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ABSTRACT

Summary: Current genotyping algorithms typically call genotypes
by clustering allele-specific intensity data on a single nucleotide
polymorphism (SNP) by SNP basis. This approach assumes the
availability of a large number of control samples that have been
sampled on the same array and platform. We have developed a
SNP genotyping algorithm for the Illumina Infinium SNP genotyping
assay that is entirely within-sample and does not require the need for
a population of control samples nor parameters derived from such
a population. Our algorithm exhibits high concordance with current
methods and >99% call accuracy on HapMap samples. The ability
to call genotypes using only within-sample information makes the
method computationally light and practical for studies involving small
sample sizes and provides a valuable independent quality control
metric for other population-based approaches.
Availability: http://www.stats.ox.ac.uk/∼giannoul/GenoSNP/
Contact: cholmes@stats.ox.ac.uk

1 INTRODUCTION
The success of projects, such as the International HapMap Project
(The International HapMap Consortium, 2005) in mapping single
nucleotide polymorphisms (SNPs) and the Wellcome Trust Case
Control Consortium (2007) in finding associations with common
diseases has made SNP genotyping arrays an indispensable tool in
genetic epidemiology. Leading manufacturers, such as Affymetrix
and Illumina, now offer SNP genotyping arrays that can interrogate
over a million SNPs on a single assay on a genome-wide scale
with sufficiently high signal-to-noise ratio to enable highly accurate
genotype calls to be made with the appropriate statistical genotyping
tools.

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.
‡Present address: UMR 203 INRA INSA-Lyon BF2I, Biologie Fonction-
nelle, Insectes et Interactions, F-69621 Villeurbanne Cedex, France.

Current SNP genotyping algorithms, such as BRLMM
(Affymetrix Inc., 2006), Birdseed (Affymetrix Inc., 2007) and
CHIAMO (Marchini et al., manuscript in preparation; Wellcome
Trust Case Control Consortium, 2007) for the Affymetrix platform
and GenCall (Illumina Inc., 2005) and Illuminus (Teo et al., 2007)
for the Illumina platforms, typically employ a genotype calling
strategy that is reliant on the availability of data from a large
collection of individuals. Given the data from a collection of
individuals, these genotyping algorithms interrogate each SNP in
turn, clustering the allele-specific probe intensities into the three
classes representing the three genotypes. The size of the reference
population required depends on the minor allele frequency (MAF)
of the SNPs of interest. For example, for SNPs where the MAF
is <10%, it would be necessary to have a reference population with
much more than 100 individuals in order to expect data representing
all three genotype classes (AA, AB and BB) at each SNP; for
SNPs that have MAF 1% it would be necessary to have a reference
population with 10 000 individuals in order to have at least one
data point in all three genotype classes; and moreover one would
typically require >10 samples in a class in order to estimate the
distribution parameters accurately. As high-throughput genotyping
techniques are rapidly progressing, more and more SNPs can be
genotyped on a single array. In order to increase genomic coverage
and probe uniformity across the genome more SNPs with low
minor allele frequency are included in these arrays. The size of the
reference population required by the current genotyping algorithms
will increase for those SNPs with ever-decreasing minor allele
frequency.

The motivation for a population-based strategy is that probe
intensities vary on a SNP-by-SNP basis. This is due to differences
in binding affinities arising from a number of factors, which include
probe sequence content, that cause cluster centres and characteristics
to vary from SNP to SNP. A variation on the population-based
strategy uses model parameters pre-computed from a reference
population to derive predictive models that do not necessitate a full
re-clustering each time a new test sample is obtained. However,
there are some practical limitations to this approach, since model
parameters must be recalculated each time the SNP content of a
genotyping array is modified or a new genotyping array is produced.
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It would be desirable if each probe type on a genotyping array had
the exact same response characteristic regardless of which genomic
region was being queried. In this scenario, it would be unnecessary
to cluster the probe intensities for a population of individuals at
each SNP and, instead, the probe intensities for every SNP within a
single individual could be clustered. This approach would have the
advantage of avoiding problems with SNPs with very small minor
allele frequencies by allowing information to be borrowed from
across SNPs (rather than across individuals) to determine genotype
cluster positions. Although probe responses are rarely homogeneous
in practice, we have discovered that within-class variation is lower
compared to inter-class variation on the Illumina Infinium SNP
genotyping array. This enables high-quality SNP genotyping within a
sample without the need for a reference population. The performance
of the method would be independent of the size of the study and it can
be used as a quality metric against other available SNP genotyping
algorithms. Our method relies on the observation that the inter-
class variation can be maximized by accounting for dye-specific
and bead-specific effects on the Infinium assay.

