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Stochastic, Compartmental, and Dynamic Modeling
of Cross-Contamination During Mechanical
Smearing of Cheeses

Fanny Aziza,1,2,∗ Eric Mettler,2 Jean-Jacques Daudin,3 and Moez Sanaa1

Cheese smearing is a complex process and the potential for cross-contamination with

pathogenic or undesirable microorganisms is critical. During ripening, cheeses are salted and

washed with brine to develop flavor and remove molds that could develop on the surfaces.

Considering the potential for cross-contamination of this process in quantitative risk assess-

ments could contribute to a better understanding of this phenomenon and, eventually, improve

its control. The purpose of this article is to model the cross-contamination of smear-ripened

cheeses due to the smearing operation under industrial conditions. A compartmental, dy-

namic, and stochastic model is proposed for mechanical brush smearing. This model has been

developed to describe the exchange of microorganisms between compartments. Based on the

analytical solution of the model equations and on experimental data collected with an indus-

trial smearing machine, we assessed the values of the transfer parameters of the model. Monte

Carlo simulations, using the distributions of transfer parameters, provide the final number of

contaminated products in a batch and their final level of contamination for a given scenario

taking into account the initial number of contaminated cheeses of the batch and their contam-

inant load. Based on analytical results, the model provides indicators for smearing efficiency

and propensity of the process for cross-contamination. Unlike traditional approaches in mech-

anistic models, our approach captures the variability and uncertainty inherent in the process

and the experimental data. More generally, this model could represent a generic base to use

in modeling similar processes prone to cross-contamination.
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1. INTRODUCTION

At regular intervals during ripening, the sur-
face of smear-ripened cheeses are salted and washed
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with brine containing fermenting microorganisms
and sometimes alcohol (smearing solution). This is
specifically to enhance the organoleptic develop-
ment of the product(1) and to remove the undesir-
able molds that can develop on the surface of the
cheeses. The smearing operation is carried out either
manually or mechanically and causes indirect con-
tact between cheeses via hands or a brush-smearing
machine. The potential for cross-contamination, de-
fined in this article as the transfer of microorgan-
isms from one product to another caused by direct
or indirect contact, is therefore high when unde-
sirable microorganisms are present in one or more
cheeses. In the hazard analysis and critical control
point (HACCP) context, this processing step has been
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qualitatively identified as a step where products can be
contaminated.

Several outbreaks of listeriosis have been at-
tributed to the consumption of soft cheeses contam-
inated by Listeria monocytogenes.(2) Smear-ripened
cheeses have been implicated in at least four such
cases.(3–6) Moreover, Rudolf and Scherer observed
that 15.8% of European smear-ripened cheese sam-
ples of various types contained microorganisms of the
genus Listeria.(7) In this situation, quantitative risk as-
sessment (QRA) models of human listeriosis linked
to consumption of soft cheese made from raw milk
were conducted.(8,9) The models developed assess
the prevalence and concentration of Listeria mono-
cytogenes in cheeses throughout the various steps
of production from farm to table. Only contamina-
tion arising from the raw milk was taken into ac-
count. Indeed, it was assumed that for the type of
cheese studied, white-rind soft cheeses made with raw
milk (notably Camembert and Brie de Meaux), the
impact of cross-contamination was negligible when
good manufacturing procedures and HACCP were
observed since contamination of these cheeses is al-
most exclusively localized in their core. However, in
contrast with raw milk products, the safety of soft
cheeses made with pasteurized milk is more con-
cerned with cross-contamination since contamination
of the product surface can occur during both pro-
cessing and maturation. Operations such as delib-
erate smearing of cheese surfaces increase the risk
of undesirable microorganisms being present on the
product surfaces. Taking such operations into account
would significantly alter the results of any QRA of
pathogens in such cheeses made with raw or pas-
teurized milk. Finally, using QRA to quantify the
potential for cross-contamination of this process, of-
fers a means of overcoming limitations of qualitative
HACCP identification.(10)

Among the six basic processes defined by
Nauta in the modular process risk model,(11) cross-
contamination is one of the most complex, and rel-
atively few quantitative studies have addressed it.
This article presents a compartmental modeling ap-
proach of the mechanical brush-smearing operation.
The model assesses the prevalence and concentra-
tion of undesirable microorganisms on smear-ripened
cheeses after the smearing step for a given scenario of
the initial contamination of a batch. The transfer pa-
rameters were derived from experiments conducted
with an industrial brush-smearing machine. Monte
Carlo simulations were used to quantify the impact of
brushing on cross-contamination. Our approach is de-
signed to capture variability and uncertainty arising,

respectively, from the process itself and from transfer
parameter distributions.

