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Abstract

Background: Invasion of the mosquito salivary glands by Plasmodium is a critical step for malaria transmission. From a SAGE
analysis, we previously identified several genes whose expression in salivary glands was regulated coincident with
sporozoite invasion of salivary glands. To get insights into the consequences of these salivary gland responses, here we
have studied one of the genes, PRST (Plasmodium responsive salivary 1), whose expression was upregulated in infected
glands, using immunolocalization and functional inactivation approaches.

Methodology/Principal Findings: PRST belongs to a novel insect superfamily of genes encoding proteins with DM9 repeat
motifs of uncharacterized function. We show that PRST is induced in response to Plasmodium, not only in the salivary glands
but also in the midgut, the other epithelial barrier that Plasmodium has to cross to develop in the mosquito. Furthermore,
this induction is observed using either the rodent parasite Plasmodium berghei or the human pathogen Plasmodium
falciparum. In the midgut, PRS1 overexpression is associated with a relocalization of the protein at the periphery of invaded
cells. We also find that sporozoite invasion of salivary gland cells occurs sequentially and induces intra-cellular modifications
that include an increase in PRS1 expression and a relocalization of the corresponding protein into vesicle-like structures.
Importantly, PRST knockdown during the onset of midgut and salivary gland invasion demonstrates that PRST acts as an
agonist for the development of both parasite species in the two epithelia, highlighting shared vector/parasite interactions in
both tissues.

Conclusions/Significance: While providing insights into potential functions of DM9 proteins, our results reveal that PRS1
likely contributes to fundamental interactions between Plasmodium and mosquito epithelia, which do not depend on the
specific Anopheles/P. falciparum coevolutionary history.
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crosses the midgut epithelium and stops migrating when it makes
contact with the midgut basal lamina. Here the ookinete gives rise
to an oocyst that undergoes intensive internal mitotic divisions and
yields up to several thousand sporozoites that are released into the

Introduction

Malaria, one of the most devastating infectious diseases is
caused by an Apicomplexa parasite of the genus Plasmodium whose

transmission occurs through the bite of an infected Anopheles
mosquito. In the mosquito vector, Plasmodium completes a complex
developmental program involving a series of molecular and
cellular interactions leading to the colonization of the salivary
glands and the production of infectious sporozoites [I,2,3].
Understanding these finely controlled events is essential to
designing new strategies to reduce malaria transmission.

Parasite development within the vector begins when the
mosquito ingests an infective bloodmeal from a vertebrate host.
After gamete fertilization inside the mosquito midgut lumen, the
resulting zygote rapidly transforms into a motile ookinete that
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mosquito body cavity. Sporozoites invade salivary glands by
crossing the basal lamina and the plasma membrane of the salivary
gland cell [4,5]. Cell traversal is followed by storage inside a large
extracellular secretory cavity. From here, sporozoites can access
the salivary duct and be injected along with salivary proteins
during the mosquito’s bite, allowing transmission to the vertebrate
host. A large increase in sporozoite infectivity towards the
vertebrate host occurs during their storage in the salivary glands.

While both motile forms of the parasite, the ookinete and the
sporozoite, must cross an epithelial barrier, respectively the midgut
and the salivary gland, different interactions are anticipated in
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these processes. In the midgut, the ookinete first interacts with the
latero-apical pole of the cell processes. In the midgut, the ookinete
first interacts with the latero-apical pole of the cell; then, the
ookinete gets access to the membranous labyrinth beneath the
basal lamina through intra and intercellular routes. In some of the
traversed cells, cell invasion elicits reactions leading to apoptosis or
necrosis and extrusion from the epithelial layer. Large parasite
losses occur as a consequence of host defensive reactions [6,7,8,9].
In contrast, sporozoites first interact with the salivary gland basal
lamina and then enter salivary cells through the basal membrane
forming a transient vacuole. Although salivary glands are invaded
by thousands of sporozoites, this process does not seem to be
detrimental to the epithelium [4,5], suggesting that efficient
mechanisms of cell reparation have been developed.

Cellular responses during midgut invasion have been extensively
studied over the last 5 years using different combinations of
Plasmodiwum and Anopheles. Large-scale expression analyses have
highlighted both classical humoral immune responses and more
local epithelial responses [10,11,12]. These analyses also showed
that the extent of the responses and the identity of the underlying
genes are not fully conserved among the different parasite-vector
combinations, possibly reflecting the degree of adaptation between
parasite and mosquito. Additionally, extensive laboratory exper-
iments mainly utilizing the P. berghet rodent malaria model have
further explored the consequences of these systemic and local
responses on ookinete survival and oocyst development establish-
ing that the outcome of infection depends on finely balanced
factors that affect parasite development in the mosquito both
positively and negatively [10,11,12,13,14].

In contrast to numerous studies on parasite-host relationships in
the midgut, very few studies have investigated sporozoite-salivary
gland relationships including whether the two epithelia may share
common fundamental reactions to parasite invasion, despite
apparent differences in the invasion process. From a SAGE
analysis, we identified 57 Anopheles gambiae genes differentially
expressed in the salivary glands of infected female mosquitoes and
showed that, as in the midgut, Plasmodium invasion is accompanied
by an innate immune response as well as more general cellular
responses [15]. Among the identified immune responsive genes,
the Serine Protease Inhubitor 6 (SRPN6) gene has recently been shown
to negatively affect P. berghei sporozoite numbers in An. gambiae
salivary glands [16].

