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Abstract

The quantification of silicon isotopic fractionation by biotic and abiotic processes contributes to the understanding of the
Si continental cycle. In soils, light Si isotopes are selectively taken up by plants, and concentrate in secondary clay-sized min-
erals. Si can readily be retrieved from soil solution through the specific adsorption of monosilicic acid (H4SiO4

0) by iron oxi-
des. Here, we report on the Si-isotopic fractionation during H4SiO4

0 adsorption on synthesized ferrihydrite and goethite in
batch experiment series designed as function of time (0–504 h) and initial concentration (ic) of Si in solution (0.21–
1.80 mM), at 20 �C, constant pH (5.5) and ionic strength (1 mM). At various contact times, the d29Si vs. NBS28 compositions
were determined in selected solutions (ic = 0.64 and 1.06 mM Si) by MC–ICP–MS in dry plasma mode with external Mg dop-
ing with an average precision of ±0.08& (±2rSEM). Per oxide mass, ferrihydrite (74–86% of initial Si loading) adsorbed more
Si than goethite (37–69%) after 504 h of contact over the range of initial Si concentration 0.42–1.80 mM. Measured against its
initial composition (d29Si = +0.01 ± 0.04& (±2rSD)), the remaining solution was systematically enriched in 29Si, reaching
maximum d29Si values of +0.70 ± 0.07& for ferrihydrite and +0.50 ± 0.08& for goethite for ic 1.06 mM. The progressive
29Si enrichment of the solution fitted better a Rayleigh distillation path than a steady state model. The fractionation factor
29e (±1rSD) was estimated at �0.54 ± 0.03& for ferrihydrite and �0.81 ± 0.12& for goethite. Our data imply that the sorp-
tion of H4SiO4

0 onto synthetic iron oxides produced a distinct Si-isotopic fractionation for the two types of oxide but in the
same order than that generated by Si uptake by plants and diatoms. They further suggest that the concentration of light Si
isotopes in the clay fraction of soils is partly due to H4SiO4

0 sorption onto secondary clay-sized iron oxides.
� 2008 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Silicon is the second mass abundant element of Earth’s
crust and a major solute in river discharge into oceans (Tré-
guer et al., 1995; Gaillardet et al., 1999). Breakdown of pri-
mary silicates, translocation of Si in solution, formation of
secondary silicates, and Si uptake by plants are involved in
0016-7037/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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the continental cycle of Si. Dissolved Si is present as mono-
silicic acid (H4SiO4

0) in natural solutions (Lindsay, 1979),
where it is commonly a major solute (McKeague and Cline,
1963). Apart from clay formation and uptake by biota,
monosilicic acid can be withdrawn from soil solution
through its sorption onto aluminum and iron oxides (Beck-
with and Reeve, 1963; Jones and Handreck, 1963; McKea-
gue and Cline, 1963). Iron oxides are ubiquitous in
sediments, weathered rocks and soils (Schwertmann and
Taylor, 1989), where they partly control the concentration
of aqueous silicic acid (McKeague and Cline, 1963; Gehlen
and Van Raaphorst, 2002). Their surface OH groups specif-
ically interact with silicic acid by exchanging ligands to
form a bi-dendate innersphere complex involving mono-
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meric SiO2ðOHÞ22� as main adsorbed species at low loading
of aqueous Si (below �0.9 mM) (Hingston et al., 1967; Sigg
and Stumm, 1981; Hansen et al., 1994b; Swedlund and
Webster, 1999; Davis et al., 2002; Pokrovski et al., 2003;
Hiemstra et al., 2007). At higher loading of aqueous Si
(>0.9 mM), however, Si tetramer can form on goethite sur-
face (Hiemstra et al., 2007), whereas H4SiO4

0 polymeriza-
tion occurs on ferrihydrite surface at H4SiO4

0

concentrations below those required for polymerization in
solution (Swedlund and Webster, 1999). The adsorption
of Si by Fe oxides strongly varies with pH, and commonly
reaches a maximum around pH 9 (Jones and Handreck,
1963; Sigg and Stumm, 1981; Hansen et al., 1994a; Swedl-
und and Webster, 1999; Hiemstra et al., 2007).

Following weathering, iron oxides accumulate in soils
(Bikerland, 1974), where they appear as both crystalline
and short-range ordered (sro) minerals mainly in their
clay-sized fraction (Schwertmann and Taylor, 1989). They
can exert a crucial impact on the retention of Si and the
control of aqueous H4SiO4

0 (McKeague and Cline, 1963).
Quantifying the fractionation of Si stable isotopes by biotic
and abiotic processes readily contributes to the understand-
ing of the continental cycle of Si. As inferred from d29Si
and/or d30Si values, river waters are depleted in light Si iso-
topes (De La Rocha et al., 2000; Ding et al., 2004; Alleman
et al., 2005; Georg et al., 2006, 2007) compared with crustal
rocks (Douthitt, 1982), following fractionating processes of
silicate weathering and formation of clay-sized minerals
(Ziegler et al., 2005a,b; Opfergelt et al., accepted for publi-
cation), silcrete formation (Basile-Doelsch et al., 2005), and
Si uptake by biota (De La Rocha et al., 1997; Ding et al.,
2005, 2008; Opfergelt et al., 2006a,b).