2. MATERIALS AND METHODS

The model describes the transfer of microorgan-
isms between cheeses, the machine, and the envi-
ronment of the machine. It is a system of discrete
deterministic difference equations. Parameters of the
equations are based on physical phenomenon, mak-
ing the model mechanistic.(12,13) To obtain values
on parameters of the model, we conducted experi-
ments under industrial conditions. As experimental
data collected were dependant on measurement error
and repetitions, we revised these data using Monte
Carlo simulations and obtained empirical distribu-
tions for transfer parameters. Equations of the model
and transfer parameter distributions could then be
applied to any potential undesirable microorganism
present on the surface of the cheeses. All calcula-
tions were performed with MATLAB� Version 6.5,
Release 13.

2.1. Fundamental Concept of the Model

The fundamental concept of the model is the
description of biomass transfer between cheeses,
brush-smearing machine, and environment. Biomass
is made up of organic matter and microorganisms, no-
tably industrial culture strains added during manufac-
ture. In the smearing machine, some biomass is trans-
ferred from the surface of the cheese to the machine
and a fraction of it can be transferred to the following
cheeses and to the environment.

Some pathogenic microorganisms (e.g., Listeria
monocytogenes) or spoilage microorganisms (e.g.,
molds) may be sporadically present in the biomass
on the surface of the product. Assuming that low
levels of these undesirable microorganisms are ho-
mogeneously present throughout the biomass, their
transfer through brushing can then be estimated by
the transfer of biomass. Hence, if the proportion of
biomass transferred from one compartment to an-
other is equal to p (p ∈ [0, 1]), then the proportion of
undesirable microorganisms transferred is also equal
to p. The aim of the experiments therefore was to
assess parameters of the model with a cheese for
which the main industrial culture strain constituting
the biomass could be quantified. These parameters
can then be applied to any potential population of
undesirable microorganisms present in the biomass.
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2.2. Experimental Data Collection

In this study, we used smear-ripened cheeses
made from pasteurized milk from the north of France.
The cheese dimensions are 8 × 8 × 4 cm and its weight
is 200 g. Manufacture and ripening of this cheese un-
der regular industrial conditions consist of the follow-
ing steps: the industrial culture strain Brevibacterium
linens BL1, a coryneform bacteria that contributes
to the yellow-red stain of the rind, is inoculated into
the milk (104.7 colony forming units (CFU)/mL). This
bacteria is the main component of the cheese surface.
Next, at regular stages during ripening (5, 9, 14, and
17 days), cheeses are transported on a conveyor belt
and are brushed mechanically with a smearing solu-
tion in the brush-smearing machine. During the first
two smearing operations (5 and 9 days), BL1 is also
added to the smearing solution (107.6 CFU/mL).

For the experiments, two groups of cheeses were
manufactured. Manufacture and ripening of the ex-
perimental cheeses were carried out under regular
industrial conditions, as described above. Cheeses
from the first group (called “CBL1s”) were manu-
factured with the standard industrial culture strain,
Brevibacterium linens BL1, whereas cheeses from the
second group (called “CBL2s”) were manufactured
with another strain of Brevibacterium linens, BL2 in-
stead of BL1. Previous studies (unpublished data)
have shown that both BL1 and BL2 strains have the
same growth rate on the surface of the cheese and
that BL2 colonies are easily distinguishable from BL1
colonies. As Brevibacterium linens bacteria is one of
the main components of the biomass of the cheese sur-
face, transfer of biomass was thus observed through
this bacteria. The particular strain BL2 was used as a
marker in quantifying transfer parameters.

The experiments were carried out using 17-day-
old cheeses. The machine was cleaned (closed cir-
cuit) and the brushes were disinfected prior to use,
using industrial techniques. Five times in a row dur-
ing a processing run, one CBL2 followed by 30 CBL1s
were submitted to the smearing step. The first cheese
(CBL2) to pass through the clean machine was col-
lected to measure the residual population of BL2 on
its surface. For each of the five series, four CBL1s
from the first six CBL1s following the CBL2 were col-
lected and the transferred populations of BL2 were
measured. Before brush smearing, three CBL2s were
used to assess the initial BL2 population of CBL2s.