Here we have conducted a functional analysis on PRSI, a
protein containing DM9 motifs whose gene was identified by
SAGE as upregulated during salivary gland invasion by Plasmo-
dium [15]. This gene was found to be induced in response to
Plasmodium invasion not only in the salivary glands but also in the
midgut. We show that PRSI is a novel agonist of the Plasmodium
developmental cycle in the two epithelia and exerts this function
towards both P. berghet and P. faleiparum. This suggests that, as
previously demonstrated in the midgut, some important cellular
mechanisms that benefit Plasmodium development in the salivary
glands are not dependent on specific co-adaptations. Furthermore,
this study reveals that cellular response pathways to Plasmodium
invasion might be shared by the two major mosquito epithelial
barriers.

Results

1) PRS1 belongs to a novel protein family characterized
by DM9 repeat motifs

PRSI (Plasmodium Responsive Salivary 1) was previously described
in a salivary gland transcriptome analysis [17] and was identified
as upregulated in An. gambige salivary glands upon invasion by
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P. bergher sporozoites [15]. The sequence of a corresponding full-
length cDNA (BX037582, [18]) indicates that PRSI potentially
encodes a 144 amino acid cytoplasmic protein, containing two
DM9 motifs (smart00696). These motifs were first described in
Drosophila, where they exist as repeat motifs, in association or not,
with other conserved motifs (such as a Ring motif). Proteins with
DM9 motifs are essentially found in arthropods and platyhel-
minths and only occasionally in other eukaryotes or prokaryotes
(Table S1). In An. gambiae, five proteins, in addition to PRSI,
display DM9 motifs. The corresponding genes are localized in
three clusters on An. gambiae chromosomes. The first cluster of
genes, comprising AGAP009604, AGAP009605 and AGAP009606,
is localized on the An. gambiae chromosome 3R. In AGAP009604,
the DM9 motif is associated with a domain homologous to the
farnesoic methyl transferases of crustaceans [19]. The two other
clusters, respectively coding for PRS1 (AGAP006102) and
AGAPO006103 on the one hand, and AGAP006398 on the other
hand, are found on chromosome 2L of the PEST genome, in the
region of the 2La chromosomal inversion near the locus identified
as being involved in the control of Plasmodium development [20].
This gene arrangement in clusters is suggestive of an evolution by
gene duplication. Phylogenetic analysis reveals that PRSI and
AGAPO06103 result from a relatively ancient gene duplication that
probably occurred before Anophelinae and Culicinae separation
(Fig. 1, S1 and S2). Both proteins share only 50% identical amino
acids. Interestingly in PRS1 and AGAP006103, the DM9 motifs
are not associated with any other sequence suggesting that they are
the support for a putative biological activity.

2) Plasmodium invasion of mosquito midgut and salivary

glands induces PRS1 expression

To characterize the expression pattern of PRSI, RT-PCR
experiments were performed in various Anopheles tissues as well as
during larval development (Fig. 2A). These experiments showed
that, except at the egg stage, PRSI is expressed throughout the life
of the mosquito, in males as well as in females. In addition to
salivary glands, PRS! mRNA were detected in the midgut,
indicating that PRSI is expressed in the two epithelia critical for
Plasmodwum development in Anopheles.

Since the midgut is the first epithelial barrier that Plasmodium has
to pass to develop in the mosquito, we asked whether ookinete
invasion might affect PRSI expression. To this end, An. gambiae was
infected with P. berghet and PRSI expression monitored by qRT-
PCR in midguts collected at different time points after infection.
As shown in Fig. 2B, PRS7 mRNA levels increased three-fold at
24 h after feeding on infected mice and were significantly higher
(p<0.001) than in mosquitoes fed on non-infected mice. This
induction is coincident with midgut invasion by ookinete.
However, by 48 h both infected and uninfected samples showed
the same increase in PRSI expression, probably as a secondary
global response to bloodmeal (BM). A two- to three-fold increase
in PRS1 mRNA levels was also observed in the salivary glands by
14 days on, after an infecting blood-meal, as previously described
[15].

Next, we examined PRS] expression during invasion of midguts
and salivary glands by the human pathogen, P. falciparum. As
shown in Fig. 2C, P. falciparum also triggers overexpression of PRSI
in the midgut by 24-30 h. and in the salivary glands by 11 days
after the infecting BM, consistent with the kinetics of midgut and
salivary gland invasion by this Plasmodium species. Therefore the
response to both P. bergher and P. falciparum suggests that PRSI may
be involved in Plasmodiwm/vector interactions regardless of the
Plasmodium species.
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Figure 1. Partial phylogenetic tree of the DM9-protein family.
DM?9 proteins whose genes are located on chromosome 2 in An. gambiae
were used for a blast search and the sequences of their closest
homologues from different species: Ag, An. gambiae; Ad, An. darlingi; Cq,
Culex quinquefasciatus; Aa, A. aegypti; Pp, Phlebotomus papatasi; NaV,
Nasonnia vitripennis were aligned, together with two DM9 proteins from
Drosophila (Dm: D. melanogaster). The sequence alignment was used to
generate an unrooted tree Bootstrap values on 100 replicates are given.
The scale bar represents 10% differences in protein sequences. The
sequence alignment used to build the tree is shown in Figure S1, a more
complete phylogenetic tree is provided in Figure S2 and a list of DM9
proteins with accession numbers is given in Table S1.
doi:10.1371/journal.pone.0011538.g001

3) Ookinete invasion induces PRS1 overexpression and
relocalization in midgut cells

During traversal of the midgut epithelium, ookinetes elicit
systemic and local immune responses leading to their recognition
and destruction together with cellular responses such as cytoskel-
eton reorganization, cell protrusion and apoptotic cell death [6,7].
To gain insight into the function of PRSI, we undertook its
localization at the cellular level, using anti-PRS1 antibodies. These
antibodies detected a protein of the expected molecular mass
(16 kDa) in immunoblot analysis of midgut and salivary gland
extracts from non-infected Anopheles (Figure S3A). In agreement
with the transcript analysis, an increase in PRS1 levels occurred in
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the midgut 24 h after feeding on P. bergher-infected compared to
non-infected mice (Figure S3B).

