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Abstract

Background: The dissection of complex traits of economic importance to the pig industry requires the availability of a
significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to
discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these
SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay.

Methodology/Principal Findings: A total of 19 reduced representation libraries derived from four swine breeds (Duroc,
Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were
sequenced using Illumina’s Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over
372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially
available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158
individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored,
58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all
scorable SNPs was 0.274.

Conclusions/Significance: Overall, the results of this study indicate the utility of using next generation sequencing
technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip
demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.
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Introduction

One of the main limitations to the dissection of economically

important traits in livestock species has been the lack of a sufficient

number of genetic markers for the development of high-density

and high-throughput assays for association studies. The genetic

regulation of quantitative traits is complex and the identification of

the genes that underlie genetic variation requires large numbers of
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genetic markers, such as microsatellites or SNPs. To date, many

QTL (quantitative trait loci) have been localized to large

chromosomal regions in several species of domestic animals,

including the pig [1,2]. The need for more genetic markers is also

supported by the extent of linkage disequilibrium (LD) in the pig

genome, which has been estimated to extend from as little as 40–

60 kb [3] up to 400 kb [4] in the commonly used commercial pig

breeds, such as Duroc, Landrace and Large White. It has been

predicted that a marker density of 5–10 markers per cM

(centiMorgan) will be needed to conduct whole genome associa-

tion studies in the pig [4,5]. However, until recently the

identification of such markers en masse has been a very challenging

and costly task.

In recent years, new sequencing technologies have emerged

which offer great promise for marker discovery due to their ability

to efficiently generate large amounts of sequence data, both in

terms of time and cost. They are usually referred to as ‘‘second

generation’’ or ‘‘next generation’’ sequencing technologies and

include the Illumina Genome Analyzer (previously Solexa),

Roche’s 454 FLX system and Applied Biosystems’ SOLiD. The

chemistry used by each technology, as well as the read length and

the sequence output vary [6]. To date, these instruments have

been widely used for genome sequencing and re-sequencing and

SNP discovery [6].

Genome assemblies are being produced for a growing number

of animal and plant species, including several species of domestic

animals like the cow [7], chicken [8], dog [9], cat [10] and pig

[11,12]. The availability of the genome assemblies for the relevant

species and the ability to acquire massive sequence data from next

generation sequencers allows the efficient identification of a large

number of genetic markers, in particular SNPs [13] and small

indels (insertions/deletions).

The most efficient way to genotype large numbers of SNPs is to

design a high-density assay that includes tens of thousands of SNPs

distributed throughout the genome. These SNP ‘‘chips’’ are a

valuable resource for genetic studies in livestock species, such as

genomic selection [14], detection of QTL or diversity studies.

Recently, high-density SNP chips have become available for cattle

[15], horse and dog (http://www.illumina.com; http://www.

affymetrix.com), including the first application of a dog SNP

assay [16], but no such tool existed for pigs. Hence, the objectives

of this study were to: 1) perform a large-scale, genome-wide

porcine SNP discovery study using next generation sequencing; 2)

develop and characterize a high-density porcine SNP chip using de

novo discovered and other SNPs from public sources.

Materials and Methods

Animals and DNA samples
DNA samples were obtained from five pig breeds, including

Duroc (DU), Pietrain (PI), Landrace (LR), Large White (LW) and

Wild Boar (WB). For each breed, a single DNA pool containing

equal DNA amounts from all of the samples was prepared. The

number of animals per pool was 34, 23, 29, 36 and 36 for DU, PI,

LR, LW and WB, respectively. The DNA samples for the

commercial breeds were representative of the worldwide distribu-

tion of the breeds (samples originated from the USA, Netherlands

and Denmark), whereas the WB samples were collected mainly in

Europe, with five samples originating from Japan.

Construction of the reduced representation libraries
For each breed, a total of 25 mg from each DNA pool, divided

in five aliquots of 5 mg each, was digested with each of three

restriction enzymes AluI, HaeIII and MspI (Fermentas GmbH, St.

Leon-Rot, Germany), following the manufacturer’s recommenda-

tions. For each restriction digest, 10 units of enzyme were used in a

final volume of 10 ml and incubated at 37uC for 16 hr. Upon

completion of each digestion, fragments were fractionated with a

10% non-denaturing polyacrylamide Criterion TBE gel (Biorad,

Veenendaal, Netherlands) at 100 V for 190 min. DNA fractions

were stained by immersing a gel for 15 min in a TBE 16 solution

containing ethidium bromide. Fragments in particular size ranges

were excised from the gel. The size ranges for fragments excised

differed between libraries and included fragments of 160–200 bp

(AluI short), 200–240 bp (AluI long), 160–200 bp (HaeIII) and 100–

200 bp (MspI). After excision, the gel pieces were placed in a

0.5 ml microcentrifuge tube that had been pierced in the bottom,

and then placed in a collection tube and centrifuged for seven min

at 160006g. A total of 400 ml of recovery buffer was added to the

disrupted gel pieces, and the samples were kept overnight at 4uC.