In this paper, we report on an experimental study on the
isotope fractionation of Si by H4SiO4

0 adsorption onto iron
oxide. The experiments were designed to answer four ques-
tions of environmental significance: (1) Does Si isotope
fractionation occur during Si adsorption onto Fe oxide at
common pH for soil solutions? (2) How much does this
fractionation compare with that generated by Si uptake
by biota? Can this fractionation contribute to (3) the deple-
tion of light Si isotopes in river waters, and (4) the enrich-
ment of light Si isotopes in clay-sized soil fractions? For
these purposes, we use goethite and ferrihydrite, crystalline
and sro minerals, respectively. Our experimental study in-
volves the prior synthesis and characterization of pure Fe
oxides and the quantitative determination of H4SiO4

0

adsorption in controlled conditions of temperature, solid:li-
quid ratio, pH and ionic strength.

2. MATERIALS AND METHODS

At all steps, acid-washed high density polyethylene
(HDPE) ware and analytical grade Pro Analysi chemicals
were used to minimize Si contamination.

2.1. Synthesis and characterization of ferrihydrite and

goethite

Ferrihydrite and goethite were synthesized according to
the methods described in Cornell and Schwertmann (1996).
For ferrihydrite, a freshly prepared 0.1 M Fe(NO3)3 solu-
tion (250 ml) was slowly neutralized by 1 M NaOH
(70 ml), i.e. brought drop wise to pH 7.5. The red/brown
precipitate was separated by centrifugation (3500 rpm,
10 min), dialyzed (dialysis-membrane SPECTRA/POR 4,
MWCO = 12–14000, Ø = 29 mm) against deionized water
until electrical conductivity was stable at 1–2 lS for 4 h.
The dialyzed product was freeze-dried. For goethite, a
freshly prepared 1 M Fe(NO3)3 (100 ml) solution was neu-
tralized by 5 M NaOH (70 ml) under intense stirring and
brought to pH > 12. The red/brown precipitate was dried
in the mother liquid at 70 �C for 60 h, and turned to yel-
low/brown. The precipitate was washed with deionized
water through washing-centrifugation cycles (13,100 rpm,
15 min) until pH and electrical conductivity were stable,
respectively, at 5.5 and 1–2 lS. The precipitate was oven-
dried at 50 �C for 48 h. Mineralogical and chemical charac-
terizations of both products were done by (1) X-ray diffrac-
tion (XRD, Bruker D8 Advance diffractometer), (2)
transmission electron microscopy (TEM, Philips 420
STEM), (3) elemental analysis (inductively coupled plas-
ma/atomic emission spectrometry: ICP–AES, Jarrell Ash
Iris Advantage) after Na2O2 fusion in vitrified graphite cru-
cibles at 1000 �C, (4) dithionite–citrate–bicarbonate extrac-
tion (DCB, Mehra and Jackson, 1960), (5) dark oxalate
extraction (Blakemore et al., 1981), and (6) surface area
determination using ethylene glycol monoethyl ether
(EGME, Carter et al., 1965).

The X-ray diffraction (XRD) patterns were consistent
with those for 2-line ferrihydrite and goethite in Cornell
and Schwertmann (1996), and in Jambor and Dutrizac
(1998) (Fig. 1). Observations by TEM revealed the common
microaggregated shape of ferrihydrite, and the typical euhe-
dral acicular crystals (0.5–1.5 mm length) of goethite, con-
stituted of parallel subunits (Fig. 2) (Schwertmann and
Taylor, 1989; Cornell and Schwertmann, 1996). The con-
tent of poorly crystalline Fe was assessed through the deter-
mination of the ratio of oxalate extractable Fe (Feo) to
DCB extractable Fe (Fed) (Cornell and Schwertmann,
1996) (Table 1). The Feo:Fed ratio was 0.004 for goethite,
certifying a well crystalline form, and 0.864 for ferrihydrite,
attesting a large dominance of sro mineral particles. The
average concentration of Si in the synthesized ferrihydrite
and goethite was below 0.2 g kg�1 (Table 1), revealing the
very low level of Si contamination. A specific extraction
of initial adsorbed (i.e. potentially contaminating) Si by
KH2PO4 (Delfosse et al., 2005) showed that this Si back-
ground was negligible and represents less than 0.5% of
the total Si budget per experiment (Table 1). The EGME
specific surface was 338 and 147 m2 g�1 for ferrihydrite
and goethite, respectively.

2.2. Adsorption experiments

H4SiO4
0 solutions were prepared by dissolving Na2-

SiO3�5H2O in MilliQ water, and further leaching on an
H+ cation exchanger (Amberlite� IR-120) to fix Na+ ions.
The leaching was terminated when the threshold level of so-
dium was below 10�2 mM Na, as determined by ICP–AES
(Henriet et al., 2006). The acidic Si stock solution



Fig. 1. Cu Ka X-ray diffraction patterns of the synthesized (A)
2-line ferrihydrite and (B) goethite. Major peaks are labeled in nm.