PRSI localization during ookinete invasion of midgut cells was
then investigated by immunofluorescence and confocal microsco-
py using anti-PRS1 antibodies and GI'P-expressing P. bergher. The
fluorescence intensity was compared between midgut sections
prepared and analyzed in the same conditions. As observed in
Fig. 3, the fluorescent labeling is higher on infected than non-
infected midgut sections. To obtain a more precise quantification
of this difference, the fluorescence intensity was estimated and
found to be in mean 7-fold higher in infected midguts (relative
fluorescence intensities compared to sections labeled with
preimmune serum: 1.7 +/— 1.6 (non infected midgut sections);
13.6 +/— 10.3 (infected midgut sections). N = 3). In non-infected
midguts, the anti-PRS1 labeling was relatively homogeneous
(Fig. 3B). In contrast, in the Plasmodium-infected midguts, a more
heterogeneous fluorescence pattern was detected (Fig. 3C), with
80% of the regions with higher fluorescence intensities found in
the proximity of an ookinete. Furthermore, 90% of the ookinetes
were detected near more intensely labeled cells, showing that the
increase in PRS1 expression is associated with midgut cell invasion
by the ookinetes.

In particular, PRS1 was overexpressed in isolated cells or in
clusters of cells that protruded towards the midgut lumen (Fig. 3C).
These cell protrusions were previously demonstrated to be linked
to apoptotic cell death induced by invasion [6]. Consistently, most
of these protruding cells contained or were in the proximity of an
ookinete. Some rare protruding cells were not associated with a
GI'P- labeled ookinete. Since only live ookinetes express GFP [14],
these cells might have been traversed by an ookinete that was
subsequently killed by the immune response.

Interestingly, in the protruding cells, whatever their association
with a live parasite, PRS1 was concentrated at the cell periphery,
on the lumen size of the cell (Fig. 3C). Such a relocalization was
also observed in some of the cells overexpressing PRSI that were
not protruding towards the midgut lumen. This was in contrast
with a more widespread cellular distribution of PRSI in the
surrounding cells and suggested that PRSI was relocalized inside
the midgut cell in response to ookinete invasion and/or apoptotic
cell death.

4) Salivary gland invasion is a sequential process marked
by PRS1 relocalization in vesicle-like structures

PRSI localization was then investigated in non-infected and
Plasmodwum-infected salivary gland cells, using GFP-expressing P.
berghei sporozoites. To reveal potential cytoskeleton changes
associated with Plasmodium invasion, we also labeled the actin
network with fluorescent phalloidin.

We have previously shown using RT-PCR experiments on
RNA prepared from salivary gland dissected lobes that PRS1 was
expressed at higher levels in the lateral distal lobe than in the
lateral proximal or in the medial lobes [15]. Immunolocalization
allowed PRSI detection in infected and non-infected cells of the
distal portion of the lateral lobes with PRS1 immunoreactivity
located at the basal side of the salivary gland cells (Fig. 4). Less or
no immunoreactivity was observed in the proximal lateral lobe
while interpretation of immunolocalization was hampered in the
medial lobe due to a high level of autofluorescence. In the distal
lateral lobes, no immunoreactivity was detected in the central parts
of the glands corresponding to the secretory cavities and ducts, in
agreement with the notion that PRSI is an intra-cellular,
cytoplasmic protein (Fig. 4C and Video SI). Notably, while
PRSI labeling in cytoplasm was homogeneous in non-infected and
some infected cells, it displayed a granular aspect in highly infected
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Figure 2. PRST induction in salivary glands and the midgut after P. berghei or P. falciparum infection. A. qRT-PCR analysis of PRS1
expression at different developmental stages and in different Anopheles tissues. Data were normalized to An. gambiae ribosomal protein S7 mRNA
levels. Is1-4, various instar larval stages; ny, nymphal stage; Fe, whole adult female; Ma, whole adult male; Sg, salivary glands; fb, fat body; mg, midgut;
ov, ovary. Mean +/— SEM. B. qRT-PCR analysis of PRST induction by P. berghei during midgut invasion by ookinetes (main panel) and salivary gland
invasion (inset). Salivary glands were dissected 14 days after feeding on infected or control mice. The results are the mean +/— SEM of qPCR data
normalized to S7 expression obtained from at least three independent infections. Stars indicate significant differences; one star: p<<0.05; 2 stars:
p<0.001. C. gqRT-PCR analysis of PRST induction by P. falciparum during midgut invasion by ookinetes (main panel) and salivary gland invasion (inset).
Salivary glands were dissected 11 days after feeding on gametocyte-positive (infected) or control (non-infected) blood. Results were obtained from
two (midgut) or three (salivary glands) independent infections. Stars indicate significant differences; one star: p<<0.05; 2 stars: p<<0.001. No statistical

analysis was conducted on midgut invasion by P.falciparum (only two replicates).

doi:10.1371/journal.pone.0011538.9g002

cells suggesting a relocalization of the protein to vesicle-like
structures (Fig. 4 A, B, C, E). These granules did not colocalize
with GFP labeled sporozoites, indicating that PRSI relocalization
likely reflects an intra-cellular response to invasion rather than a
direct interaction with invading sporozoites (Fig. 4C).