DNA was purified from the gel slurry by passing the samples

through Sample Filter Cups from the DNA Gel Extraction Kit

(Millipore, Billerica, MA, USA) by centrifugation at 49656g for

10 min at room temperature. Next, 200 ml of recovery buffer was

added and the samples were centrifuged at 160006g for 15 min,

followed by an ethanol precipitation. DNA was dissolved in 40 ml

of Puregene DNA Hydration Solution (Gentra Systems, Valencia,

CA, USA). Samples were quantified by spectrophotometry, and at

least 300 ng of purified DNA was used to construct a RRL

(reduced representation library) for sequencing. A total of 19 breed

specific RRL were prepared, including 4 libraries each for DU, PI,

LR and LW, but only three libraries were available for WB,

because the AluI short library was not prepared.

Sequencing
All 19 libraries were sequenced on a 1G Genome Analyzer

(Illumina, San Diego, CA, USA). The length of all sequences

generated in this study was 36 nucleotides. In addition, two pooled

samples derived from each of the AluI RRLs were prepared and

sequenced using a 454 FLX system (Roche Applied Science,

Indianapolis, IN, USA) on the GS FLX platform. For the Genome

Analyzer, library constructions followed the protocol supplied with

the Genomic DNA Sample Prep Kit (Illumina, ‘‘Preparing

Samples for Sequencing Genomic DNA’’, version 1003806_Rev.

B, March 2008) with minor modifications. Library construction

started with the addition of an adenosine base to the 39 end of the

DNA fragments, except for the MspI digested samples which were

initially end repaired. The volumes of adapter reagent used in the

adapter ligation reactions were titrated accordingly to the amount

of input DNA to maintain a 10:1 molar ratio of adapter to DNA.

The concentrations of the libraries were determined using a

NanoDrop ND-1000 Spectrophotometer (Saveen and Werner AB,

Limhamn, Sweden) and the size and purity were determined using

an Agilent 2100 Bioanalyzer in combination with the Agilent

DNA 1000 Kit (Agilent Technologies, Nærum, Denmark). The

libraries were diluted in buffer EB (QIAGEN) to 10 nM,

denaturated with 2 N NaOH to a final DNA concentration of

0.5 nM, diluted to 2–4 pM with pre-chilled Hybridization buffer

(Illumina) and loaded in individual lanes into a 1.0 mm flowcell

together with a single lane of a 2 pM PhiX control library

(Illumina). Following cluster amplification, linearization, blocking,

and primer hybridization, 36 cycle sequencing were conducted on

an Illumina Genome Analyzer (version I) using the Genomic DNA

Sequencing Primer in combination with clustering and sequencing

kits supplied by Illumina. The resulting images were transferred to

the pipeline computer and analyzed using the Genome Analyzer

Pipeline Software (version 1.0, Illumina) generating the raw fastq

files. For FLX sequencing, the blunt fragments produced by AluI
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digestion were ligated directly to the adapters provided in the

library preparation kit without the shearing, sizing or end-

polishing steps. Single stranded libraries were then prepared and

sequenced according to the manufacturer’s instructions. The AluI

short and AluI long libraries were sequenced using 5.5 and 4.5 full

machine runs, respectively, using the two-region gasket.

Processing of the GA sequences
The raw sequence data were filtered according to different

criteria. Each sequence was first evaluated for the presence of the

expected sequence motif for each restriction enzyme; sequences

not containing the expected sequence were discarded. The

acceptable sequences began with CT, CC or CGG for the AluI,

MspI, and HaeIII restriction digests, respectively. Sequences that

contained the same nucleotide at more than 18 continuous

positions were also eliminated. The average quality score was next

calculated for each read by averaging the individual score for each

of the 36 base positions. Previous results obtained in a smaller pilot

study [17] indicated that a minimum average quality score of 12

was an acceptable threshold, and, therefore, all sequence reads

with an average quality score,12 were removed from the dataset.

Finally, sequences were also filtered for the presence of over-

represented reads. For this purpose, we calculated the sequence

depth for each RRL as the average of the total number of reads

that aligned to each unique position in the reference genome.

Reads that were present more than 56 the estimated sequence

depth were removed from the dataset.

Reference genome
The reference genome against which the 36 bp sequences were

aligned included all the porcine autosomes and the X chromo-

some. The state of completion of the assembly of each

chromosome varied because the sequencing of the pig genome

has not yet been completed. This genome sequencing and

assembly effort is being performed under the direction of the

international Swine Genome Sequencing Consortium [11] using a

hierarchical shotgun sequencing strategy in which BAC clones

from a minimum tiling path of clones are selected from the highly

contiguous physical map of the pig genome [18]. These BAC

clones are being sequenced to a minimum of 4-fold sequence

coverage. The tiling path was selected from clones from the

CHORI-242 BAC library generated from a single Duroc sow.

Sequence data have been assembled into contigs on a BAC-by-

BAC basis and have immediately been released into the EMBL/

Genbank/DDBJ DNA sequence databases. BAC contig sequences

have been assembled on a genome-wide basis at regular intervals.

The unmasked ‘‘PreEnsembl’’ version of the Sus scrofa assembly 7

of the pig genome available on July 28th 2008 was used for this

study, and that resource was obtained from: ftp://ftp.sanger.ac.

uk/pub/S_scrofa/assemblies/PreEnsembl_Sscrofa7/.