The microbial analysis of the cheese surface was
carried out by removing the whole biomass with a
spatula. This biomass was decimally diluted in a ster-
ile stomacher bag and the resulting suspension was

homogenized in a stomacher blend for 2 minutes.
An appropriate dilution of the suspension was plated
on Brain Heart Infusion Agar (Difco) containing
50 g of NaCl per liter supplemented with pimaricin
(200 ppm), nalidixic acid (40 ppm), and furazolidone
(10 ppm) to inhibit yeasts, gram-negative bacteria,
and staphylococci, respectively. Plates were incubated
at 20◦C for 15 days in order to improve the pigment
formation of the colonies. The developing popula-
tion was constituted by coryneform bacteria, includ-
ing BL1 and BL2. Specific counts of BL2 were deter-
mined using the specific red color of the colonies and
were expressed in CFU per cheese surface.

After the treatment of the five series, the in-
side surface of the bottom of the machine under the
conveyor belt was cleaned and an additional series
of 30 CBL2s was treated. Afterward, the surfaces
of the brushes and the conveyor belt were swabbed
with sterile sponges. The inside surface of the bot-
tom of the machine under the conveyor belt surface
was considered as the main part of the neighbor-
ing environment of the machine and was therefore
also swabbed. The sponges were then immersed in
20 mL of Quarter’s Strength RingerTM solution (AES,
Combourg, France) and the resulting suspension was
homogenized in a stomacher blend for 2 minutes. The
suspension was analyzed as described above to enu-
merate BL2 population.

2.3. Deterministic and Compartmental Model
for Cross-Contamination During Cheese
Brush Smearing

A transfer of biomass takes place between three
compartments: the machine, the neighboring environ-
ment, and the cheese surface (Fig. 1). It occurs be-
cause of cheese-contact surfaces or because of brine

Fig. 1. Cross-contamination model. Biomass is transferred be-

tween the machine, the cheese being treated, and the neighbor-

ing environment. pkl is the proportion of biomass transferred from

compartment k to compartment l. (k, l ∈ {m, c, e}, standing for “ma-

chine,” “cheese,” and “environment,” respectively.) m(i) and e(i)
are the number of CFU on the machine and in the neighboring

environment, respectively, after the cheese with rank i was treated.

The cheese with rank i has two states: c(i)0 and c(i)1, i.e., the number

of CFU before and after brush smearing, respectively.
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conveying biomass through the machine. Biomass can
be transferred from the cheese surface to the machine
by the brushes and/or the conveyor. Such transfer
can take place on cheese-contact surfaces, at points
of direct contact with mechanical devices (brushes,
conveyor), or through indirect contact (inner walls of
the machine). The biomass can then be deposited on
the following cheese surfaces by the machine. Finally,
some biomass can be transferred from the machine to
the neighboring environment: a part of this biomass is
recovered on the inside surface at the bottom of the
machine under the conveyor belt where brine flows;
the other part goes onto the floor around the machine.
It is assumed that the biomass does not go back into
the cheese/machine subsystem from the neighboring
environment.

The cross-contamination model is a set of three
deterministic discrete difference equations, system
(S) below, formulating the number of CFU of
undesirable microorganisms present in each compart-
ment after brush smearing of the cheese with rank i
(the rank of the ith cheese of a batch is “i”). The pop-
ulation of a compartment after brush smearing of the
cheese with rank i depends on: (1) the population of
the compartments after brush smearing of the cheese
with rank (i − 1) and (2) the population of the cheese
i before brush smearing. Transfer parameters of the
model are the proportion of biomass transferred from
one compartment to another, which were assessed us-
ing the Brevibacterium linens population as an indi-
cator for biomass of the cheese surface.

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(0) = e(0) = 0

m(i) = (1 − pmc − pme) × m(i − 1) + pcm

× c(i)0, i ≥ 1

e(i) = e(i − 1) + pme × m(i − 1), i ≥ 1

c(i)1 = (1 − pcm) × c(i)0 + pmc

× m(i − 1), i ≥ 1

0 < pcm, pmc, pme < 1; pmc + pme < 1

m(i) and e(i) are, respectively, the numbers of CFU
on the machine and in the neighboring environment
after the cheese with rank i is brushed. The cheese
with rank i has two states: c(i)0 and c(i)1, respectively,
the numbers of CFU on its surface before and after
brushing. For i ≥ 1, c(i)0 are the input of the model
and c(i)1 are the outputs of the system (S). pcm is the
proportion of biomass transferred from the cheese to
the machine, pmc is the proportion of biomass trans-
ferred from the machine to the cheese, and pme is the

proportion of biomass transferred from the machine
to the environment.

