like to point out that although this model is derived from the
scrapie epidemiology, it is fairly general and would be relevant for diseases with
long incubation periods relative to lifespan, genetic susceptibility factors, and for
the more general model, age susceptibility factors. The analysis performed in this
paper only requires very loose conditions on the various components of the model,
such as the birth function, the transmission rate, etc.
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Appendix A. Definitions and theorems. The following definitions can be found
in [11] or [4], the Gronwall-Bellman inequality in [7].

Definition A.1 (Semigroup). A family (T (t))t>0 of bounded linear operators on a
Banach space X is called a strongly continuous semigroup if the functional equation

{

T (t+ s) = T (t)T (s) for all t > 0

T (0) = I

holds and the orbit maps
ξx : t 7→ ξx(t) = T (t)x

are continuous from [0,+∞) into X for every x ∈ X .

Definition A.2 (Generator). The generator A : D(A) ⊆ X → X of a strongly
continuous semigroup (T (t))t>0 on a Banach space X is the operator

Ax = ξ̇x(0) = lim
h↓0

1

h
(T (t)x− x)

defined on every x in its domain

D(A) = {x ∈ X : ξx is differentiable}.

Definition A.3 (Evolution family). A family of bounded operators
(U(t, s))t,s∈R, t>s on a Banach space X is called an evolution family if

(i) U(t, s) = U(t, r)U(r, s) and U(s, s) = Id for t > r > s and t, r, s ∈ R; and
(ii) the mapping {(τ, σ) ∈ R

2 : τ > σ} ∋ (t, s) 7→ U(t, s) is strongly continuous.

Let us consider the following semilinear initial value problem:






du(t)

dt
= Au(t) + f(t, u(t)), t > 0,

u(0) = u0

(P)

where A is the generator of a strongly continuous semigroup T (t), t > 0 on a Banach
space X and f : [0, T ]×X → X is continuous in t and satisfies a Lipschitz condition
in u.
The corresponding linear homogeneous problem is defined by

(P) with f = 0. (P’)

Definition A.4 (Classical solution). A function u : [0,+∞) → X is called a
classical solution of (P’) if u is continuously differentiable with respect to t, u(t) ∈
D(A) for all t > 0 and (P’) holds.

Definition A.5 (Mild solution). Let f : [0, T ] × X → X be continuous in t and
satisfy a Lipschitz condition in u, and let A be the generator of a strongly contin-
uous semigroup T (t), t > 0. We call a mild solution of (P) a continuous solution
u : [0,+∞) → X satisfying the integral equation

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s, u(s))ds.

Lemma A.6 (Gronwall-Bellman inequality from [7]). Let y and λ be continuous

real functions on [a, b] and let µ be a continuous and non negative function on [a, b].
If

y(t) 6 λ(t) +

∫ t

a

µ(s)y(s)ds
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is satisfied for t ∈ [a, b], then on the same interval

y(t) 6 λ(t) +

∫ t

a

λ(s)µ(s) exp

(∫ t

s

µ(τ)dτ

)

ds.

Theorem A.7 (from [8]). Let X1 be the space {f ∈ C([0, 1],C)|f(0) = 0} with

the supremum norm. We consider the following initial value problem of a partial

differential equation:






∂u

∂t
= γx

∂u

∂x
+ h(x)

u(0, x) = f(x)

where γ < 0, h ∈ C([0, 1],C) and f ∈ X1. Then the solution semigroup {Tt}t>0

((Ttf(x) = exp(
∫ t

0 h(e
γ(t−s)x)ds)f(eγt)) to the partial differential equation is a

strongly continuous semigroup on X1.

Theorem A.8 (from [11]). Let f : [0,∞) ×X → X be continuous in t for t > 0
and locally Lipschitz-continuous in u, uniformly in t on bounded intervals. If A is

the generator of a strongly continuous semigroup T (t) on X, then for every u0 ∈ X
there is a tmax 6 ∞ such that the initial value problem (P) has a unique mild

solution u on [0, tmax). Moreover, if tmax <∞ then

lim
t→tmax

‖u(t)‖ = ∞.

Appendix B. Proofs of lemmas.

Lemma B.1. For all t > 0, the nonlinear term f(t, ·) = V(t) · +H(t, ·) is locally

Lipschitz-continuous.

Proof. The function (t, ·) 7−→ V(t)· is continuous in t and thus uniformly continuous
in each bounded time interval. It is also linear in the second variable, so it is
uniformly Lipschitz-continuous. Hence, we only need to prove the result above for
H(t, ·).