To represent regions of the genome that had not yet been

assembled, two pseudo chromosomes were built from 454 sequence

data generated from the two AluI libraries. For each library, all

sequences were first aligned to the Sus scrofa assembly with BLAT

[19]. Sequences that did not significantly align to that assembly were

next used to create consensus sequences (contigs). Our strategy was

to employ a simpler version of the approach used by TIGR to

assemble large shotgun sequencing projects [20]. A Perl script was

developed to cluster sequences which had the same motif in the first

32 bp. Batches of clusters were then assembled using CAP3 [21],

producing a set composed of contigs and singletons (unique

sequences) which were used to build a pseudo chromosome in

which sequences were separated by blocks of 100 Ns.

SNP discovery
Sequences were aligned against the assembled reference genome

and initial SNP detection was performed using MAQ [22]. For SNP

discovery, only reads that aligned to a single unique location of the

genome were considered. Because MAQ calls a SNP as being any

difference between the reads or between the reads and the reference

genome, the initial MAQ SNP prediction output is large and must

be filtered. Several criteria were used to exclude the less reliable

SNPs from the dataset. Thresholds were established for a number of

MAQ values that were useful in predicting reliable SNPs.

Specifically, MAQ’s minimal map quality for the read, minimal

consensus quality and minimal map quality of the best mapping

read for each predicted SNP position were used as criteria to select

reliable SNPs by setting the thresholds for all three parameters at 10

(SNPs with any values,10 were discarded). Moreover, we required

the minor allele at each SNP be represented in at least three reads

and that the total number of reads per SNP was lower than 120

(SNPs with higher read depth were discarded). The final SNP set

comprised the de novo identified SNPs that had passed all filters.

Finally, SNP MAFs were estimated by directly counting the number

of reads for each allele. All de novo identified SNPs have been

submitted to dbSNP (accession numbers from ss131027063 to

ss131629651). The flanking sequences for the SNPs used to build

the genotyping assays were derived from the ongoing sequencing of

the porcine genome by the Sanger Institute and these sequences are

regularly uploaded to Genbank.

In addition to these de novo identified SNPs, the final porcine

SNP dataset also comprised previously identified SNPs that were

available from different public sources, including SNPs detected in

a pilot study conducted at Wageningen University using a DraI

RRL [17], SNPs derived from the 7K porcine Illumina Custom

Infinium Bead SNP Chip, SNPs identified by high throughput

pyrosequencing [23], SNPs discovered through Sanger sequencing

at INRA and publicly available SNPs from dbSNP, including a

collection of porcine SNPs, derived from several sources, collected

by the University of Cambridge.

Initial SNP validation
Information on 44,236 SNPs derived from the HaeIII library

with flanking sequence information was available for validation of

the SNP calling procedure. These markers were sorted by

predicted location within the genome, and every fortieth sequence

was processed using the Sequenom Assay Design software. From

the output, assay groups were designed to have 32 multiplexed

SNPs per well. Critical features to be tested were the position of

the SNP within the GA sequence read, average quality score of the

most frequently called base, number of alleles identified, as well as

position within the genome. Nine assay groups (288 individual

SNPs) were selected to represent SNPs in all tested categories.

Reactions were set up per manufacturer’s instructions for the

Sequenom iPLEX GOLD chemistry and the 128 boars that

contributed to the commercial breeds RRLs were individually

genotyped to allow the determination of the true SNP allele

frequencies in the discovery population.

Selection of the final SNP list
A list which included the final porcine SNP dataset comprising

549,282 de novo identified and publicly available SNPs, was

submitted to Illumina for design score calculation, which was

performed with Illumina’s Assay Design Tool for Infinium. Type

II Infinium SNPs were prioritized for selection in the design of the

assay because they require only one bead type on the chip. In

addition to the Illumina design score and the type of Infinium

assay, we also considered other parameters, such as the estimated
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SNP MAF, spacing of the SNPs along each chromosome, genome-

wide coverage (number of SNPs selected for each chromosome),

presence of other SNPs within 40 bp of each target SNP and

available information concerning the conversion rate of the SNP

(i.e., had the SNP been assayed successfully before?). Finally, any

SNP known to be linked to a patent was excluded from the list.

Information for these parameters was collected for all available

SNPs and was used to assign SNPs to waves [15]. A total of 22

waves were formed and used to conduct rounds of SNP selection.

The first wave contained only type II Infinium SNPs with a design

score$0.8 and MAF$0.25. In the second wave the MAF

threshold was lowered to 0.15, while in the third wave the design

score threshold was lowered to 0.7 while the MAF was again set to

0.25. As far as possible, the SNPs included on the Beadchip were

selected from the waves with high stringency followed by

additional rounds of selection in which the selection criteria were

gradually relaxed. Upon completion of the selection process, the

SNP list was manually inspected for the presence of large gaps

(.250 kb) between SNPs. The identified large gaps were visually

inspected and the size of the gaps decreased by manually selecting

SNPs to reduce the size of the gap, whenever possible.

Because the available porcine genome sequence (build 7) only

covered 70% of the genome, 70% of the SNPs selected to be

included on the assay came from those for which position on

genome build 7 was known. To ensure a complete coverage of the

porcine genome, the remaining 30% of SNPs were selected from the

list of SNPs that could not be mapped to porcine genome build 7.