At the beginning, both machine and environment
are clean so that m(0) = e(0) = 0. Constraints are:
(1) parameters are the proportions of biomass trans-
ferred and must therefore be between 0 and 1, and
(2) pmc + pme < 1, if not, the machine could transfer
more CFU than it contains.

2.4. Model Analysis

Based on the system (S), we obtained an analyt-
ical solution (Equations (1)–(3) and (4)) for the set
of parameters (pcm, pme, pmc) for the following sce-
nario: before smearing, only the first cheese of a batch
carries some CFU on its surface, and, after smear-
ing, the following cheeses are contaminated (cross-
contaminated cheeses) because of the first cheese
and, thus, can carry some CFU on their surface (if
i = 1, c(i)0 > 0, otherwise, c(i)0 = 0 but c(i)1 might
be positive). This scenario fits that of the experiments
performed: the BL2 population of CBL2s represents a
marker of the cheese biomass; it is quantified in CFU;
the first cheese of each series is manufactured with
BL2, instead of BL1. Applying the analytical solution
to the BL2 population thus made it possible to assess
the transfer parameters of the model.

Demonstration of the following expressions4 is
detailed in Appendix A.

(S′)

⎧⎪⎪⎨⎪⎪⎩
pcm = 1 − 10log(c(1)1)−log(c(1)0) (1)

pmc = 10A−log(pcm×c(1)0)+2B (2)

pme = 1 − 10B − pmc (3)

and

log(c(i)1) = A+ i × B, i ≥ 2. (4)

Equation (4) makes it possible to obtain values on
parameters A and B by means of a linear regression
(least square fitting) between log(c(i)1) and i, as if i
were a continuous variable and for i ≥ 2. Equation (1)
makes it possible to assess pcm. Finally, Equations (2)
and (3) provide values of pme and pmc.

2.5. Monte Carlo Simulations for Transfer
Parameters Estimation

The experimental data displayed two sources of
variation. The first one was uncertainty on BL2 counts,

4 Each evocation of the logarithm (with “logarithm” or “log”) in

the following text corresponds to the decimal logarithm.
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assumed to be normally distributed on a logarithmic
scale. As measurement error was taken to be ±0.3 log
CFU,(14) the mean and the standard deviation of
the uncertainty distribution were, respectively, 0 and
0.15 log CFU. To take this measurement error into
account, we ran Monte Carlo simulations to generate
new sets of data based on experimental data corrected
with a random normal additive factor (RNAF) with
mean 0 and standard deviation 0.15.

The second source of variation came from the
variability of the initial BL2 population of CBL2s be-
fore brush smearing. A gamma distribution, also cor-
rected with RNAF, adequately matched these data.
The same procedure was applied to the BL2 count of
the first CBL2 brushed corrected with RNAF.

The parameter assessment procedure is detailed
in Fig. 2. “c exp” data stands for experimental data;
“c rev” data stands for revised data (correction with
RNAF and, depending on the data, gamma adjust-
ment). Equation (4) was adjusted on revised data for
i ≥ 2, providing values on A and B. Equation (1)
was applied to revised data for i = 1 and made it
possible to assess the transfer parameter pcm. Fi-

Fig. 2. Parameters estimation procedure. Experimental data (“c exp”) are corrected to take uncertainty and variability arising from the

experiments into account, resulting in revised data (“c rev”). Using Monte Carlo simulations (MCS), analytical solution of system (S) is

adjusted on random sample (RS) from the distributions obtained on revised data, thus making it possible to assess transfer parameter values.

nally, Equations (2) and (3), which require values
for previously assessed pcm and c(i)0, made it pos-
sible to calculate pmc and pme. Monte Carlo simu-
lations provided empirical distributions on transfer
parameters of the model that we chose not to param-
eterize. Finally, Pearson’s correlation coefficients be-
tween the empirical distributions of parameters were
calculated.