Fig. 2. TEM micrographs of the synthesized (A) 2-line ferrihydrite and
aliquots of <2 lm suspensions left air-dried on a C-coated Cu-grid.
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(35.61 mM Si, pH below 6) was free of polymers (Beckwith
and Reeve, 1963; Stumm and Morgan, 1996). Eight solu-
tions of distinct initial concentrations (ic) of Si were consid-
ered 0.21, 0.42, 0.64, 0.85, 1.06, 1.29, 1.49 and 1.80 mM Si.
The ic solutions were prepared by using MilliQ water and
pure NaNO3. A background electrolyte concentration of
1 mM NaNO3 was used throughout to maintain ionic
strength constant. Contact between ic Si solution and Fe
oxide was made in HDPE bottles, on a reciprocating shaker
in a dark room at 20 �C. A suspension of 5 g of Fe oxide
was transferred to a dialysis-membrane (SPECTRA/POR
4; MWCO 12–14,000; Ø = 16mm) and plunged in the Si
solution of given ic. The initial solution volume was
1000 ml, as gravimetrically determined (1 g:250 ml solid:li-
quid ratio). The pH was adjusted to the target pH
5.5 ± 0.2 by addition of 1 M NaOH or 0.7 M HNO3. The
target pH value is common for natural waters in equilib-
rium with atmospheric CO2. The adsorption experiments
were done in triplicates. Series 1 and 2 provided solution ali-
quots to determine the bulk concentrations of Si determined
by ICP–AES (Jarrell Ash Iris Advantage, detection limit
<0.7 lM Si). Adsorbed Si was computed as the difference
between the Si solution concentrations before and after con-
tact with Fe oxide. Series 3 was specifically devoted to the
determination of Si isotopes. Solution aliquots (10 ml) were
sampled, respectively, after 6, 12, 24, 48, 72, 96, 192, 288,
408 and 504 h of contact time between Fe oxide and Si
solution, and kept in HDPE bottles. The aliquots from each
solution were transferred to polyethylene scintillation vials,
then acidified by adding 50 ll of 7 M HNO3 and stored in
the dark at 4 �C prior to further analysis. During the exper-
iment, pH was regularly checked and adjusted to the target
when necessary, and systematically checked on a single series
one hour prior to sampling solutions.

2.3. Isotopic composition of solutions at given contact times

Two ic solutions (0.64 and 1.06 mM Si) and 20 solution
aliquots from series 3 were selected on the basis of adsorp-
tion data with respect to detection limit required for Si iso-
tope measurement. Dissolved Si in the chosen samples was
purified by triethylamine molybdate co-precipitation and
(B) goethite (with a 51,000� magnification for both images), from



Table 1
Chemical analysis of synthesized ferrihydrite and goethite: average contents of DCB (d) and oxalate (o) extractable Fe (Fed, Feo; n = 2), and
of total Si (Sit; n = 5), and KH2PO4 extractable Si content (SiKH2PO4).

Fed, g kg�1 Feo, g kg�1 Feo:Fed Sit, g kg�1 SiKH2PO4, mg kg�1

Ferrihydrite 594 513 0.864 0.12 5.7
Goethite 607 2.5 0.004 0.16 5.9
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combustion in covered Pt crucibles at 1000 �C (De La Ro-
cha et al., 1996), and dissolved in dilute suprapur HF–HCl
mixture (Cardinal et al., 2003). Si isotopes were measured
using a Nu Plasma MC–ICP–MS operating in dry plasma
mode, with an external Mg doping to correct mass bias
(Cardinal et al., 2003). Due to unresolved isobaric interfer-
ence on 30Si, only 29Si and 28Si isotopes were measured
accurately (Cardinal et al., 2003). The analytical method
was supported by an inter-laboratory comparison exercise
and proved to be accurate on secondary reference materials
(Reynolds et al., 2007). The average precision on d29Si was
±0.08& (±2rSEM). The results are presented as d29Si (&),
expressing the 29Si/28Si ratios of our samples relative to
the NBS28 silica sand standard (National Institute of Stan-
dard and Technology Reference Material #8546) for silicon
isotopes (Carignan et al., 2004):

d29Sið%0Þ ¼

29Si
28Si

� �
sample

29Si
28Si

� �
NBS28

� 1

2
64

3
75 � 1000 ð1Þ

Very small concentrations (below 0.5% of the total Si
budget per experiment) of initial contaminating Si from
mineral synthesis should not affect the isotopic composition
of our solutions. Indeed, a significant contamination of
±0.08& (equivalent to our 2rSEM) should be only induced
by such contaminating Si bearing an isotopic composition
lighter than �48& or heavier than +49&, which is very un-
likely regarding Si-isotopic variations on Earth (Basile-
Doelsch, 2006).
Table 2
Average values of Si concentration (mM Si) in solution as a function of
(time 0).

Time (h) 0 6 12 24 48

Ferrihydrite 0.21 0.20 0.19 0.19 0.17
0.42 0.39 0.38 0.35 0.31
0.64 0.61 0.57 0.51 0.45
0.85 0.79 0.75 0.69 0.60
1.06 1.01 0.96 0.90 0.82
1.29 1.21 1.16 1.07 0.97
1.49 1.39 1.33 1.25 1.12
1.80 1.68 1.62 1.55 1.43

Goethite 0.21 0.19 0.19 0.17 0.15
0.42 0.39 0.37 0.33 0.29
0.64 0.58 0.55 0.50 0.44
0.85 0.80 0.78 0.72 0.65
1.06 0.99 0.95 0.87 0.77
1.29 1.18 1.14 1.08 1.00
1.49 1.42 1.37 1.31 1.23
1.80 1.71 1.65 1.58 1.49
3. RESULTS AND DISCUSSION

Mineralogical and chemical characterizations show that
the separate synthesized products were genuine ferrihydrite
and goethite minerals.