Intriguingly, we observed that, in poorly infected glands,
sporozoites were not homogeneously distributed in the whole
gland but were concentrated in one or several foci of highly
infected cells surrounded by uninfected regions (Fig. 4 D, G, I). In
these foci, an increase in the density of the actin network and a
modification of cell shape were often noticeable (Fig. 4F and Iig.
S4), suggesting alterations in the cytoskeleton. As the glands were
more densely infected, the foci were larger, sometimes covering
only one side of the gland (Figure S4). Finally, glands that were
completely infected were also observed. These observations
suggested that invasion of the salivary glands is a progressive
process beginning with primary foci of infection that can extend to
the whole gland, rather than a general invasion process of each
salivary gland cell.

Furthermore, a higher PRS1 immunoreactivity was detected in
the foci corresponding to highly infected cells compared to
surrounding uninfected regions (Fig. 4. E, H, I). As PRSI
expression increased in infected cells, a prediction was that the
levels of PRSI expression might directly reflect the intensity of
gland infection. To explore this hypothesis, we quantified PRS!
and P. berghei Circumsporozoite (Cs) protein mRNA in the salivary
glands of infected An. gambuae. In these experiments, Cs mRNA was
used to quantify the density of invasion. Strikingly we observed a
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strong correlation (correlation coefficient R2=10.7, p<<0.001)
between the expression levels for the two mRNAs showing a
clear relationship between PRSI expression and salivary gland
invasion (Figure S5). Collectively, our results support the idea that
sporozoite invasion of salivary gland cells occurs sequentially and
induces intra-cellular modifications that include an increase in
PRSI expression and a relocalization of the corresponding protein
into vesicle-like structures.

5) PRS1 has a facilitator role in Plasmodium infection

The expression profile and the overexpression and relocaliza-
tion of PRSI in both the midgut and the salivary glands in
response to Plasmodium invasion strongly suggest that PRSI is
mvolved in Anopheles/ Plasmodium interactions. To determine the
role of PRS1 on Plasmodium development in the mosquito, we
investigated the effect of PRS? silencing by RNAi. Two different
protocols were used to differentiate the potential effects in the
midgut and the salivary gland cells. First, to detect PRSI
knockdown (KD) effects on midgut invasion by ookinetes, PRS/
dsRNA and control dsRNA were injected three days before the
infective BM. Second, to detect specific effects on sporozoite
development and salivary gland invasion, independently from the
effects on oocyst development, PRSI and GFP dsRNAs were
injected into the hemocoel 7 to 10 days after the infective BM, at
which time oocysts are already formed and sporozoites are in the
process of salivary gland invasion. These protocols were used for
assessing PRSI silencing effects in both the P. bergher and P.
Jalcyparum systems.
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Figure 3. Confocal microscopy of triple-stained, infected and non-infected A. gambiae midguts. Midgut sections were incubated with
preimmune serum (A) or anti-PRS1 immune serum (B and C) in the same way in parallel experiments and analyzed by confocal microscopy; the image
acquisition parameters of the confocal microscope were maintained the same. In the left panels, Z-stack projections of PRS1 staining are shown in a
false color representation (labeling intensity increasing from blue to yellow). In the right panels, a merge image of the three channels (red: PRS1;
green: GFP-expressing ookinetes; blue: DAPI-counterstaining of the nuclei) is given according three planes: z-stack projection of the xy planes (main
image), xz and yz cross-sections according to the directions marked by the white lanes on the main image. A: Control midgut stained with
preimmune serum. B. Mosquito midgut, 24 h after a non-infective blood-meal. C. Mosquito midgut 24 h after feeding on a P. berghei-infected mouse.
Note the higher intensity in PRS1 labeling in the proximity of ookinetes, as well as the relocalization of PRS1 in the cell periphery of cells protruding

towards midgut lumen. Bar: 20 um.
doi:10.1371/journal.pone.0011538.g003

QRT-PCR analysis of midgut and salivary gland RNA
indicated a significant PRS! silencing in both tissues (Fig. 5A).
Nevertheless, gene silencing in the salivary gland was less efficient
despite the use of larger amounts of dsRNA, in agreement with
previous observations [21].

The effects of gene silencing on oocyst development in the
midgut were tested in four biological experiments, with each
parasite. Since differences between replicates were observed within

@ PLoS ONE | www.plosone.org

treatments, the data were not pooled for statistical analyses. The
replicates were instead analyzed independently and resulting p
values were combined by meta-analysis (cf Experimental Proce-
dures). Infection prevalence, ie. the fraction of mosquitoes
carrying at least one oocyst, and infection intensity, ie; the
number of oocysts per mosquito determined only in the subset of
mosquitoes with >0 oocyst, were separately tested. Injection of
PRS1 dsRNA before infecting mosquitoes by P.bergher significantly
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Figure 4. PRS1 overexpression in infected salivary glands. A-B. Z-stack projections of confocal sections for a highly infected salivary gland
stained for PRS1 and GFP (A) or PRS1 alone (B).Note the granular pattern of PRS1 labeling. C. Three-dimension reconstruction of the gland shown in
A/B, showing PRS1 localization in the basal (facing the hemolymph) side of the salivary cells. No PRS1 labeling can be observed in the central part of
the gland. PRS1 labeling does not colocalize with sporozoite GFP-labeling. D-I. Confocal analysis of glands with localized sporozoite invasion. D:
merge of PRS1, GFP and DAPI staining on a confocal section in a superficial plane of the gland. E: zoom view of the section observed in D. F:
phalloidin labeling of the actin network for the same section as in D, revealing actin network reorganization in the invaded part of the gland. G:
confocal section (middle plane; merge of PRS1, GFP and DAPI staining) of a gland characterized by a very localized invasion. PRS1 labeling in the
infected zone at a higher magnification is given in the inset. H: Z-stack projection of confocal sections showing another example of localized
infection, at the distal part of the salivary lobe. Note the higher intensity of PRS1 labeling in the infected part contrasting with the low level of
labeling outside. I: PRS1 labeling in a false color representation (labeling intensity increasing from blue to yellow) (upper panel) and merge of PRST,