2.6. Simulating Cross-Contamination
for Specific Scenarios

Simulating cross-contamination processes re-
quires a given scenario describing the type of ini-
tial contamination of the batch studied: the number
of cheeses brushed between two cleanings (NR), the
number of contaminated cheeses (N), their rank in
the batch (R), and their contaminant load (C), i.e.,
the number of CFU of the undesirable microorgan-
isms spread in the biomass of the surface of the con-
taminated cheeses.

To establish the impact of smearing on cross-
contamination, we observed results for two different
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recontamination scenarios likely to occur.(13,15) The
first scenario (scenario S1) is a sporadic contam-
ination of the batch with a pathogenic microor-
ganism: the environment contaminated the surface
of one product of the batch (recontamination with
water droplets, for instance). The second scenario
(scenario S2) is a batch homogeneously contaminated
with molds: all cheeses are contaminated with the
same contaminant load on cheeses. This situation may
arise because of a recontamination of the product at
the beginning of processing (recontamination of co-
agulated milk during molding or milk contaminated
because of faulty pasteurization).

For scenarios S1 and S2, we chose the contami-
nant load C = 300 CFU/cheese (2.48 log CFU/cheese).
Finally, characteristics for scenarios S1 and S2 were
{N = 1, NR = 2,000, C = 300, R= 10} and {N = NR =
2,000, C = 300, R = [1, N]}, respectively. After each
batch had been brushed, outputs were the new preva-
lence and the new allocation of CFU on the cheese
surfaces.

Simulations can be implemented deterministi-
cally using system (S) (or using Equation (4) for
S1) with one set of parameters (after each transfer,
the number of CFU transferred must be rounded to
the nearest integer). They can also be implemented
stochastically using random sets of parameters from
their assessed empirical distribution and applying a bi-
nomial distribution to the number of CFU transferred
from one compartment to another. Indeed, the trans-
fer of a CFU from one compartment to another can
be considered as an event occurring with a probability
p, p being the proportion of biomass transferred from
one compartment to another. The random variable,
equal to 1 if the CFU is transferred, and to 0 otherwise,
follows a Bernoulli distribution with parameter p. The
sum of n independent random variables following a
Bernoulli distribution with parameter p follows a bi-
nomial distribution with parameters n and p. As the
CFU of a compartment are independent, the number
of CFU transferred follows a binomial distribution,
the parameters of which are the initial number of CFU
in the first compartment and the transfer parameter
p. The binomial process, applied each time a transfer
of CFU occurs, makes the model stochastic.

To compare results from the theoretical model
and the experiments, we also simulated the scenario of
the experiments conducted. Five hundred simulations
of the following scenario were performed: five series
of one CBL2 each followed by 30 CBL1s were treated
in the machine. After these five series, the neighbor-
ing environment was cleaned (after the 35th cheese,

the environment was put to 0, i.e., e(35) = 0), and 30
CBL2s were then treated in the machine. We com-
pared experimental and simulated results: after the
five series for the machine contamination, and after
the five series and the 30 CBL2s for the environment
contamination.

2.7. Analytical Results for Cross-Contamination

Using the analytical solution of the model, we
derived the number of contaminated cheeses after
brush smearing as a function of the transfer pa-
rameters (pcm, pme, pmc) and the contaminant load
C. This solution was calculated for a scenario S1,
where the first cheese of a batch is contaminated
with C CFU (R = 1). When the first cheese of the
batch is initially contaminated with C CFU, the last
cross-contaminated cheese (i = I) has got the low-
est number of CFU on its surface. This number is
greater than one, thus, I ∈ {i ≥ 2/c(i)1 ≥ 1}, i.e., I ∈
{i ≥ 2/ log(c(i)1) ≥ 0}. According to Equation (4),
which provides the contaminant load of cheeses
with rank i ≥ 2, I ∈ {i ≥ 2/A+ iB ≥ 0}. f (i) = A+
iB being a monotone decreasing function for i ≥ 2
(B < 0, since 1 − pme − pmc < 0), the minimum of
this function is solution of {i ≥ 2/A+ iB = 0}. I being
the rank of the last cross-contaminated cheese, it is
also equal to the total number of cross-contaminated
cheeses issuing from one initially contaminated with
C CFU (see Appendix B for details)

I = 2 − log(pmc × pcm × C)

log(1 − pmc − pme)
. (5)

For the same scenario, the ratio J =
[maxi≥1(c(i)1)/c(1)0] stands for the maximum
proportion of the contaminant load observed on
contaminated cheeses compared to the initial con-
taminant load C. As the contaminant load of cross-
contaminated cheeses decreases linearly as a function
of i, the cheese with rank i = 2 has the highest con-
taminant load among cross-contaminated cheeses,
i.e., maxi≥2(c(i)1) = c(2)1. According to Equa-
tion (A.2) of Appendix A, [c(2)1/c(1)0] = pcm × pmc.