3.1. Monomeric Si adsorption by ferrihydrite and goethite

Only the average values of the duplicates are presented
in following text, tables and figures. The error bars are sys-
tematically presented in the figures, and represent the exper-
imental reproducibility. Table 2 presents the average bulk
concentrations of Si in each solution corresponding to fer-
rihydrite and goethite, and to the respective eight ic solu-
tions and 10 contact times. For both Fe oxides and each
ic solution, the concentration of aqueous Si readily de-
creases with increasing contact time, revealing net Si
adsorption. Below pH 9, the solution speciation of
H4SiO4

0 is pH independent, meaning that only aqueous
H4SiO4

0 was present in significant concentrations (Hiem-
stra et al., 2007). The systematic adjustment at pH
5.5 ± 0.2 required a larger addition of NaOH for ferrihy-
drite, indicating a net proton release during adsorption;
the addition of NaOH was very low for goethite. In our
controlled pH conditions, the H+ release is likely caused
by the specific interaction of H4SiO4

0 with OH groups of
oxide surface involving ligand exchange under formation
of a Fe oxide-monosilicate surface complex
(�Fe2O2Si(OH)2 bi-dendate complex) (Sigg and Stumm,
1981; Hansen et al., 1994a; Hiemstra et al., 2007). At Si
contact time and type of Fe oxide for each initial Si concentration

72 96 192 288 408 504

0.16 0.15 0.13 0.12 0.09 0.08
0.27 0.24 0.15 0.14 0.10 0.08
0.40 0.36 0.25 0.17 0.12 0.09
0.53 0.47 0.31 0.23 0.17 0.13
0.74 0.69 0.43 0.41 0.33 0.27
0.88 0.81 0.61 0.47 0.38 0.32
1.02 0.95 0.75 0.60 0.49 0.43
1.33 1.23 0.99 0.81 0.65 0.56

0.13 0.12 0.10 0.08 0.07 0.06
0.25 0.22 0.16 0.15 0.14 0.13
0.38 0.35 0.29 0.29 0.28 0.27
0.60 0.57 0.49 0.47 0.45 0.43
0.74 0.71 0.66 0.63 0.60 0.57
0.95 0.90 0.83 0.79 0.77 0.73
1.15 1.14 1.03 0.98 0.95 0.90
1.43 1.37 1.28 1.23 1.08 1.13
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concentration above �0.2 mM, a surface Si tetramer
(�Fe2O2SiOHOSi3O3(OH)9) may have formed on goethite
surface; at pH 5.5, the proportion of this surface tetramer
would be below �25%, and the monomer species should
be largely dominant (Hiemstra et al., 2007). The maximum
value of the mole ratio of aqueous Si to ferrihydrite-Fe was
0.03. In these conditions, the only significant surface bond-
ing of H4SiO4

0 with ferrihydrite surface should be the sur-
face complexation of monomeric H4SiO4

0 (Swedlund and
Webster, 1999). This interpretation is consistent with the
adsorption data performed at pH 3–6 by Hansen et al.
(1994a).

3.2. Quantitative Si adsorption by ferrihydrite and goethite

In fixed conditions of pH, ionic strength, temperature
and solid:liquid ratio, the Si amount adsorbed depends on
reaction time and type of Fe oxide (Hansen et al., 1994a).
Per oxide mass, ferrihydrite generally adsorbs more Si than
goethite (Table 2). After 504 h of contact between Fe oxide
and Si solution, the fraction of adsorbed Si ranges between
63% and 86% for ferrihydrite, and between 37% and 72%
for goethite (Fig. 3). Few studies have shown a larger Si
adsorption by ferrihydrite over goethite (Hansen et al.,
1994a), or by amorphous over crystalline Fe oxide (Jones
and Handreck, 1963). Surface reactivity for oxyanions,
weak acids and water is well known to decrease with
increasing Fe oxide crystallinity (Parfitt, 1978; Schwert-
mann et al., 1985; Schwertmann and Taylor, 1989; Cornell
and Schwertmann, 1996). As crystallinity increases, oxide
crystals become larger and surface area decreases (Schwert-
mann et al., 1985). As measured by EGME retention, the
surface area was 338 m2 g�1 for ferrihydrite and
147 m2 g�1 for goethite (Section 2.1). As expected (Cornell
and Schwertmann, 1996), these EGME values are generally
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Fig. 3. Average values (n = 2) of adsorbed Si, expressed as a fraction of in
full circle. Plotted error bar corresponds to standard deviation between
above BET-N2 values previously measured for synthesized
Fe oxides: 35–87 m2 g�1 for goethite (Hansen et al.,
1994a; Waltham and Eick, 2002; Garman et al., 2004; Lux-
ton et al., 2006), 269–380 m2 g�1 for ferrihydrite (Hansen
et al., 1994a,b; Hofmann et al., 2004). In agreement with
Cornell and Schwertmann (1996), we believe, however, that
there is large uncertainty about the surface area measure-
ment of hydrous hydroxyl-bearing Fe oxide because this
measurement requires a prior anhydrous vacuum. This con-
ditioning can, indeed, modify surface particle, particle size
and porosity through particle microaggregation (Hofmann
et al., 2004).