GFP and DAPI staining (lower panel) on a superficial section of a poorly infected gland. Bar: 20 um.

doi:10.1371/journal.pone.0011538.g004

decreases the infection intensity (p=0.004) but the effect on
prevalence was not significant (p = 0.18) (Fig. 2B, C). In contrast,
PRSI knockdown was found to affect P. falciparum infection more at
the level of the prevalence of infection (p = 0.02) than at the level of
oocyst intensity (p=0.25) (Fig. 2D and E). The details of the
analyses are given in Table S2. The reasons while PRSI silencing
differentially affects prevalence or intensity for P.berghei or
P.falciparum are currently unknown and might be linked to
Plasmodium specific biological effects. Indeed, P. falciparum was
observed to usually display a weaker infection against its natural
vector An. gambiae compared to P. berghei, probably reflecting co-
evolution between this mosquito and the human malaria parasite.
This is in accordance with field data [20,22] showing that An.
gambuae resistance against the human malaria parasite is a relatively
frequent trait. In addition, in our experimental conditions, P.
berghei infections lead to a number of developing oocysts higher
than P. falciparum infections, with a significant difference (Wilcoxon

@ PLoS ONE | www.plosone.org

test W=7993.5, p-value =0.004727). Nevertheless, despite this
parasite species-associated difference, the decrease in the efficiency
of infection in response to PRSI silencing showed that PRS! is an
agonist of oocyst development in both Plasmodium systems.

Finally, we investigated the effects of PRSI silencing on
Plasmodwm sporozoite invasion of salivary glands. PRS/ and GFP
dsRNAs were injected into the mosquito hemocoel just before
sporozoites start invading salivary glands. Consistent with the
reduction in PRSI expression, we observed a significant, 2-fold,
decrease in the number of sporozoites in salivary glands at day 16
(P.bergher, Fig. 5F) and day 11 (P. falciparum, Fig. 5G) after infection.
Therefore, PRS1 appears to be necessary for efficient salivary
gland colonization by both P. bergher and P. falciparum.

Jointly these results show that PRSI is an agonist of Plasmodium
development at the two steps where the parasite has to invade
mosquito epithelial barriers, irrespective of the Plasmodium system
under study.
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Figure 5. PRST affects An. gambiae infection with Plasmodium. A. Effects of dsRNA injection on PRST expression in the midgut and the salivary
glands. Expression of PRST was analyzed by gRT-PCR in the midgut and the salivary glands three days after injection of dsPRS1 or control dsGFP. For PRS1
silencing in salivary glands, three fold higher amounts of control or specific dsRNA were injected. B-E. Oocyst prevalences and oocyst intensities in P.
berghei (B, C) or P. falciparum (D, E) infected mosquitoes after injection of GFP dsRNAs (controls) or PRST dsRNAs. For each infecting parasite, data from
four independent experiments were pooled and analyzed for prevalence values (B, D) or distribution of oocyst intensities in positive midguts (C, E). In C
and E, the black bar represents the cumulated median intensity value. Statistics were computed on each individual replicate (also see Sup. Table S3) and
the p values were combined using the meta-analytical approach of Fisher as described in Experimental Procedures. Injection of PRS1 dsRNA significantly
decreases prevalence in P. falciparum infections and oocyst intensities in P. berghei infections compared to injection of control dsRNA. F and G. Average
parasite numbers in salivary glands after infection by P. berghei (F) or P. falciparum (G) of mosquitoes treated with PRST and GFP dsRNA. Data were
collected from four independent experiments. The standard errors are indicated. Statistically significant differences between samples were evaluated
using the Mann-Whitney and Student’s tests. The p-values reveal significant differences between dsGFP controls and dsPRST KD.

doi:10.1371/journal.pone.0011538.g005

Discussion

We previously identified several Anopheles gambiae genes that
were differentially expressed in infected salivary glands. Here, we
focused our study on the PRSI/ gene, a member of a novel
superfamily essentially found in arthropods and characterized by
the DM9 protein domain. Most importantly, our data identify
PRSI as an agonist of P. falciparum development acting at the two
epithelial barriers crossed by mobile forms of the parasite, i.e.
ookinetes and sporozoites. PRSI function, in both epithelia,
appears to be conserved in the compatible but non-natural P.
berghei/An. gambiae system, suggesting that PRSI is involved in
biological processes exploited, or selected by a broader range of
pathogens or parasites, which An.gambiae adult or larvae can
encounter.

While PRSI expression in the salivary glands was previously
established, our study shows that PRSI is also expressed in the
midgut where it is upregulated after blood-meal. In addition, PRS!
expression at the mRINA level is significantly higher after an
infecting compared to a non-infecting blood-meal by 24-30 h,
coincident with the peaks of P. bergher and P. falciparum ookinete
invasion. To further link the induction of PRSI expression at 24—
30 h with midgut epithelium invasion by ookinetes, immunocy-
tochemical detection of PRSI expressing cells was performed.
PRS1 overexpression was mainly observed in groups of cells
associated with ookinetes and protruding towards the midgut
lumen. According to the “time bomb” theory of P. berghei ookinete
invasion [6], ookinetes traverse midgut epithelial cells, often
serially, and trigger apoptosis and extrusion of the invaded cells
from the epithelial layer. Interestingly, in these cells, PRSI
induction is followed by relocalization of the protein at the cell
periphery, indicating that PRS1 might participate in cell responses
to damage or apoptosis. PRS1 overexpression was also observed in
the proximity of basally located ookinetes, without any sign of
apoptosis in the surrounding cells, suggesting that the apoptotic
cells have already been expelled. Alternatively, ookinete invasion
may not systematically lead to an apoptotic process, as also
suggested by Shiao et al. [9].