For i = 1, the proportion of the final contaminant
load of the initially contaminated cheese compared
to the initial is c(1)1/c(1)0 = 1 − pcm, according to
Equation (A.1) of Appendix A. Finally,

J = max(pcm × pmc, 1 − pcm). (6)

Once more for this scenario, we calculated an in-
dicator K corresponding to the number of cheeses
brushed before the number of CFU on a cheese was
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reduced to 50% of the contaminant load of the first
cross-contaminated cheese, i.e., the one with rank i =
2. This indicator was defined and used by Christensen
and Rosenquist under the name Bhalf

(16,17): Bhalf, for
which the actual value was unknown, was thought
to influence consequences of cross-contamination
of Campylobacter between chicken carcasses during
slaughtering. They therefore tested different values
to observe the impact of this factor on the risk of hu-
man campylobacteriosis. We calculated an analytical
expression of K from the system (S) (see Appendix C
for details):

K = 2 − log(2)

log(1 − pmc − pme)
. (7)

For scenario S2, where cheeses of the batch are
all contaminated with the same contaminant load C,
we calculated the reduction rate L of the contam-
inant load of cheeses, i.e., for cheese with rank i,
L = 1 − [c(i)1/c(i)0]. The expression obtained is (see
Appendix D for details):

L = pcm − pmc × 1 − Bi−1
L

1 − BL
, (8)

with BL = 1 − pmc − pme and i ≥ 1.

3. RESULTS

3.1. Experimental Data

Due to microbiological technical problems, one
of the series was excluded from the calculations. For
the four remaining series, Table I shows the loga-
rithm of BL2 counts on cheeses brushed. Index i is the
rank of the cheese brushed. Cheeses with rank i = 1
were produced with BL2 strain (CBL2s). Otherwise

Table I. BL2 Population on Cheese Surfaces After

Brush Smearing

BL2 Population (log CFU)

i Series 1 Series 2 Series 3 Series 4

1 7.53 – – –

2 8.2 8.51 7.85 8.19

3 7.72 8.48 7.81 8.12

4 7.78 8.01 8.02 –

5 7.82 7.84 7.9 –

6 – – – 8.15

7 – – – 8.02

Note: These experimental data represent the logarithm of c(i)1 (log

CFU), for i ≥ 1. Series 1–4 are the repetitions of the experiments.

(i ≥ 2), cheeses were produced with BL1 strain
(CBL1s). Measurement of the BL2 population on
three CBL2 surfaces before brush smearing gave
8.99 log CFU, 9.22 log CFU, and 9.79 log CFU. BL2
population on the brushes and conveyor belt after the
five series was 9.45 log CFU while BL2 population at
the bottom of the machine under the conveyor belt
was 10.54 log CFU after the five series followed by
30 CBL2s.

3.2. Parameters Estimation

Fig. 3 shows cumulative gamma distributions
(dotted line) adjusted on the cumulative empirical
distributions of the logarithm of the BL2 population
of CBL2s, corrected with RNAF (solid line), both
before and after brush smearing. Parameters of the
gamma distributions of BL2 counts before and after
brush smearing were, respectively, {643.2, 0.014} and
{2,472.5, 0.003}. Mean values of these distributions
before and after brush smearing were, respectively,
9.33 log CFU (IC95% = [8.62, 10.04]) and 7.52 log CFU
(IC95% = [7.23, 7.84]).

Each simulation generated four series of revised
data, c rev(i), i ≥ 2. Fitting the linear model individ-
ually on each series provided positive slopes, whereas
the analytical solution for transfer parameters re-
quired a negative slope. For instance, the linear model
adjusted on the third experimental series provided a
positive slope, which was considered to be due to the
binomial process and the measurement error. Conse-
quently, the linear model was fitted simultaneously on
the four series. In this case, about 4% of the 10,000
simulations provided positive slopes. Results from
these simulations were deleted. The adjustments of
the remaining simulations were not of high quality
but enabled us to approach a middling value for the
slope. As an example, Fig. 4 shows the adjustment of
the linear model on experimental data. Coefficients
of the resulting linear regression were then used to
assess transfer parameters. Nevertheless, about 30%
of them provided negative pme. Sets of transfer pa-
rameters resulting from these simulations were also
deleted from the final empirical distributions of trans-
fer parameters.