The adsorption data are illustrated at 504 h contact time
in Fig. 4. The data could be fitted to Freundlich, Langmuir,
Temkin and Redlich–Peterson adsorption isotherms (not
shown). For goethite, the adsorption data (Q, C) best fit
a Freundlich isotherm expressed as:

Q ¼ KF C1=n ð2Þ

where Q is the Si adsorbed per unit mass of oxide (mmol Si
g�1), KF and n are empirical constants and C the H4SiO4

0

concentration of the solution (mM Si). This empirical mod-
el has been considered to be thermodynamically consistent
with sorption on heterogeneous surfaces that imply differ-
ent sorption sites and affinities (Weber et al., 1991). How-
ever, this is also consistent with the fact that the positive
charge of Fe oxide surface decreases with the increase in
the surface Si loading (Hingston et al., 1972; Anderson
and Benjamin, 1985; Hiemstra et al., 2007), since the net
proton release leads to a shift in the isoelectric point of
Fe oxide (Garman et al., 2004; Luxton et al., 2006). For fer-
rihydrite, the adsorption data best fit a Temkin isotherm ex-
pressed as

Q ¼ Aþ B lnC ð3Þ
00 1.20 1.40 1.60 1.80 2.00

 in solution (mM Si)

itial Si after 504 h of contact. Ferrihydrite: open triangle. Goethite:
series 1 and 2.
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where Q and C are defined as in Eq. (2), and A and B are
constants determined through linear regression from exper-
imental data. For both ferrihydrite and goethite, the Tem-
kin equation implies the condition that the energy of
adsorption decreases linearly with surface coverage (Parfitt,
1978). This is consistent with the decrease of charge density
as proposed for goethite. As discussed above, the much lar-
ger adsorption of Si on ferrihydrite in the range 0.1–
0.6 mM Si is attributed to the larger availability of reactive
sites in ferrihydrite relatively to goethite.

3.3. Adsorption kinetics

Si adsorption increases with time, first rapidly, then
slower (Table 2). The time dependent adsorption of Si by
Fe oxide is illustrated for the ic solutions 0.64 and
1.06 mM Si (Fig. 5). Si adsorption requires days–weeks.
The rate of adsorption is rather large during the first hours
(�50 h for goethite, �100 h for ferrihydrite), then de-
creases. After �200 h for goethite and �300 h for ferrihy-
drite, it seems to reach a constant value, which increases
from goethite to ferrihydrite with increasing aqueous Si
concentration. These observations are in very good agree-
ment with previous results (Hansen et al., 1994a,b). The
change in the rate of Si adsorption onto ferrihydrite is sim-
ilar to that observed for phosphate (Lijklema, 1980; Bolan
et al., 1985). The slow adsorption step for phosphate has
been attributed to diffusion into interparticle pores (Willett
et al., 1988), whereas arsenate adsorption onto ferrihydrite
has been successfully predicted using a pore-space diffusion
model and assuming rapid adsorption at external surfaces
of aggregates (Fuller et al., 1993). Accordingly, and in
agreement with Hansen et al. (1994b), the rate of Si adsorp-
tion observed here is probably controlled by rapid interac-
tion of monosilic acid with external oxide surface sites, and
by slower interparticle diffusion.
3.4. Si-isotopic fractionation during adsorption of monosilic

acid

The selected solutions correspond to the ic solutions
0.64 and 1.06 mM Si at various contact times ranging,
respectively, between 0 and 192 h, and 0 and 504 h. The val-
ues of Si concentration in the selected solutions at pH 5.5
range between 0.25 and 0.96 mM Si (Table 2). These condi-
tions of pH and Si concentration imply a dominant adsorp-
tion of monomeric Si (Sigg and Stumm, 1981; Hansen
et al., 1994a,b; Swedlund and Webster, 1999; Hiemstra
et al., 2007), but do not exclude the occurrence of a surface
Si tetramer on goethite surface. For Si solutions oversatu-
rated with respect to quartz (KS > �0.12 mM Si), the
proportion of surface Si tetramer was estimated below
15% for Si concentration below �1 mM Si (Hiemstra
et al., 2007).

The Si-isotopic compositions of the selected solutions
are given in Table 3. Generally the d29Si value significantly
increases with increasing time, and thus with decreasing Si
concentration of the solution at various contact times. This
increase involves a gradual fractionation of stable Si iso-
topes, revealing a depletion of the aqueous phase in light
Si isotopes which parallels the adsorption of monosilicic
acid onto Fe oxide. Measured against its initial composition
(+0.01 ± 0.04& (±2rSD)), the solution is indeed systemati-
cally enriched with the heavy isotope, reaching a maximum
d29Si value of +0.70 ± 0.07& for ferrihydrite and
+0.50 ± 0.08& for goethite at ic 1.06 mM Si after 504 h
of contact. For ferrihydrite at ic 0.64 mM Si, solution at
72 h displays lighter Si-isotopic compositions than solution
at 48 h, unlike the general increase of d29Si in solution with
time in other treatments (Table 3). This shift down might be
attributed to a possible abnormal variation of pH during
the experiment at 72 h in this series (series 3 was used exclu-
sively for isotopic measurements and therefore pH was not
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Fig. 5. Average values of the concentration of Si adsorbed (n = 2) by ferrihydrite (a: 0.64 mM Si ic – b: 1.06 mM Si ic) and goethite (c:
0.64 mM Si ic – d: 1.06 mM Si ic), as a function of contact time. Plotted error bar corresponds to standard deviation between series 1 and 2.