While each midgut cell is in mean the target for less than one
ookinete, salivary gland cells are invaded by numerous sporozoites.
This probably leads to an intensive cellular repair process, the
mechanism of which is currently unknown. Among the changes
occurring in invaded salivary gland cells, Sterling et al [5] have
previously noticed the accumulation of small membrane-limited
vacuoles. Interestingly, PRSI, as well as the Serpin 6, another
protein whose expression is induced during salivary gland invasion
by sporozoites, were found to concentrate into vesicle-like
structures. It may be hypothesized that formation of these vesicles
is linked to the intense protein and/or membrane synthesis
required to repair cell damages. Whether there is one or more
types of vesicule-like structures and whether proteins with different
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functions, agonist for PRS1 and antagonist for Serpin 6, are
colocalized in the same vesicles remain to be established.
Strikingly, we observed that, in the distal lateral lobes of the
salivary glands, sporozoites were often heterogeneously distributed
suggesting that there may be preferential routes for salivary gland
invasion. It was proposed that hemolymph flow through the dorsal
vessel may explain preferential routing of sporozoites to salivary
glands [23]. This might also explain why some regions are more
accessible to sporozoite invasion. Alternatively, partial degradation
of the basal matrix by earlier invading parasites, or a localized
shutdown of the epithelial immune response, might facilitate
further penetration for the trailing sporozoites. Nevertheless, the
observed “quantum-like” invasion of salivary glands, where a cell
is either not invaded or highly invaded, is likely to explain the
observed pronounced correlation between the level of PRSI
mRNA induction and the number of sporozoites inside the gland.
Our immunolocalization results reveal a link between epithelial
cell invasion and PRS1 overexpression, however the mechanism of
PRSI induction remains to be established. Epithelial invasion by
pathogens, particularly in the midgut, was often associated with
the induction of the immune system [24,25]. Recent articles have
demonstrated the major roles of Toll and Imd signaling pathways,
mediated by Rell and Rel2 respectively, in triggering immune
responses to Plasmodium in the midgut [25,26,27]. Furthermore,
RNA interference to deplete the negative regulators of these
pathways, Cactus and Caspar, combined to high throughput gene
expression analyses highlighted 588 and 116 genes, respectively,
regulated by Toll and Imd pathways [28]. However, this list is
probably not complete since some genes, like PRSI, were not
probed in these analyses. Therefore, it would be worth to
investigate whether the induction of PRSI could be linked
somehow to the induction of the immune system. A double
knockdown affecting both PRSI together with one of the two
immune pathways, Toll or Imd, by targeting their respective
downstream transcription factor Rell or Rel2, could help to
address this issue, in the midgut but also in the salivary gland.
Whatever the mechanism controlling PRS1 induction, our work
shows that PRSI silencing similarly affects Plasmodium infection in
the two mosquito epithelia crossed by the parasite, reducing the
number of oocysts that develop in the midgut and the number of
sporozoites that colonize the gland. Interestingly, the phenotypes
obtained after PRSI gene silencing were largely similar with both
P. falciparum and P. bergher species. RNAI silencing assays were
previously used to test a number of potential effectors of the
immune response against Plasmodum infection. Several highly
potent immune genes were shown to exert agonist or antagonist
Plasmodwum species-specific effects, suggesting adaptation of the
innate immune response during co-evolution between parasite and
its natural vector. In contrast, other aspects of mosquito/parasite
interactions were found to be evolutionarily more conserved. For
mstance, silencing the WASP gene, a regulator of the cytoskeleton
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dynamics increased the number of developing oocysts by a two-
fold factor using either P. bergher or P. faleiparum [10]. Similarly,
PRSI might be involved in a cellular activity stimulated by
invasion, such as cytoskeleton reorganization or membrane
synthesis that could ¢ fine modulate Plasmodium survival. We can
hypothesize that such an activity would escape the selective
pressure imposed, in the field, by at least P. falciparum. This would
make sense with the conservation of WASP and PRSI functions
towards both parasite species.

Future studies will be required to determine the molecular
mechanisms underlying PRSI functions as a general agonist of
Plasmodwum development. At the structural level, PRSI is only
composed of two DM9 motifs. To date, the functions of these
motifs are still unknown. However, three Drosophila proteins
carrying these motifs (CG10527, CG3884 and CG13321) have
been shown to interact with various proteins involved in
transcriptional regulation, intra-cellular trafficking, cytoskeleton
rearrangement and immune responses [29], suggesting that they
could be involved in regulatory protein-protein networks. The
same three proteins were detected in the Drosophila phagosome
[30], a localization compatible with a function in vesicular
trafficking or immune response. A fourth Drosophila DMO-
containing protein (CG16775) was also described to be strongly
up-regulated after oral infection of Drosophila larvae by an
entomopathogenic Pseudomonas species [31]. Altogether, these data
suggest that DM9-containing proteins are involved in regulatory
interactions during local immune responses. PRSI relocalization
at pericytoplasmic sites in the midgut or in vesicle-like structures in
the salivary glands is compatible with a link to intracellular
trafficking. It will be of further interest to determine whether other
Anopheles DM9 motif proteins may have a role during ookinete
invasion, which could be associated with cell damage, re-
organization of the cytoskeleton or in immune defenses against
pathogens.