The empirical distributions obtained for trans-
fer parameters (Table II) show that a high propor-
tion of biomass is transferred from the cheese sur-
face to the machine (mean(pcm) = 0.97), whereas
only a small proportion is delivered back to the
cheese (mean(pmc) = 0.05). As described in sys-
tem (S), a nonnegligible proportion of biomass is
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Fig. 3. Comparison of cumulative

gamma distribution (dotted line) and

cumulative empirical distribution (plain

line) for BL2 counts before and after

smearing. The gamma distribution was

adjusted on the empirical distribution

defined by BL2 counts corrected with

RNAF before and after brush smearing.

removed principally into the neighboring environ-
ment (mean(pme) = 0.07).

Correlations between parameters were not neg-
ligible. First, the correlation coefficient between the
distributions of pcm and c rev(1)0 was equal to −0.73.
As calculations of pme and pmc required values on pcm

and c rev(i)0, we decided to take the correlation be-
tween pcm and c rev(i)0 into account by sampling the
values in their joint distribution. Positive correlations
between empirical distributions of transfer parame-

Fig. 4. Linear adjustment (least square

fitting) on experimental data. The

intercept on the vertical axis and the

gradient are 8.2 and −0.05, respectively,

parameters A and B of Equation (4). The

linear adjustment is made here

simultaneously for the four experimental

series.

ters were then induced and are listed in Table III. In
the same manner, sets of transfer parameters were
sampled from their joint empirical distributions when
simulating cross-contamination.

Regarding variance of transfer parameter distri-
butions, lower measurement error (< ±0.3 log CFU)
had little influence on the results (results not shown),
suggesting that variance was induced by the intrin-
sic variability of the experimental data, notably BL2
population of CBL2s.
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Table II. Empirical Percentiles of Transfer

Parameter Distributions

Percentiles (10,000 Simulations)
Transfer

Parameter 2.5% 25% 50% 75% 97.5%

pcm 0.96 0.98 0.98 0.99 0.99

pme 0.00 0.03 0.06 0.10 0.16

pmc 0.01 0.02 0.04 0.06 0.12

Table III. Correlation Coefficient Between Transfer

Parameter Distributions

pcm pme pmc

pcm 1 0.33 −0.82

pme 0.33 1 −0.36

pmc −0.82 −0.36 1

3.3. Simulating Cross-Contamination
for Specific Scenarios

For scenarios S1 and S2, three sets of parame-
ters were sampled from their joint empirical distribu-
tions and, for each random set of parameters, three
simulations were performed using the binomial pro-
cess. Figs. 5A–C, respectively, provide the evolution
of the contaminant loads of the machine, the envi-
ronment, and the cheeses simultaneously. Contami-
nant loads are represented on a logarithmic scale in
log CFU (ordinates axis) in function of the rank of
the cheese (abscissa axis). The shading of the curves
are different from one set of transfer parameters to
another.

Results for S1 show the linear decrease in
the logarithm of the contaminant load on cross-
contaminated cheeses (cheeses not initially contami-
nated) in function of their rank. Fluctuations during
the decrease were due to the binomial process. As
in the experimental data (Table I), the contaminant
load of a cheese can be higher than that of the previ-
ous cheese because of both the binomial process and
measurement error. The prevalence of contaminated
cheeses increases highly and their contaminant load
is much lower than 300 CFU.

Monte Carlo simulations using random sets of
transfer parameters showed that the mean and
standard deviation of the maximum proportion of
contaminant load observed on cross-contaminated
cheeses compared to the initial contaminant load
were, respectively, 4.7% and 3.0%. Less than 2% of

the initial contaminant load of the initially contam-
inated cheese remains on its surface (mean value).
Thus, the mean and standard deviation of J, taking
account of the joint distributions of parameters, were
4.7% and 3.0%, respectively. In the same manner,
the mean of the indicator K, calculated using Equa-
tion (7), was 9 cheeses (IC95% = [5, 19]).