Validation of the Illumina Porcine 60K+SNP iSelect
Beadchip

To evaluate the performance of the Illumina iSelect BeadChip,

which is now commercially available as the PorcineSNP60, the

panel of 64,232 markers that passed the assay design tool

informatics screen was used to genotype all 158 individuals from

the five breeds that had been included in the original discovery

panel. Samples were genotyped in the Illumina services lab and

data was evaluated for robust genotyping [24]. Markers were

evaluated for signal intensity, robust cluster formation and cluster

separation. The DNA sample set included 6 replicate pairs and 94

trios to aid in cluster evaluation. The 62,121 loci that passed

validation comprise the PorcineSNP60 panel.

Correlation between MAFs derived from sequencing and
genotyping

Since allele frequency data were available from both the

sequencing and genotyping efforts we investigated the relationship

between the allele frequency estimates derived from both

approaches. To obtain the best possible estimate for the

correlation we applied some filters to the dataset. We used only

SNPs that had been identified in the four RRLs prepared for this

study (AluI short, AluI long, HaeIII and MspI) and that had not

been mapped to the sex chromosomes. Since the X chromosome

contains pseudoautosomal regions that are largely unknown it

would not be possible to correct for the effect of gender. For each

SNP the reference allele was set as the major allele over all breeds

as derived from sequencing. For each of the breeds the sequence

derived frequency was matched with the genotype derived

frequency. The genotyping was performed on the same individuals

that were used to make the sequencing pools. Comparisons

between sequence-derived and genotype-derived frequencies were

done on a breed by breed basis since the number of alleles counted

per breed could vary widely between breeds. Correlations were

calculated using Pearson’s product-moment correlation as imple-

mented in R (www.r-project.org). The correlation between

genotype-derived and sequence-derived frequencies was plotted

against sequence depth and fitted using locally weighted scatter

plot smoothing (LOESS function in R).

Results

Sequencing of the reduced representation libraries
A total of seven restriction enzymes were tested for the

construction of the RRLs, including AluI, HaeIII, MspI, PvuII,

RsaI, ScaI and StuI. Restriction enzymes producing blunt end

fragments were chosen because this would result in DNA

fragments that could be directly ligated to the adaptors used in

the preparation of libraries for sequencing on the Illumina

Genome Analyzer. We selected AluI, HaeIII and MspI because

these enzymes maximized the number of fragments detected in the

desired size range and minimized the presence of repetitive

elements [13].

The total number of generated sequences surpassed 370 million

and after filtering based on the quality criteria described in the

materials and methods, over 247 million reads remained for SNP

discovery using MAQ (Table 1). The estimated genome coverage

for the different RRLs varied from 1.5 to 3.5% and the combined

4 RRLs span about 10% of the porcine genome.

To identify SNPs in the 30% of the porcine genome that was not

represented in genome build 7, the two largest RRLs (AluI short and

AluI long) were also sequenced on Roche’s 454 platform. The total

number of sequences generated on this platform was 2,121,435 and

1,922,150 for the AluI short and AluI long RRLs, respectively.

Table 1. Number of Illumina Genome Analyzer reads generated, filters applied to the dataset and final number of reads used for
SNP discovery from the four RRLs.

AluI short AluI long HaeIII MspI Total

Starting number of reads 87,962,916 145,926,417 67,057,081 69,507,210 370,453,624

Filters Number of reads removed from dataset

Restriction enzyme motif 3,276,584 48,401,718 6,854,265 16,555,378 75,087,945

Poly-(A,C,G,T) 260,648 656,411 278,435 202,585 1,398,079

Quality score 1,004,585 1,085,621 2,138,675 402,036 4,630,917

Over-represented reads 10,167,678 14,193,925 9,559,415 7,622,490 41,543,508

Number of reads used for mapping 73,253,421 81,588,742 48,226,291 44,724,721 247,793,175

% Usable reads 83.3 55.9 71.9 64.4 66.9

doi:10.1371/journal.pone.0006524.t001
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Reference genome
The genome of the pig is comprised of 18 autosomes and the X

and Y sex chromosomes with an estimated total size of 2.7 Gb

similar to that of human. The reference genome (build 7) against

which the GA sequences were aligned for SNP discovery,

represented approximately 70% of the porcine genome with the

state of sequence completion of each chromosome differing from

less then 50% to up to 99% for individual chromosomes. To

discover SNPs in the 30% of the porcine genome not represented

in the assembly, the 454 sequences from the two AluI libraries were

used. All 454 sequences were first aligned against sequences from

the genome build 7 and only unique 454 sequences not

represented in build 7 were used. These remaining 454 sequences

were used to generate unique sequence contigs, which were then

concatenated into two pseudo chromosomes (AluIshort and

AluIlong, respectively). The final extended reference genome used

with MAQ and to which all GA sequences were aligned consisted

of porcine genome build 7 and the two pseudo 454-AluI

chromosomes. Build 8 of the pig genome, released in October

2008, was also used to compare the distances between SNPs

calculated using builds 7 and 8 of the pig genome.

SNP discovery
All 247 million sequences that passed our selection criteria

(Table 1) were aligned to the extended reference genome using

MAQ. MAQ aligns all GA sequences to the reference genome and

reports all variation detected within the GA sequences as well as

any difference between the GA and the reference sequences. The

initial raw output from MAQ consisted of over 9 million positions

at which variation was detected. The majority of these do not

represent SNPs but result from sequencing errors in the GA

sequences, errors in the reference genome or the alignment of

paralogous sequences. However, after applying the filters de-

scribed in the materials and methods, 315,130 variations remained

representing high confidence SNPs (Table 2). While only SNPs for

which the minor allele was represented by at least 3 sequences

were considered in the selection of SNPs for the Beadchip design,

we also identified 57,756 SNPs for which the minor allele was

represented by only two sequences (low MAF SNPs) (Table 2).