In conclusion, previous studies have fostered the concept of
potentially universal Plasmodium agonists at least for parasite
development in the midgut. Our results, which showed that PRS1
is an agonist of the Plasmodium developmental cycle both in the
midgut and in the salivary glands, for the human and the rodent
parasites, strengthen this notion of fundamental mechanisms
involved in the mosquito epithelial invasion by pathogens
independently of parasite/vector coadaptations.

Materials and Methods

Mosquito rearing and infection

Mosquito (An. gambiae Yaounde strain) rearing and infection by
the rodent parasite P. berghet were conducted as previously
described [15]. Two P. bergher strains were used: the PbFluspo
strain [32] for expression studies, gene inactivation and detection
of sporozoites and the conl strain [33] for detection of earlier
Plasmodium forms during midgut invasion. For expression studies,
mosquito infection with P. falciparum was initially performed in
Senegal, using blood of gametocyte carrier volunteers, as described
[34]. Salivary gland infection by P. falciparum was confirmed by
PCR detection of aldolase mRNA (PFI4_0425). Other studies
with P. falciparum, especially RNA silencing experiments, used
infections with gametocytes produced i vitro (as described further).

In vitro production of P. falciparum gametocytes and
mosquito infection procedure
The P. falciparum NF54 isolate was cultured using the tipper

table system [35]. Briefly, parasite culture was initiated with fresh
human red blood cells (RBCs,7% final concentration) in RPMI

@ PLoS ONE | www.plosone.org

Vector Responses to Plasmodium

1640 medium, containing 25 mM HEPES and L-glutamine, 10%
heat-inactivated human serum and 0.2% Sodium Bicarbonate,
under a constant gas supply. Fourteen days later, gametocyte
maturity was verified by testing microgamete exflagellation, and
parasitemia quantified on Giemsa-stained slides. After centrifuga-
tion at 2000 rpm, gametocytes were resuspended in an equal
volume of AB human serum and added to a mixture of fresh RBCs
and AB human serum. Mosquitoes were allowed to feed on that
mixture for 15 minutes, using a membrane feeder, previously
warmed to 37°C. Only fully fed females were kept for further
analysis.

Real-time quantitative RT-PCR

Mosquito tissues were dissected in RNAlater (Ambion; 70% in
PBS) and frozen in 100% RNAlater at —80°C until utilized. Total
RNA was isolated using Tri reagent (Sigma, USA). Real-time
PCR was performed on ¢cDNA preparations using the SYBR
green detection system (Applied Biosystems, Warrington, UK)
with the ABI Prism 7900 sequence detector (Applied Biosystems),
as previously described [15]. The An. gambiae RPS7 ribosomal gene
was used as an internal control to normalize the amounts of RNA
between the various samples. In each experiment, a mixture of
RNAS was used for drawing standard curves for the quantifica-
tions of RPS7 RNA and the RNA under study. This mixture of
RNA was defined to have an expression level of 1 under its non
diluted form. Sequences of the primers are listed in Table S3.

Recombinant protein and antibody production

The ¢cDNA clone BX037582, obtained from an An. gambiae full-
length cDNA library [18], was resequenced and used to generate a
PRSI1-GST fusion protein. Briefly, a 480 bp PCR fragment was
obtained using oligos PRSrec5’ and PRSlrec3’ (Table S3) and
mserted into a PGEX6P1 vector (Amersham biosciences). The 388
AA-long fusion protein carrying GST on the N-terminal end was
purified on a glutathione affinity column (Amersham), and elution
was performed by cleavage with the PreScission protease
(Amersham) according to the manufacturer’s instructions. Cleav-
age using the PreScission protease releases an 18 KDa protein
with an 18 AA N-terminal extension. This recombinant protein
was used to raise rabbit polyclonal antibodies (SE 6119,
Eurogentec).

Western blotting

Midguts and salivary glands were dissected in PBS, placed in
ice-cold 50 mM Tris at pH 8, 100 mM NaCl, 5 mM EDTA, and
homogenized. Samples were separated on 15% SDS-PAGE or
15% NuPAGE Novex (Invitrogen) precast gels, followed by
electrotransfer to a Nitrocellulose Protran membrane (Whatman,
Schleicher and Schuell) and incubation with antibodies against
PRSI (1:2500) or Actin (clone 20-33, 1:500, Sigma). Primary
antibodies were detected using goat anti-rabbit peroxidase-labeled
antibodies (A0545, 1:75000, Sigma) and visualized using the ECL
Plus Western Blotting Detection System (Amersham). Blots were
stripped with Restore Western Blot stripping Buffer (Thermo-
scientific).

Immunostaining for confocal microscopy

Salivary glands were dissected in PBS and fixed for 15 min in
paraformaldehyde (PFA; 4% in PBS). Dissected midguts were
treated as described [36], except that a 4% PFA solution in PBS
was used for fixation. Fixed tissues were incubated with anti-PRS1
antibodies (1:200) (2 h at RT for salivary glands or O/N at 4°C for
midguts), followed by secondary alexafluor 546-labeled goat anti-
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rabbit antibodies (1:500, Invitrogen). Actin labeling was performed
by incubating salivary glands for 20 min with alexafluor phalloidin
633 (Invitrogen) in PBS plus 1% BSA. Samples were mounted in
Prolong Gold Antifade reagent plus DAPI (Invitrogen) and
analyzed using a Leica SPE confocal microscope. Image analyses
were performed using Image J. For measures of the mean
fluorescence intensities on midgut sections, the specimen were
treated in the same way in parallel experiments and the image
acquisition parameters were maintained the same.