Table 3
Measured Si-isotopic composition (d29Si vs. NBS28) of the
solution, as a function of initial Si concentration (0.64 mM and
1.06 mM Si), contact time (h) and type of Fe oxide.

0.64 mM 1.06 mM

Time,
h

d29Si
&

St error
2rSEM

Time,
h

d29Si
&

St error
2rSEM

Ferrihydrite 0 +0.02 0.07 0 +0.00 0.09
12 +0.07 0.09 12 +0.01 0.06
24 +0.13 0.10 48 +0.11 0.09
48 +0.21 0.08 96 +0.22 0.09
72* +0.10 0.11 288 +0.54 0.09
192* +0.27 0.07 504 +0.70 0.07

Goethite 0 +0.02 0.07 0 +0.00 0.09
12 +0.00 0.08 12 +0.02 0.07
24 +0.13 0.08 48 +0.12 0.09
48 +0.26 0.08 96 +0.21 0.09
72 +0.27 0.07 288 +0.34 0.09
192 +0.66 0.07 504 +0.50 0.08

* These values were excluded from the 29e calculation (see text and
Table 4).
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directly measured in it, see Section 2.3). A pH variation
may have likely influenced the isotopic composition of the
solutions at contact time P72 h, because pH affects the
adsorption of Si onto Fe oxide (Jones and Handreck,
1963). The two measurements at 72 and 192 h will thus
not be considered in further calculations and interpretation.
The isotopic composition of the solution can be predicted
by following models, generally used to describe biologically
driven Si-isotopic fractionation:

The Rayleigh model following:

d29Sisolution ¼ d29Siinitial þ 29eR lnf ð4Þ

The steady state model following:

d29Sisolution ¼ d29Siinitial � 29eSð1� f Þ ð5Þ

where d29Siinitial and d29Sisolution are, respectively, measured
in the ic solution and the solution at each contact time (Ta-
ble 3), f is the fraction of Si remaining in solution at each
contact time (Table 2), and 29e is the fractionation factor
(R for Rayleigh, S for steady state).

In order to decipher between the two models, best fits
curves have been estimated based on three isotopic mea-
surements of the beginning of each time series experiments
(f = 1, �0.8 and �0.7) where both models are still not dis-
tinguishable compared to the analytical standard error (cal-
culated 29e in Table 4A). The experimental data were
plotted on those best fit curves (Fig. 6). This indicated a
preferential Rayleigh process rather than a steady state
model for ferrihydrite at 1.06 mM Si (Fig. 6b), and also
though in a less extent a Rayleigh process for goethite at
both 0.64 and 1.06 mM Si (Fig. 6c and d).

To further reduce the uncertainty on the fractionation
factor 29e, more estimates have then been calculated from
Rayleigh Eq. (4) using all experimental data available (Ta-
ble 4B). The errors associated to the use of Eq. (4) to derive
a fractionation factor are discussed in Scott et al. (2004). In
the case of our d29Si values, these errors are however not
significant due to analytical limitations. Therefore, the



Table 4
Values of the fractionation factor 29e ± 1rSD computed following Rayleigh model (R) and steady state model (S) from Eqs. (4) and (5): (A) on
three isotopic measurements of the beginning of each time series experiments (at f = 1, �0.8, �0.7); (B) on the whole data set for each
experiment.

A B

Rayleigh 29eR ± 1rSD Steady state 29eS ± 1rSD Rayleigh 29eR ± 1rSD Steady state 29eS ± 1rSD

Ferrihydrite 0.64 mM* �0.53 ± 0.04 �0.62 ± 0.07 �0.54 ± 0.03 �0.63 ± 0.06
Goethite 0.64 mM �0.59 ± 0.14 �0.70 ± 0.19 �0.84 ± 0.13 �1.16 ± 0.26
Ferrihydrite 1.06 mM �0.51 ± 0.05 �0.61 ± 0.10 �0.55 ± 0.02 �0.99 ± 0.08
Goethite 1.06 mM �0.49 ± 0.11 �0.58 ± 0.15 �0.78 ± 0.11 �1.01 ± 0.19