Let us set t′ > 0 and ω > 0. For all t ∈ [0, t′] and all u, v ∈ X with ‖u‖ 6 ω and
‖v‖ 6 ω, we want to show that there exists a constant R(t′, ω) such that:

‖H(t, u) − H(t, v)‖ 6 R(t′, ω)‖u− v‖.

Let u = ( x
y ) and v = ( p

q ). Noting 〈1, I(θ′)〉 =
∑Ng

g′=1 Ig(θ
′), we have

‖H(t, u) − H(t, v)‖

=

∥

∥

∥

∥

∥

(

−
∫ 1

0 〈1, y(θ
′)〉K(t, θ′)dθ′ x+

∫ 1

0 〈1, q(θ
′)〉K(t, θ′)dθ′ p

(

∫ 1

0 〈1, y(θ
′)〉K(t, θ′)dθ′ x−

∫ 1

0 〈1, q(θ
′)〉K(t, θ′)dθ′, p

)

Θ(·)

)∥

∥

∥

∥

∥

=

∣

∣

∣

∣

∫ 1

0

〈1, y(θ′)〉K(t, θ′)dθ′ x−

∫ 1

0

〈1, q(θ′)〉K(t, θ′)dθ′ p

∣

∣

∣

∣

+

∥

∥

∥

∥

(∫ 1

0

〈1, y(θ′)〉K(t, θ′)dθ′ x−

∫ 1

0

〈1, q(θ′)〉K(t, θ′)dθ′ p

)

Θ(·)

∥

∥

∥

∥

= (1 + ‖Θ‖∞)

∣

∣

∣

∣

∫ 1

0

〈1, y(θ′)〉K(t, θ′)dθ′ x−

∫ 1

0

〈1, q(θ′)〉K(t, θ′)dθ′ p

∣

∣

∣

∣

.

Let

E =

∣

∣

∣

∣

∫ 1

0

〈1, y(θ′)〉K(t, θ′)dθ′x−

∫ 1

0

〈1, q(θ′)〉K(t, θ′)dθ′p

∣

∣

∣

∣

.
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Then

E =

∣

∣

∣

∣

∫ 1

0

〈1, y(θ′) − q(θ′)〉K(t, θ′)dθ′ x−

∫ 1

0

〈1, q(θ′)〉K(t, θ′)dθ′ (p− x)

∣

∣

∣

∣

= ‖y − q‖∞

∣

∣

∣

∣

∫ 1

0

K(t, θ′)dθ′
∣

∣

∣

∣

|x| + ‖q‖∞

∣

∣

∣

∣

∫ 1

0

K(t, θ′)dθ′
∣

∣

∣

∣

|p− x|.

We have |x| 6 ‖u‖ 6 ω and ‖q‖∞ 6 ‖v‖ 6 ω. So

E 6 ω

∣

∣

∣

∣

∫ 1

0

K(t, θ′)dθ′
∣

∣

∣

∣

(|p− x| + ‖y − q‖∞) 6 ω

∣

∣

∣

∣

∫ 1

0

K(t, θ′)dθ′
∣

∣

∣

∣

‖u− v‖,

and finally

‖H(t, u) − H(t, v)‖ 6 ω (1 + ‖Θ‖∞)

∣

∣

∣

∣

∫ 1

0

K(t, θ′)dθ′
∣

∣

∣

∣

‖u− v‖.

Lemma B.2. Let A be the generator of a positive semigroup T (·) on a Banach

lattice E. Let ϕ and ψ be two functions in C([0, t′), E), with tmax > 0, such that

ϕ(t) ∈ D(A) for all t ∈ [0, t′) and ϕ is differentiable. If






d

dt
ϕ(t) 6 Aϕ(t) + ψ(t), for t ∈ [0, t′)

ϕ(0) = x0

(Q)

is verified, then ϕ(t) 6 T (t)x0 +
∫ t

0 T (t− s)ψ(s)ds for t ∈ [0, t′).

Proof. For t ∈ [0, t′), let us consider the function v defined on [0, t] by v(s) =
T (t− s)ϕ(s). v is differentiable and satisfies

d

ds
v(s) = T (t− s)

d

ds
ϕ(s) − T (t− s)Aϕ(s), 0 6 s < t.

Hence, from (Q) and the positivity of the semigroup T (·) it follows that

d

ds
v(s) ≤ T (t− s)ψ(s).

By integrating this inequality between 0 and t, we obtain the result above.
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