Initial validation of putative SNPs from the HaeIII RRL showed

that a good indicator of the likelihood of SNP failure was the

quality of the nucleotide at the SNP (low quality bases were more

often associated with non-converting or monomorphic SNPs).

Hence, we examined the quality score at each of the SNP bases in

the two reads and established a threshold of 20 to discover reliable

SNPs in those cases where the minor allele was seen only twice.

The final total number of high confidence SNPs identified by using

these strategies was 372,886.

To further evaluate the conversion rate of the SNPs discovered

by our approach we looked at the ratio between the number of

transitions and transversions. For those SNPs where the minor

allele was seen at least three times, 69.4% were transitions and

30.6% were transversions. Almost the same values were found for

the 57,756 additional low MAF SNPs identified using the

alternative thresholds (69.6% transitions and 30.4% transversions).

Finally, because the error rate in GA sequences increases towards

the end of the sequences, we also plotted the distribution of the

identified SNPs against the nucleotide position within the GA

sequences (Figures 1, 2).

Initial SNP validation
Before selecting the final 64,232 SNPs to be included on the

Beadchip, we decided to validate the selection criteria used during

the SNP discovery phase by genotyping a representative sample of

288 SNPs in the individuals used to create the discovery panel. Of

the 288 assays attempted on the Sequenom MassArray platform,

241 (83.7%) assays yielded a sufficient number of genotypes to

draw useful conclusions from the data (.70% call rate) across all

128 DNA samples. Of the 241 assays, 20 were monomorphic in

the DNAs of the boars used to generate the RRL libraries (8.3%).

An assessment of the quality score of the predominant base

indicated that when the most predominant base scored was of low

quality the frequency of monomorphic assays was tenfold higher

than when the predominant base called was of high quality (44.0%

vs 4.2%). We, therefore, added this as an additional selection

criterion for SNP discovery. Twenty-four successful Sequenom

assays were designed for SNPs with 3 alleles detected in

sequencing the RRL. Only one of the 24 assays was actually tri-

allelic, while two of the assays were monomorphic, representing a

total drop-out rate of 12.5%. The average read depth in the RRL

for the 288 SNPs tested was 37.4. Assays designed for SNPs with

over 26of the mean read depth resulted in 23.5% monomorphic

assays (4 of 17) and 11.8% of assays with excess heterozygotes (2 of

17), likely due to duplicated regions in the genome. While an initial

assessment of position within the read indicated that as the SNPs

were located towards the end of a read the percentage of

monomorphic markers increased, removal of SNPs detected with

low quality bases eliminated this trend.

Design of the 60K SNP Beadchip
Besides the de novo generated SNPs, an effort was made to

assemble a collection of porcine SNPs from other public sources.

The final combined SNP collection surpassed 549K SNPs and this

set was used to select the SNPs that were included on the

PorcineSNP60 Beadchip. The information regarding the results

for the Beadchip design is summarized in Table 3. The total

number of SNPs submitted to Illumina for assay design was 72,000

and a total of 64,232 SNPs passed decoding and were included on

the Beadchip. The information regarding the SNP sources used, as

well as the number of SNPs available for selection and included on

the Beadchip for each source is summarized in Table S1. Of the

total number of selected SNPs, 45,510 were mapped to a specific

Table 2. Summary of the SNP discovered from the four analyzed RRLs.

AluI short AluI long HaeIII MspI Total

Initial MAQ output 2,625,323 2,854,329 2,377,571 1,180,640 9,037,863

Filtered SNP output 106,456 124,578 56,817 27,279 315,130

Low MAF SNPs1 11,149 39,096 5,620 1,891 57,756

Total High confidence SNPs 117,605 163,674 62,437 29,170 372,886

1SNP detected with only two minor alleles among the sequence reads.
doi:10.1371/journal.pone.0006524.t002
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chromosome in porcine genome build 7, including 21 SNPs on

chromosome Y, while 18,722 were unmapped (Table 3). However,

we were able to predict the position of 4,193 of these SNPs by

comparative mapping. A total of five mitochondrial SNPs were

also included.

The selection of SNPs to be included on the Beadchip was based

on specific wave numbers assigned to each individual SNP based

on quality parameters, MAF, type of assay (Infinium type I or II)

and location in the genome. Final SNP selection was performed in

waves [15] resulting in only 832 or 1.3% of the total Infinium I

SNPs being selected. Over 90% of the SNPs included on the

Beadchip were selected in the first three waves, where SNP quality

was the highest. With the exception of the X chromosome, the

average distance between SNPs on build 7 is between 30 and

40 kb (Figure 3). Nevertheless, larger distances between SNPs

were found on all chromosomes, with the largest distances being

detected on chromosomes 15 (407.4 kb) and X (447.8 kb). There

were 115 intervals with a gap size larger than 250 kb. Most of

these large gaps are located on chromosomes 14 and X, where 36

(SSC14) and 27 (SSCX) large gaps were detected However, there

were also chromosomes with no large gaps between the SNPs

(chromosomes 2, 3, 6, 10, 12, 16 and 18). For most of these regions

with large gaps there were simply no SNPs available for selection.