2 METHODS

2.1 Data
The Illumina Infinium SNP genotyping array consists of hundreds of
thousands of beads. Each bead harbours a set of 50mer oligonucleotide
probes designed to hybridize to a specific genomic region that is adjacent to
the SNP of interest. Using a two colour single base extension (SBE) chemistry
(Steemers et al., 2006) each bead is able to assay both SNP alleles. The array
has, on average, 20 beads per SNP thus giving 20 pairs of allele-specific
intensity measurements per SNP. These are averaged to produce a single
summary pair of allele-specific intensity values for each SNP, which we use
for clustering. Beads are divided into a number of sets called ‘beadpools’.
Each beadpool consists of beads that are manufactured at the same time
and are physically located at similar positions on the microarray. For each
beadpool, we perform quantile normalization (Bolstad et al., 2003) in order
to correct dye-specific biases due to the two colour system. Clustering is done
on the log scale of the intensities {log2(x+1),log2(y+1)} for each beadpool
separately.

2.2 Statistical model
Let xi ={log2(xi +1),log2(yi +1)} be the pair of summary log intensities for
the i-th SNP. We model the distribution of the probe intensities using a four-
component mixture of Student t-distributions which can be described in a
hierarchical form,

p(zi|θ ) =
4∏

m=1

π I(zi=m)
m (1)

p(ui|zi,θ ) =
4∏

m=1

G(ui|νm/2,νm/2)I(zi=m) (2)

p(xi|ui,zi,θ ) =
4∏

m=1

N (xi|µm,ui�m)I(zi=m) (3)

where G denotes the Gamma distribution, N denotes the Normal distribution,
π are the mixture proportions, zi ∈{1,2,3,4} is an indicator variable for the
latent genotype class, I(·)∈{0,1} is an indicator function, ui is a latent scale
variable and θ ={π ,µ,�}. We fix νm =4 for m=1,2,3,4. Each mixture
component corresponds to either one of the three genotype classes AA, AB
and BB or a null class to capture outliers. The hierarchical model exploits
the representation of the Student t-distribution as a scaled infinite mixture of

normal distributions,

S(x;µ,�,ν)=
∫ ∞

0
N (x|µ,u�)G(u|ν/2,ν/2)du (4)

with location parameter µ, scale matrix � and ν degrees of freedom.
We use conjugate priors throughout to enable fast, analytical integrations.

The prior for the mixture weight is given by a Dirichlet distribution

p(π |κ)∝
4∏

m=1

π (κm−1)
m , (5)

and a normal-Wishart prior used to define the location and scale parameters
for each genotype mixture component allowing our model to maintain
identifiability

p(µm,�m)=N (µm|m0,η0�m)W(�m|γ,Sm) (6)

where W(�|γ,S) is the Wishart distribution. The location and scale
parameters of the null class are fixed and set to values to make the distribution
relatively flat over the feature space.

2.3 Model inference
Two methods for posterior inference are examined. The first approach is a
standard Expectation Maximization (EM) algorithm (Dempster et al., 1977;
Peel and McLachlan, 2000) and the second approach adopts a strategy based
on an variational Bayes EM (VB-EM) (Archambeau and Verleysen, 2007;
Beal et al., 2003) algorithm.

2.3.1 Expectation Maximization The EM algorithm computes a
maximum a posteriori (MAP) model fit by iteratively computing
expectations of the latent parameters and maximizing the expected complete
data log-likelihood

θ (i+1) =argmax
θ

∑
z

∫
p(z,u|x,θ (i))logp(z,u,x,θ )du. (7)

It can be shown that each successive iteration of the EM algorithm
monotonically increases the posterior probability (Dempster et al., 1977).
If the posterior distribution is unimodal then as i→∞, θ →θMAP , else
θ tends to a local mode in the posterior distribution. If multimodality
is suspected, it is typical to run the EM algorithm several times with
random initializations in order to verify that it has not converged to a
single local mode. Genotype calls are obtained by finding the genotype
with the maximum probability conditional on the MAP parameter estimates,
gi =argmaxg p(zi =g|θMAP).