* Excluding the d29Si measured at 72 and 192 h (see text and Table 3).
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Fig. 6. Measured Si-isotopic composition (d29Si vs. NBS28) of the solution, as a function of the fraction of Si left in solution at various
contact times (see Table 3), for ferrihydrite (a: 0.64 mM Si ic – b: 1.06 mM Si ic) and goethite (c: 0.64 mM Si ic – d:1.06 mM Si ic). The error
bar (2rSEM on single delta measurement) is included into the size of the symbol. The experimental data are compared with best fits following:
(i) Rayleigh (exponential gray line) and steady state (linear dotted line) fractionation models based on three isotopic measurements at the
beginning of the experiment (Table 4A); (ii) Rayleigh model (exponential black full line) based on all isotopic data available (Table 4B).
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uncertainty on 29e is calculated as the error on the slope
(1rSD) of d29Sisolution data plotted against ln f for Rayleigh
including propagated analytical uncertainty. It was calcu-
lated using the REG procedure of the SAS System (version
9.1 for Windows, SAS Institute, Cary, NC, USA). Follow-
ing the Rayleigh model, 29eR (±1rSD) ranges between
�0.54 ± 0.03& and �0.55 ± 0.02& for ferrihydrite, and
between �0.84 ± 0.13& and �0.78 ± 0.11& (±1rSD) for
goethite, for ic 0.64 and 1.06 mM, respectively (Table 4B).
The fractionation factor 29eR does not differ between ic
solutions for a given oxide, but is significantly larger for
goethite than for ferrihydrite. Estimates from the steady
state model are also given in Table 4B (with uncertainty
as the error on the slope of d29Sisolution data plotted against
(1 � f)), from which we deduce that (i) the uncertainty on
the Rayleigh 29eR fractionation factor is much smaller than
the one reckoned for a steady state fractionation (29eS), con-
firming our deduction drawn from the first calculation, (ii)
change of ic does not affect 29eR neither for ferrihydrite nor
for goethite.

Averaging our two groups of experiments at both ic
solutions, our best estimates of 29eR (±1rSD) are computed
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at �0.54 ± 0.03& for ferrihydrite and �0.81 ± 0.12& for
goethite.

4. IMPLICATIONS

4.1. Mechanisms of isotopic fractionation

Our 29eR values following Rayleigh model (Table 4B)
show that the Si-isotopic fractionation induced by
H4SiO4

0 adsorption onto Fe oxide is similar or slightly lar-
ger to the one generated by biological processes such as Si
uptake by plants (29e ± 1rSD = �0.53 ± 0.17&, Ding et al.,
2005; �0.52 ± 0.16&, Ziegler et al., 2005a; �0.40 ± 0.11&,
Opfergelt et al., 2006a) and diatoms (29e = �0.57 ± 0.21&,
De La Rocha et al., 1997).

According to Barling and Anbar (2004), the adequacy of
the Rayleigh fit within our type of experimental design
would indicate an irreversible adsorption process, which
would suggest a kinetic isotope effect, and thus could be
associated with (i) the variation of Si adsorption rate
(Fig. 4 and Table 3), and (ii) the poor reversibility of Si
adsorption through ligand exchange (Parfitt, 1978). How-
ever, we have no implemented an experimental design to
test the irreversibility. Yet, in our scheme, isotope fraction-
ation can result from (i) an equilibrium fractionation be-
tween coexisting aqueous species coupled with a selective
sorption of one of them (Siebert et al., 2003), (ii) the forma-
tion of inner sphere surface complexes (Lemarchand et al.,
2007). In this respect, light boron isotope enrichment on
goethite is strongly dependent on pH and surface complex
structure (Lemarchand et al., 2007). Here, the equilibrium
fractionation process between coexisting aqueous species
could be discarded because H4SiO4

0 is the only significant
aqueous Si species in our experimental conditions (see Sec-
tion 3.1). The Ge isotopic fractionation during Ge sorption
onto goethite privileges the selective sorption of light Ge
isotopes, and has been successfully modeled by surface
complexation involving the interaction of monomeric Ge
hydro-complexes with >FeOH0 and >FeO� sites of goe-
thite (Galy et al., 2002). These complexes have been further
experimentally identified as Ge bi-dendate surface com-
plexes composed of tetrahedrally coordinated Ge attached
to the corners of two adjacent Fe octahedra (Pokrovsky
et al., 2006). Here, we tentatively propose that the Si-isoto-
pic fractionation induced by H4SiO4

0 sorption onto ferrihy-
drite and goethite is caused by the formation of Fe oxide-
monosilicate bi-dendate inner surface complexes
(�Fe2O2Si(OH)2) (Sigg and Stumm, 1981; Hansen et al.,
1994a; Dietzel, 2002; Hiemstra et al., 2007). However, sur-
face Si polymerization, according to the definition of
McBride (1994), cannot be disregarded, as the occurrence
of Si tetramer has been predicted on goethite surface for
Si solutions oversaturated with respect to quartz
(�0.12 mM Si) (Hiemstra et al., 2007) (see Section 3.1).
This would hypothetically contribute to increase Si isotope
fractionation for goethite relatively to ferrihydrite, for
which the only significant surface bonding of H4SiO4

0

should be the surface complexation of monomeric
H4SiO4

0 (Hansen et al., 1994a,b; Swedlund and Webster,
1999). Such a hypothesis would fit with the enrichment of
light Si isotopes observed in the clay-sized fraction of soils
with increasing weathering (Ziegler et al.,2005a,b; Opfergelt
et al., accepted for publication) suggesting that clay forma-
tion may privilege light Si isotopes. Indeed, such formation
in soil environment requires Si polymerization at low pres-
sure and temperature. These hypotheses need, however,
both further in-depth field-based investigations and a theo-
retical evaluation of the size of the isotopic energy shifts be-
tween soluble H4SiO4

0 and potential Si adsorbed polymers.
We cannot rule out that desorption occurred during our

experiment. Since the experimental device was not designed
to assess the impact of Si desorption on Si-isotopic fraction-
ation it would be hazardous to extrapolate our results to the
desorption process. We believe that the impact of desorp-
tion would be minor on our isotopic data because (i) the
adsorption curves showed very regular patterns in accor-
dance with adsorption as the main process driving silicon
content in the solution (Fig. 5) (Hansen et al., 1994a,b);
(ii) most of the data were acquired for f > 0.5 which should
favor adsorption over desorption before saturation of sites
is reached (Hansen et al., 1994a,b); (iii) to impact signifi-
cantly on our results, desorption should fractionate iso-
topes at least in the same extent as adsorption which is
unlikely. Unfortunately, to the best of our knowledge, there
is so far no experimental setting to study isotopic fraction-
ation induced by the sole Si desorption.