After the initial SNP discovery and our design of the Beadchip a

new build of the pig genome became available (build 8). To

increase the number of SNPs mapped to a specific position within

the genome, the flanking sequences for all 64,232 SNPs were

aligned to the new build using BLAT [19]. This allowed us to

position an additional 4,215 previously unmapped SNPs onto the

porcine genome and allowed us to verify the accuracy of our

predictions based on the comparative mapping approach. Of the

4,193 SNPs with a predicted map location, 1,030 specifically

aligned to porcine genome build 8. Only 68 of these SNPs mapped

to a location that differed from our prediction, with the majority of

the SNPs (93%) mapping in accordance to the predicted location.

There were 42 SNPs with conflicting map positions on genome

Figure 1. SNP distribution on each of the GA read positions. The distribution represents all de novo identified SNPs, from the RRLs generated.
The number of transitions and transversions identified is also illustrated.
doi:10.1371/journal.pone.0006524.g001

Figure 2. Distribution of the low minor allele count SNPs on each of the GA read positions. For these SNPs two reads were identified for
the minor allele. The number of transitions and transversions identified is also illustrated.
doi:10.1371/journal.pone.0006524.g002
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builds 7 and 8, and 411 SNPs positioned on genome build 7 that

did not align to build 8. The number of large gaps between

adjacent SNPs increased when build 8 was used, with 207

gaps.250 Kb identified using this build. This increase was

observed for all chromosomes except for SSC14, where the

number of large gaps decreased to zero, indicating that there were

unmapped SNPs from build 7 that mapped to SSC14 in build 8,

filling the observed large gaps.

Validation of the 60K SNP Beadchip
The panel of 64,232 porcine SNPs was used to genotype the 158

individuals from the five pools that were used for SNP discovery.

SNPs were validated for robust genotyping quality by evaluating

signal intensity and cluster separation. From the initial panel of

SNPs, 62,121 (97.5%) genotyped successfully, while 1,611 SNPs

(2.5%) could not be reliably genotyped. Of the 62,621 validated

loci, 58,994 were polymorphic which indicates that the SNP

conversion success rate was 94%. Furthermore, for 57,109 SNPs,

the MAF was.5% and for 58,737 SNPs the MAF was.1%. The

average MAF for all scorable SNPs was 0.274 (Table 4). The DNA

sample set used for assay validation included 6 replicate pairs and

94 trios. The reproducibility rate was 100% for 350,312 genotype

comparisons, and the Mendelian consistency rate was 100% for

5,478,678 genotype comparisons.

Correlations between sequence-derived and genotype-derived

allele frequencies were approximately 0.8 at sequencing depths of

20 or higher (Figure 4, Figure S1). Even at lower sequencing

depths, sequence-derived allele frequencies were highly predictive

of the actual frequencies, as estimated from genotyping the

individuals in the pools (Figure 5). At sequence depths greater than

20, little increase in correlation was observed. Some variation

exists in correlations between libraries (e.g., the MspI RRL

presented higher correlation values when compared with the other

RRLs), although these differences were small (Table 5).

Discussion

The results of this study illustrate the usefulness of next

generation sequencing technologies for the identification of a

large number of reliable SNPs. The most commonly available

technologies, Illumina’s Genome Analyzer and the Roche 454

FLX sequencer, were both used in this study. Other studies have

previously identified a substantial number of SNPs in chickens,

using traditional Sanger sequencing [25], in cattle, using Solexa

sequences [13] and in pigs, using 454 sequences [23]. Our

approach combined both technologies and allowed us to take

advantage of the large numbers of GA sequences for an increased

sequence depth, and the longer 454 reads to obtain sufficient

sequence information adjacent to each SNP to be able to design

oligos for the genotyping assay. Considering that approximately

30% of the pig genome had not been sequenced at the time of

SNP discovery and Beadchip design, the utilization of the longer

454 reads allowed us to span this region of the genome at the same

SNP density as for the 70% that was represented in genome build

7. The only caveat to this approach is the fact that because no

information is available about the position of these SNPs, it was

not possible to obtain a uniform distribution of SNPs in this

unmapped fraction of the porcine genome. To alleviate this, the

position of these SNPs within the porcine genome was predicted

based on the human-porcine comparative map and the BAC-end

sequences for the BACs present in the highly reliable BAC contig

map [18]. Our results from mapping these SNPs to build 8 of the

Figure 3. Distances between the SNPs included on the 60K+porcine Beadchip. The distances (x axis) were calculated using builds 7 (blue)
and 8 (red) of the pig genome sequence assembly.
doi:10.1371/journal.pone.0006524.g003
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pig genome clearly underscore the utility of the approach.

Nevertheless, these regions of the genome, in the end, will possess

a less than even distribution of SNPs. The alignment of the SNPs

to genome build 8 allowed us to increase the number of mapped

SNPs by around 10% and we will continue to update the SNP

coordinates as new porcine genome builds become available.