2.3.2 Variational Bayes In VB-EM, a variational approximation to the
posterior distribution is constructed and optimized using an EM approach so
that the Kullback–Leiblier divergence between the true posterior distribution
p(θ ,z,u|x) and the variational approximation q(θ ,z,u) is minimized

KL(q,p)≡
∫

q(θ ,z,u)log
p(θ ,z,u,x)

q(θ ,z,u)
dθ. (8)

In order to obtain analytically tractable posterior approximations, the
variational posterior is assumed to have a factorized form q(θ ,z,u)=
qθ (θ )qz,u(z,u). The VB-EM steps then consist of the following iterations:

q(t+1)
z,u (z,u)∝exp

[∫
logp(z,u,x|θ )q(t)

θ (θ )dθ

]
(9)

q(t+1)
θ (θ )∝p(θ )exp

[∑
z

∫
logp(z,u,x|θ )q(t+1)

z,u (z,u)du

]
(10)

The integrals required for (9) and (10) can be calculated analytically for
distributions which are members of the conjugate exponential family (Beal
et al., 2003). The Student t-distributions and conjugate prior distributions
used in our models fall into this family. Details of the expressions for the
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Table 1. Comparison of call rates and accuracy on 120 HapMap samples
genotyped on the HumanHap300Duo BeadChip

Method Call rate False calls No calls Call accuracy
(%) (%)

GenCall 99.799 38 911 73 295 99.694
Illuminus 99.819 89 025 66 199 99.576
GenoSNP 99.660 88 249 124 613 99.419
GenoSNP-VB 100.000a 94 380 143 99.742

The null genotypes in HapMap were excluded from the analysis.
aTo three decimal places.

VB-EM updates are given in Archambeau and Verleysen (2007). Genotype
calls are obtained by finding the genotype with the maximum probability
based on the variational approximation, gi =argmaxg qz(zi =g).

In contrast to the standard EM algorithm, the E-step of the VB-EM
approach integrates over the approximate distribution of the model
parameters rather than conditioning on its mode. This improves robustness
to uncertainty in the model parameters.

2.4 Genotype calling methods
We compared our genotype calling methods, GenoSNP and GenoSNP-VB,
which are based on the EM and VB-EM algorithms, respectively, with
genotype calls from Illumina’s proprietary algorithm, GenCall and Illuminus
(Teo et al., 2007) which are both population-based methods. We should
note that the default settings were used for both GenCall and Illuminus.
The hyper-parameters for GenoSNP-VB were set as follows: κ0 =1.1,
m0 =[(9, 8, 6, 6); (6, 8, 9, 6)], η0 =1, γ0 =1, S0 =[(0.1, 0.0); (0.0, 0.1)].

3 RESULTS
We tested the performance of GenoSNP and GenoSNP-VB by
comparing calls on 120 HapMap samples genotyped on the Illumina
HumanHap300Duo genotyping array with genotypes obtained from
the International HapMap Project database (The International
HapMap Consortium, 2005). In total, 36 630 045 genotypes were
available for comparison. The X chromosome was removed from
the analysis to avoid any gender bias. Since males contain only one
copy of chromosome X they will always be homozygotes for the
SNPs on this chromosome. The null genotypes in HapMap were
also removed.

GenCall (99.694%) and Illuminus (99.576%) yielded high-quality
genotype calls with much >99% accuracy and call rates (Table 1).
However, both versions of GenoSNP yielded similar genotyping
performance (99.419% and 99.742%, respectively) whilst operating
entirely on a within-sample basis. GenoSNP-VB gives slightly better
performance suggesting that the use of VB, which accounts for
uncertainty in the model parameters, provides more robust inference
than GenoSNP’s MAP analysis. Figure 1 shows that the genotype
probabilities assigned by GenoSNP are also well calibrated with
empirical error rates. This is important for downstream analyses such
as imputation of genotypes for genome-wide association studies and
error rate characterization.