RNAi gene-silencing assays

Double-stranded RNAs were synthesized from PCR-amplified
fragments using the T7 Megascript RNAi Kit (Ambion) according
to the manufacturer’s protocol. Primer sequences are listed in Tab.
S3. DsGFP was used as a control for non-specific effects of dsRNA
injection. A quantity of 500 ng of dsRNA was injected into the
thorax of cold-anesthetized 1- to 3-day-old An. gambiae females
using a nano-injector (Nanoject II; Drummond) with a glass
capillary needle, according to established methodology [37].
Alternatively, 1000-1500 ng were injected into the thorax of
13- to 14-day-old females at 10 days post-bloodmeal (d. PBM)
(P. berghei) or 6 d. PBM (P. falciparum). Mosquito midguts were
dissected at 8-10 d. PBM, and oocysts were counted after staining
the midgut with 0.2% mercurochrome (P. falciparum infections), or
using fluorescence microscopy (P. bergher infections). For statistical
analysis, replicates were analyzed independently using Chi Square
for differences in prevalence and non parametric Mann-Whitney
test and the p values from independent tests of significance were
combined using the meta-analytical approach of Fischer [38] as
described [27]. Sporozoites in pools of glands were counted by
light (at 14 d. PBM for P. falciparum) or fluorescence (at 16 d. PBM
for P. bergher) microscopy using a hemocytometer and differences in
sporozoite numbers were tested using non parametric Mann-
Whitney test.

Phylogenetic analysis

Sequence alignments of DM9-proteins with CLUSTAL-W and
phylogenetic analysis using Phylip neighbor-joining method on
distances were carried out using the Mobyle portal of the Institut
Pasteur (http://mobyle.pasteur.fr).

Supporting Information

Table S1 List of the proteins containing DM9 motifs.
Found at: doi:10.1371/journal.pone.0011538.s001 (0.21
DOC)

Table S2 Effects of PRS1 RNAIi silencing on Plasmodium
development Details of the prevalences and oocyst densities
obtained for the four infections after injection of GFP dsRNA or
PRS1 dsRNA using P. berghei or P. falciparum, as shown in Fig. 5.
Found at: doi:10.1371/journal.pone.0011538.5s002 (0.08 MB
DOC)

Table 83 Primers used in the study
Found at: doi:10.1371/journal.pone.0011538.s003 (0.03 MB
DOC)

MB

Figure S1 Alignment of DM9-containing proteins belonging to
PRS1 subfamily. DM9 proteins whose genes are located on
chromosome 2 in An. gambiae and their closest homologues in
An. gambiae (Ag), An. darlingi, Culex quinquefasciatus (Cq), A.
aegypti (Aa), Phlebotomus papatasi (Pp) and Nasonnia vitripennis
(NaV) were aligned together with two DM9 proteins from
Drosophila (Dm: D. melanogaster) and this alignment was used
for the tree shown in Fig. 1. The complete names of the proteins
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and their accession numbers are given in Tab. S1. Identical or
similar residues found in more than 60% of protein sequences are
highlighted in red and blue, respectively. DM9 motifs are
indicated by double-ended arrows

Found at: doi:10.1371/journal.pone.0011538.s004 (4.57 MB

TIF)

Figure 82 Phylogenetic tree showing the relationships between
in DM9 proteins found in An. gambiae (Ag), An. darlingi (Ad),
Culex quinquefasciatus (Cq), A. aegypti (Aa), Phlebotomus
papatasi (Pp), Nasonnia vitripennis (NaV) and D. melanogaster
(Dm). The tree is unrooted. Bootstrap values superior to 75 per
cent are indicated. Scale bar represents 10% differences in protein
sequences.
Found at:
PDF)

doi:10.1371/journal.pone.0011538.s005 (0.97 MB

Figure S3 Immunoblots of midgut and salivary gland extracts
using anti-PRS1 antibodies. Molecular masses of the markers are
indicated in kDa. A. Immunoblot of midgut and salivary gland
extracts from non-infected An. gambiae. B. Immunoblot of An.
gambiae midgut sheets before (time 0) or at various times (24 h,
48 h, 72 h) after an infected (+) or a non-infected (—) BM.

Found at: doi:10.1371/journal.pone.0011538.s006 (3.76 MB

TIF)

Figure S4 Phalloidin labeling of the actin network in salivary
glands. A: Focal sections from upper to lower sections showing
merge labeling for actin (red), GFP (green) and DAPI (blue). The
number in the lower left corner indicates the number of the
section. Bar: 20 um. B: Z stack projection of all the sections. The
white line indicates the direction of the plane used in C for 3-D
reconstruction. C: 3-D reconstruction of a cross-section of the
gland according to the direction defined by the white line in B.
Note that sporozoites are localized in close proximity to the actin
network.

Found at: doi:10.1371/journal.pone.0011538.s007 (3.27 MB TTF)

Figure 85 Correlation between PRSI and Cs expression in
salivary glands; mRNAs for PRS1 and CS were quantified by
qRT-PCR in different preparations of salivary glands after
invasion by P. berghei. CS expression is used as a marker of the
number of sporozoites inside the glands. A correlation between
both sets of data is demonstrated by the Pearson correlation
coefficient (R =0.84; R2=0.7, p<0.001).

Found at: doi:10.1371/journal.pone.0011538.5008 (2.00 MB TIF)

Video 81 3D-reconstruction of an infected salivary gland. 3D
reconstruction after confocal microscopy of a salivary gland
invaded by sporozoites (green) and stained for PRSI (red) and
DAPI (blue) Note the granular pattern of PRSI labeling at the
periphery of the gland contrasting with a more internal
localization of most sporozoites found in bundles near the salivary
duct.
Found at:
MOV)

do1:10.1371/journal.pone.0011538.s009 (6.41 MB
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