There were 42 SNPs that mapped to a different chromosome in

build 8 as compared to build 7. Inspection of the alignments for

these sequences reported against the build 8 version of the genome

showed that the hits identified against build 7 were still present but

had been superseded by better alignments against genomic

sequences introduced in build 8. This suggests that the original

genomic locations identified in build 7 were actually against

paralogous duplicated regions and that the greater coverage

afforded by build 8 has allowed identification of the true context

for these sequences.

Surprisingly, another 411 SNPs had a position assigned in build 7

but did not align to genome build 8. We presume that these

‘‘vanishing’’ sequences are another side-effect of the incremental

BAC-by-BAC sequencing strategy being employed by the pig

genome sequencing project and result from the addition of

alternative duplicated regions which make the automated assembly

ambiguous. As more sequence is added these regions will be

resolved and the SNPs identified will be resolvable once more.

The importance of a strategy which extends the utilized

reference genome is greater in species where genomic resources

are less developed or for which there is no genome sequence

available. In these cases, a combination of Roche 454 and Illumina

GA sequencing will allow the construction of a reference genome

sequence and simultaneously the detection of reliable SNPs even

in the absence of a sequenced genome. Although the number of

identified SNPs will be smaller because fewer reads align to a

smaller reference genome, this strategy will suffice in many

situations. Moreover, a recent study has also shown that a

reference genome can be built and SNPs reliably identified, using

only short GA sequences [Kerstens, Crooijmans, Veenendaal,

Dibbits, Chin-A-Woeng, den Dunnen and Groenen, unpublished

results].

The number of new porcine SNPs identified in this study

exceeded 372,000, which demonstrates that the identification of

large numbers of novel SNPs is now feasible in a highly efficient

manner. A major limitation in genetic studies of livestock species

has been the suboptimal number of available genetic markers.

With the discovery of over 372,000 SNPs and the development of

the PorcineSNP60 Beadchip we have alleviated this limitation,

enabling whole genome association studies in pigs. Considering

that the breeds used for the discovery of these SNPs include the

four main breeds used in worldwide pig production (DU, PI, LR

and LW) as well as the wild boar (WB), the ancestor of all modern

pig breeds, it is anticipated that the PorcineSNP60 Beadchip will

be highly efficient for genomic selection [14] in the pig breeding

industry. The majority of the SNPs used on the PorcineSNP60

Table 4. Description, by SNP source, of the number of working SNPs, SNPs by minor allele frequency and monomorphic SNPs.

SNP source1 SNPs Working SNPs Non working SNPs MAF.0.05 MAF.0.01 MAF = 0

ALGA 20,144 19,593 551 18,236 18,436 1,133

ASGA 15,310 14,994 316 14,530 14,687 299

BGIS 117 115 2 34 43 71

CADI 21 20 1 12 13 7

CAHM 32 26 6 6 7 3

CAIL 17 15 2 6 7 8

CAMB 9 8 1 0 0 7

CAPE 6 5 1 1 1 4

CASI 550 542 8 444 493 37

DBKK 20 19 1 10 14 5

DBMA 21 21 0 20 20 1

DBNP 45 45 0 24 34 11

DBUN 39 37 2 15 21 13

DBWU 96 94 2 90 93 1

DIAS 1,202 1,171 31 1,144 1,155 15

DRGA 3,422 3,347 75 2,912 3,151 177

H3GA 6,300 6,135 165 5,740 5,809 321

INRA 2,528 2,493 35 1,802 2,174 244

ISU 37 37 0 34 36 1

M1GA 1,828 1,779 49 1,719 1,748 29

MARC 12,121 11,760 361 9,976 10,438 1,235

SIRI 324 323 1 313 316 4

UMB 35 35 0 35 35 0

WUR 8 7 1 6 6 1

TOTAL 64,232 62,621 1,611 57,109 58,737 3,627

1The description for these acronyms is summarized in Table S1.
doi:10.1371/journal.pone.0006524.t004
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Beadchip were discovered in commercial European and US

breeds and this ascertainment bias has to be taken into account

when using the chip for some applications, especially when

considering that domestication of pigs originated from multiple

centers across Europe and Asia [26]. Hence, extensive SNP

discovery in Asian pig populations could have enhanced the

usefulness of the Beadchip in the Asian pig breeds. Nevertheless,

the majority of the SNPs on the chip are also segregating in

Chinese breeds (data not shown). However, because the extent of

LD in Chinese breeds is almost an order of magnitude lower than

in the commercial European/US white breeds [4], the density of

SNPs on the chip will probably be too low to efficiently perform

genome-wide association studies in the Chinese breeds, empha-

sizing the need for further SNP discovery in the pig.

The high SNP conversion rates provide an excellent indication

that the majority of the SNPs identified in silico will translate to

working SNP assays. Additionally, MAF estimates can also be

precisely estimated from the GA sequence data. The frequency

should be calculated on a breed by breed basis since there is large

variation in the number of reads each breed contributed to the

overall allele count, and the allele frequencies can vary widely

between breeds. Simulations showed that given the distribution of

allele frequencies, the correlations between genotype-derived and

sequence-derived allele frequencies could reach values of 0.95 and

higher. The maximum achieved for this study was 0.8, indicating

there are additional sources of variation. One source may be the

variation in constructing the pools, although previous use of pools

for genotyping efforts have shown that variance introduced this

way in large pools is minor (Megens, Crooijmans and Groenen,

unpublished results). A second source is due to the SNPs that were

identified in the sequencing, but turned out to be monomorphic in

the genotyping assay. Many of these were identified with allele

frequencies derived from the sequencing to be approximately 0.5

(Figure 4), strongly indicating that the reads pertain to two

paralogous regions. The oligos designed for the Infinium assays

may have a higher stringency than the short reads from

sequencing, resulting in a locus specific assay for one of the

paralogous regions that does not display population polymor-

phism.