Figure 2 illustrates the reason for the excellent genotyping
performance of GenoSNP and GenoSNP-VB. After separating the
SNP data into different beadpools, the intensity data is sufficiently
well separated in feature space and the three genotype clusters
easily discernible. It is, therefore, possible to perform highly
accurate unsupervised clustering to generate genotype calls without

Fig. 1. GenoSNP genotype probabilities are well calibrated with empirical
error rates.
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Fig. 2. Log allele-specific intensity plot of all SNPs in bead pool 1 for one
HapMap sample. Each data point has been colour labelled using HapMap
genotypes (AA - Red, AB - Green, BB - Blue, No Call - Black).

requiring SNP-by-SNP processing and comparison with a reference
population.

Table 2 presents the call rates and accuracy of the different
methods broken down by zygosity. For the population-based
methods, GenCall and Illuminus, heterozygotes are generally harder
to call than homozygotes. On the other hand, GenoSNP appears
to have better performance for the SNPs that are heterozygotes.
GenoSNP-VB has high call rate and accuracy for both heterozygotes
and homozygotes showing again the robustness of the VB approach.

To further understand the strengths and weaknesses of the
available algorithms we compared the errors for all four methods
(Table 3). We found that there are 47 675 genotypes that are called
incorrectly by GenCall, Illuminus and GenoSNP-VB. Table 4 shows
that approximately half of these common errors can be traced back
to 1500 SNPs that resulted in an unsuccessful genotype calling in
more than 10–15 of the 120 HapMap samples. These errors maybe
the result of unusual probe hybridization characteristics or local
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Table 2. Breakdown of call rates and accuracy by homozygotes and
heterozygotes

Homozygotes Heterozygotes

Call rate Call accuracy Call rate Call accuracy

GenCall 99.899 99.823 99.596 99.427
Illuminus 99.918 99.763 99.616 99.192
GenoSNP 99.504 99.264 99.981 99.738
GenoSNP-VB 100.000a 99.748 100.000 99.729

aTo three decimal places (%).

Table 3. Breakdown of HapMap genotyping errors by GenCall, Illuminus
and GenoSNP-VB

GenCall Illuminus

True call False call True call False call

GenoSNP True call – 58 977 – 103 530
False call 159 633 53 229 161 168 51 694

GenoSNP-VB True call – 61 398 – 105 911
False call 43 715 50 808a 45 210 49 313a

a47 675 errors were made by all three methods.

Table 4. Breakdown of common genotyping errors made by GenCall,
Illuminus and GenoSNP-VB by SNP

Errors per SNP Number of SNPs Total errors

≥1 23 494 47 675
≥2 6942 31 123
≥3 3393 24 025
≥4 2087 20 107
≥5 1466 17 623
≥10 533 11 733
≥15 307 9114
≥20 173 6859
≥25 127 5860
≥30 98 5079
≥50 41 2831
≥100 3 327

sequence structures that make these particular SNPs intrinsically
difficult to genotype. Alternatively, there maybe errors in the
HapMap genotypes (i.e. wrong allele labelling) that has also been
noticed before in previous studies (Laframboise et al., 2007).

Although a number of genotyping errors were common to
GenoSNP-VB, GenCall and Illuminus, the remaining genotyping
errors were not common and, instead, genotypes may be called
successfully by one approach but not the others. Figure 3 illustrates
why GenoSNP successfully calls where Illuminus does not and vice
versa. The within-sample approach of GenoSNP allows borrowing
of information between SNPs so that accurate genotype cluster
allocations for SNPs even with low minor allele frequencies can
be achieved. In contrast, Illuminus clusters the population at these

particular SNPs, but will encounter problems with model fitting and
identifiability as all three genotype clusters may not be represented.
GenoSNP is less successful when the hybridization characteristics
of a SNP probe are significantly different to the others. Under
this situation, the population-based approach of Illuminus provides
greater flexibility whereas the within-sample approach of GenoSNP
assumes a probe response homogeneity across SNPs which is
inappropriate.