4.2. Environmental significance

Our data provide unequivocal answers to the four ques-
tions of critical environmental significance (see Section 1).
Si isotope fractionation (1) occurs during Si adsorption
onto Fe oxide at common pH for soil solutions, (2) is sim-
ilar or larger to the one generated by Si uptake by biota,
and can thus contribute (3) to the depletion of light Si iso-
topes in river waters, and (4) to the relative concentration of
light Si isotopes in soil clay fractions through Si sorption on
pedogenic Fe oxides. Our data further suggest that the con-
centration of light Si isotopes in soil clay-sized fractions
(Ziegler et al., 2005a,b; Opfergelt et al., accepted for publi-
cation) can be at least partly due to H4SiO4

0 sorption onto
secondary iron oxides.

Silicon adsorption by soil Fe oxides is thus a process
which may partly control the depletion of light Si isotope
in river waters, in addition to clay formation (Ziegler
et al., 2005b; Georg et al., 2006, 2007), Si uptake by plants
(Ding et al., 2005; Opfergelt et al., 2006a) and diatoms (All-
eman et al., 2005). However, impact of Si adsorption on the
Si-isotopic budget will be strongly limited if oxide surfaces
are Si-saturated as shown experimentally with 32Si (Ziegler
et al., 2005a). Ferrihydrite and goethite are sparingly solu-
ble constituents of weathered rocks and soils, with solubil-
ity products in the range 10�38 to 10�46 M (Schwertmann
and Taylor, 1989). In well drained conditions, Fe released
from weathered parent material is thus poorly mobile and
accumulates in soils as secondary Fe(III) minerals: Fe oxi-
des rapidly precipitate as discrete solid phases from the
weathering solution of decomposed primary silicates. As in-
ferred from studies on the adsorption of dissolved organic
matter, juvenile oxide surfaces are very effective to adsorb
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solutes with which they specifically interact (Guggenberger
and Kaiser, 2003). Rock weathering and soil development
lead to the formation of both clay minerals and secondary
oxides. These processes may thus add their mutual isotopic
effects to significantly impact the Si-isotopic signature of
drained waters. Weathered soil and saprolite layers thus ac-
quired a high propensity to impact soil solutions and ex-
ported waters through Si adsorption. As an example, Si
adsorption could have impacted isotopic signatures of Sibe-
rian rivers draining iron-rich swamp zones and peat soils of
the permafrost landscape, which are found to be strongly
enriched in heavy Si isotopes compared to basaltic bedrock
(Reynolds et al., 2006).

Si stable isotopes thus constitute a promising tracer with
respect to three major processes involved in the weathering
environment: biological fractionation during plant phyto-
lith formation (Ding et al., 2005, 2008; Opfergelt et al.,
2006a), sequestration of Si in soil clay-sized minerals (Zie-
gler et al., 2005a,b; Opfergelt et al., accepted for publica-
tion), and adsorption of Si by pedogenic iron
oxyhydroxides (this study). A similar statement concerns
the Ge/Si ratio as a weathering tracer (Mortlock and Froe-
lich, 1987; Scribner et al., 2006; Derry et al., 2005). The im-
pact of weathering stage, soil development and free iron
oxide availability on the Si-isotopic composition of source
and river waters thus deserves further field-based studies
to progress in the appraisal of the silicon continental cycle.

5. CONCLUSION

The adsorption of H4SiO4
0 by ferrihydrite and goethite

at pH 5.5 strongly fractionates Si isotopes by selectively
adsorbing light isotopes and leaving a companion solution
enriched with heavy Si isotopes. The isotope fractionation
of silicon is similar to or slightly larger than that generated
by Si uptake by plants and diatoms. We suggest that the
concentration of light Si isotopes in soil clay-sized fractions
is at least partly due to H4SiO4

0 sorption onto secondary
iron oxides. We conclude that rock weathering and soil
development could impact the Si-isotopic signature of nat-
ural waters drained to streams through Fe oxide synthesis,
as oxide surfaces specifically interact with aqueous monosil-
icic acid. Although occurring at very different time scales
(from the rainy event to the soil formation), the processes
of pore water drainage, clay-sized Fe oxide formation and
Si adsorption would significantly impact the Si-isotopic sig-
nal to oceans, as continental runoff water contributes to
more than 80% of the Si input to the marine Si budget (Tré-
guer et al., 1995).

In the future, the Si-isotopic fractionation induced by
adsorption onto Al-oxides and in natural soils should also
be investigated along with the impact of desorption.
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