One relevant question that may arise from this type of study is

the decision on whether or not to use SNPs for which the minor

allele is observed in a reduced number of reads. To reduce the

Figure 4. Correlation between sequence-derived and genotype-derived allele frequencies. The scatter plot was determined using the
frequencies of the PorcineSNP60 SNPs derived from the RRLs generated.
doi:10.1371/journal.pone.0006524.g004
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number of false positives and maximize the conversion rate of the

SNPs on the Beadchip, we adopted a conservative approach for

SNP selection, and only considered SNPs for which the minor

allele was represented by at least three reads. However, a

significant number of additional SNPs (60,253) were identified

using a very stringent threshold for the quality of the nucleotide

used to call the SNP but where the minor allele was only seen

twice. To detect rare SNPs with a MAF between 1–5% it will be

essential to increase the depth at which each base is sequenced.

However, increasing the sequence depth also directly affects the

false discovery rate due to sequencing errors, further emphasizing

the need to use stringent sequence quality parameters.

The overall confidence of the SNPs identified by our approach

is high. (1) Application of the PorcineSNP60 Beadchip demon-

strated that.95% of the predicted SNPs were validated. (2) The

ratio of transitions to transversions was 2:1 which is similar to the

Figure 5. Relationship between sequence depth and the correlation between sequence-derived and genotype-derived allele
frequencies. This relationship was determined for the PorcineSNP60 SNPs derived from the RRLs generated.
doi:10.1371/journal.pone.0006524.g005

Table 5. Values for the correlation between sequence-derived and genotype-derived allele frequencies for different read depths
and SNP sources.

Read Depth SNP source

All SNPs Duroc Landrace Large White Pietrain Wild Boar AluI short AluI long HaeIII MspI

.0 0.53 0.61 0.49 0.49 0.52 0.49 0.59 0.48 0.59 0.61

.5 0.68 0.73 0.69 0.64 0.66 0.69 0.67 0.66 0.71 0.76

.9 0.74 0.77 0.75 0.70 0.72 0.76 0.73 0.72 0.75 0.81

.19 0.79 0.80 0.82 0.74 0.77 0.78 0.79 0.76 0.79 0.86

.29 0.79 0.79 0.86 0.71 0.78 0.66 0.79 0.76 0.78 0.91

doi:10.1371/journal.pone.0006524.t005
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transition/transversion ratio observed in humans [27] and

previous studies in pigs [28–30]. False positives detected during

the SNP discovery as a result of sequencing errors should have

increased the number of transversions relative to the number of

transitions. (3) The error rate in the GA sequences is known to

increase towards the end of the sequence reads. The observed

distribution of the SNPs identified along the GA reads (Figures 1,

2) decreases towards the end of the reads indicating that we

effectively filtered against false positives by increasing the

stringency of removing low quality bases towards the end of the

sequences. Although we did not validate any of the SNPs that were

identified using a minor allele count of 2, the transition/

transversion rate and the distribution of these SNPs along the

GA reads indicates there should be a similar low false discovery

rate in this group of SNPs. Overall, the results from the first

application of the PorcineSNP60 Beadchip show it to be a

valuable tool that will likely have a big impact on a variety of

studies conducted in pigs.

Conclusions
It is generally accepted that SNPs are the most common source

of variation in vertebrate genomes and that significant numbers of

SNPs will be needed for future studies in all species. It is now

possible to conduct studies aimed at the molecular dissection of

complex traits of economic importance. For this purpose, a high

density porcine SNP genotyping Beadchip is now available to the

community. This resource was developed using the four breeds

primarily used in modern pig production and wild boar samples,

which should make the Beadchip a very valuable resource for most

types of pig genetic studies. The PorcineSNP60 Beadchip was

tested using 158 samples and results confirm the high utility and

importance that this resource will have, both in terms of working

SNPs (62,621) and polymorphic SNPs (over 57K SNPs with

MAF.0.05). This study also confirmed the utility of next

generation sequencing technologies for the mass identification of

genetic variation in any genome, including the identification of

SNPs in regions of the genome that have not been previously

sequenced. In addition, a very large number of additional SNPs

were also identified, and even though they were not included on

the Beadchip they are now publicly available for pig researchers

worldwide.

Supporting Information

Figure S1 Scatter plots for the correlation between sequence-

based and genotype-based allele frequencies. The correlation plots

are illustrated for the porcine breeds and RRLs analyzed in this

study. The PorcineSNP60 SNPs derived from the RRLs generated

were used to determine the correlations.

Found at: doi:10.1371/journal.pone.0006524.s001 (9.73 MB TIF)

Table S1 The correlation plots are illustrated for the porcine

breeds and RRLs analyzed in this study. The PorcineSNP60 SNPs

derived from the RRLs generated were used to determine the

correlations.

Found at: doi:10.1371/journal.pone.0006524.s002 (0.05 MB

DOC)
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