In order to assess the consistency of genotype calls, we analysed
a sample that was genotyped three times on the Illumina Infinium
HumanHap300 genotyping array and studied the concordance of the
genotype calls between the three replicates (Table 5). We define a
‘consensus call’ as a SNP which is called in all three samples and
2× and 3× concordance as SNPs which are identically called in two
or three of the samples, respectively. Any SNPs which are called
differently in all three samples or contain at least one no call are
listed in the column ‘No Call’. Both versions of GenoSNP produce
highly concordant calls and produces fewer non-concordant calls
than GenCall. High concordance should not be mistaken for call
accuracy but suggests low call variability, although this maybe at
the expense of higher bias. This maybe a natural characteristic of
within-sample approaches since, given a genotyping at a SNP for
one sample, there is an increased probability of incorrect genotype
calls occurring at the same position in other samples as the error
is likely to be caused by the SNP possessing unusual hybridization
characteristics.

GenoSNP and GenoSNP-VB are not only independent of the
reference cohort size but also of the number of SNPs in the study,
i.e. the SNP density of the arrays. In order to investigate that,
we used the replicates of the same sample as above but choosing
different number of SNPs for each one of them. We compared
the resulting genotypes of replicates with subsets of size 100 431
SNPs and 205 608 SNPs to the genotypes of one replicate with
all 318 238 SNPs. Both algorithms gave agreement around 99%.
Since genotyping is performed for each beadpool separately, the chip
density should not affect the genotyping results. The differences in
agreement are mainly due to biases between the replicates that we
addressed above and not caused by the differences in the number of
SNPs interrogated.

To illustrate the effects of copy number variation (CNV) on
the performance of GenoSNP and GenoSNP-VB compared to the
other available algorithms, we calculated the homozygosity rate in
detected deletion regions. SNP genotyping methods are not designed
to discover CNVs. However, SNPs in regions that are hemizygous
for a deletion are expected to be called homozygous for the allele that
is present. We used the deletion regions in the HapMap samples that
have been identified by recent studies (Redon et al., 2006; Wang
et al., 2007). For both datasets GenoSNP, GenoSNP-VB as well
as GenCall and Illuminus produced a homozygosity rate of around
90%. The ‘mis-classifications’ represent a small number of SNPs
and may also be related to the aberrant patterns of SNP genotypes
in CNV regions. Even the ‘gold standard’ HapMap genotypes do
not corroborate with the CNV data—they also have a homozygosity
rate of around 90% in these regions.

Finally, we tested the performance of GenoSNP and GenoSNP-
VB on a case-control study where the true genotypes are not
known. We used data from 778 samples of coeliac diseases patients
genotyped on the Illumina HumanHap300 genotyping array (van
Heel et al., 2007). In total 247 017 334 genotypes were available
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Fig. 3. Six examples showing Illuminus and GenoSNP-VB genotyping failures. The grey dots show log allele-specific probe intensities for all SNPs in bead
pool 1 for one HapMap sample. The black circles are intensities for the 120 HapMap samples at the indicated SNP. (a–c) Illuminus fails for these three SNPs
because the method is unable to properly fit a three-component mixture model due to the absence of the minor allele homozygote (low minor allele frequency).
GenoSNP-VB is successful as it borrows information from across SNPs and is able to define sample-level genotype clusters. (d–f) However, GenoSNP-VB
fails to call correct genotypes when the cluster centres for certain SNPs deviate considerably from the sample-level clusters.

Table 5. Comparison of call rates and consensus on a sample that was
genotyped three times on the Infinium HumanHap300 BeadChip

Method Consensus calls Concordance (No. of samples) No calls
2× 3×

GenCall 317 262 1092 315 057 1335
GenoSNP 317 494 857 316 635 9
GenoSNP-VB 317 494 721 316 771 9

There are 317 503 SNPs.

for comparison. Table 6 shows the percentage of agreement between
every two methods for the SNPs that both methods call. GenoSNP
and GenoSNP-VB are able to produce genotypes that are broadly
identical to those from GenCall and Illuminus and the agreement is
as good as that between GenCall and Illuminus.

4 DISCUSSION
We have developed a genotype calling algorithm, GenoSNP,
for the Illumina Infinium SNP genotyping array that is able to
call genotypes within-sample with comparable accuracy to other
population-based genotyping algorithms for the platform. This
capability provides researchers involved in studies of any scale with

Table 6. Comparison of agreement and call rates on 778 samples of coeliac
disease patients

Method 1 Method 2 Agreement (%) Call rate (%)

Method 1 Method 2

GenCall GenoSNP 99.73 99.55 99.99
GenCall GenoSNP-VB 99.73 99.55 100
Illuminus GenoSNP 99.39 99.76 99.99
Illuminus GenoSNP-VB 99.39 99.76 100
GenCall Illuminus 99.71 99.55 99.76

an independent genotyping tool to corroborate genotype calls from
Illumina’s own proprietary GenCall algorithm and other alternative
population-based methods. It is particularly well suited to this
task as the within-sample assumption is fundamentally different
to that used in population-based approaches and therefore is a
truly independent genotyping method. This maybe of considerable
use in developing quality control procedures that utilize consensus
calls from independent genotyping calling algorithms. Furthermore,
whereas the performance of population-based approaches varies
with sample size, the performance of GenoSNP is independent of the
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size of the study. This stability of output can be useful in developing
a reference in quality control metrics.

GenoSNP is easy to compute and the informatics burden is
significantly reduced by not requiring a population. GenoSNP call
probabilities are shown to be well calibrated enabling their use
in downstream analyses such as phasing and genotype imputation.
Furthermore, we demonstrate that robust Bayesian clustering using
mixtures of Student t-distributions can be applied to genotyping
using both standard EM and VB-EM methods. VB-EM carries
no significant computational overhead than conventional EM and
allows some uncertainty in the model parameters to be taken into
account producing more robust inferences.

Our investigations have shown that the Illumina Infinium
SNP genotyping technology possesses a high signal-to-noise ratio
which produces high inter-class separation and sufficiently low
intra-class variation to enable genotype clustering within-sample.
We are currently investigating normalization and data transformation
methods that would allow similar within-sample genotyping for
Affymetrix SNP data. The within-sample genotyping capability
is shown to be particularly advantageous for SNPs with very
small minor allele frequencies where the existence of heterozygotes
and minor allele homozygotes occur rarely. In these instances, a
population-based approach would require a large number of samples
in order to ascertain the cluster location belonging to the minor
allele homozygote, whereas the within-sample approach allows the
cluster locations to be determined by borrowing information across
SNPs. However, as might be expected, the within-sample approach
fails for SNPs whose hybridization characteristics are very different
from other SNPs and possess highly shifted genotype clusters.
Differences in hybridization characteristics are highly reproducible
and suggest that these are related to factors such as probe sequence
content. Predictive models of probe behaviour could allow SNP
genotyping array manufacturers to identify probes that possess
unusual hybridization characteristics and remove these from the final
probe sets.

Within-sample genotyping also resolves many issues in large
multi-cohort studies where variations in DNA quality between-and
within-cohorts means that the definition of a ‘reference’ population
is no trivial issue itself. For example, genotyping methods, such
as CHIAMO (Marchini et al., manuscript in preparation), use
complex hierarchical Bayesian clustering methods to resolve these
problems by maintaining different clustering parameters for each
cohort in the WTCCC, however, this approach requires a great
deal of computational time. In contrast, by working within-sample,
GenoSNP calls genotypes based on the characteristics of the sample
of interest only and, therefore, variations at a population level are
irrelevant.

GenoSNP could also make use of the information provided by
samples ran simultaneously on the same array. The new Illumina
Human610-quad DNA analysis Beadchip can have up to four
samples per chip. GenoSNP could efficiently genotype all four
samples at the same time by using the beadpool information and
in this way accounting for the chip effect. GenoSNP can then be
considered as a within-chip SNP genotyping method.

There are plethora of automated genotype calling algorithms
currently in existence for the various commercial SNP genotyping
platforms. Each generation of algorithms has taken increasingly
complex model-based approaches that are able to handle many
practical problems that have arisen from the advent of large-scale

SNP genotyping projects. GenoSNP is peculiar in taking a more
simplistic approach, seeking instead to fully exploit the high-quality
data output from the Illumina SNP genotyping platform to perform
within-sample genotyping. C++ and MATLAB source codes for
GenoSNP are available from the website provided.
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