Results for S2 indicate that contaminant load of
cheeses decreases after brush smearing. After a tran-
sitional period, contaminant loads of both the ma-
chine and the cheeses level off. As expected, the con-
taminant loads of cheeses are lower when cheeses
belong to the transitory phase. Monte Carlo simu-
lations, taking into account transfer parameter un-
certainty in Equation (8), showed that the stable
phase was reached after about the 100th cheese (mean
value) and that mean and standard deviation of the
reduction rate L were 55% and 25%, respectively.

The variance of the results comes from both the
joint distribution of transfer parameters and the bino-
mial process. This paragraph describes the influence
of transfer parameter uncertainty and the binomial
process on variance results for S1. Regarding trans-
fer parameter uncertainty, applying Equation (5) to
random sets of transfer parameters in Monte Carlo
simulations showed that mean and standard devia-
tion of the number of cross-contaminated cheeses I
increased linearly in function of the logarithm of C
(Table IV). The contaminant load C varied between 1
and 6 log CFU since we considered that a contaminant
load above 6 log CFU was not realistic for the scenario
of a product’s surface recontamination. The binomial
process also influences variance of the results: given a
set of transfer parameters, stochastic simulations with
the binomial process showed that the standard devia-
tion of I remained constant when C increased and, no
matter what the set of parameters, this standard devi-
ation did not exceed two cheeses. Thus, for stochastic
simulations with both random sets of transfer param-
eters and the binomial process, variance of the results
was mainly due to parameter uncertainty.

To conduct the experiments and define the exper-
imental design, we previously used a model slightly
different from the one presented in this article. With
this previous model, we performed simulations of
the scenario of one cheese contaminated with 10 log
CFU. Values of transfer parameters were sampled in a
uniform distribution with parameters 0 and 1. Re-
sults of the simulations showed that a maximum of 30
cheeses were necessary to clear the brush-smearing
machine of the contaminant population (results not
shown). This result was used in the experimental
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Fig. 5. Example of simulation results for

scenarios S1 and S2. Three sets of

transfer parameters were sampled and,

for each of them, three simulations were

performed using the binomial process.

Each shading corresponds to a set of

transfer parameters. The contaminant

load of a cheese is represented on a

logarithmic scale, in log CFU (ordinates

axis) in function of its rank (abscissa

axis). We observe the evolution of the

contaminant load of the machine (A), the

environment (B), and the cheeses (C)

simultaneously. Characteristics of

scenarios S1 and S2 are {N = 1, NR =
2,000, C = 300, R = 10} and {N = NR =
2,000, C = 300, R = [1, N]}, respectively.

design of the experiments: between two CBL2s, 30
CBL1s passed through the machine. However, us-
ing the current model, simulation results of cross-
contamination showed that more than 30 cheeses
could be necessary for the machine to be cleared of the
contaminant population (Table IV). We next simu-
lated the scenario of one CBL2 followed by 30 CBL1s
to calculate the BL2 population remaining in the ma-
chine after the 30th CBL1. Transfer parameter distri-
butions were assessed using the previously presented
procedure (Fig. 2) but with the first experimental se-

ries only in order to eliminate bias. The initial BL2
population of CBL2 followed the gamma distribution
assessed using BL2 counts of CBL2s, before brush
smearing (Fig. 3). Ninety percent of 500 simulations
provided a BL2 population on the machine lower than
8 log CFU after the 30th CBL1 had been treated in
the machine. Next, when using transfer parameters
assessed from the four experimental series, 70% of
500 simulations gave a residual BL2 population in the
machine of less than 8.2 log CFU. This residual BL2
population in the machine represented 5% of the load
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Table IV. Evolution of the Number of Cross-Contaminated

Cheeses I for Scenario S1, Function of the Initial Contaminant

Load C

C (log CFU) Mean (I) SD (I)

1 2 1

2 14 6

3 36 18

4 59 30

5 81 44

6 104 59

Note: 10,000 simulations using empirical distributions of transfer

parameters were performed.

taken by the brush from a CBL2 (mean value). There-
fore, as the aim of these experiments was to obtain
a magnitude order on transfer parameter values, we
considered the influence of this bias on the indepen-
dence between experimental series negligible.

The simulations of the scenario of the experi-
ments provided differences between experimental re-
sults (BL2 population in the machine after the five
series and BL2 population in the environment after
the five series followed by 30 CBL1s) and simulated
results. After brush smearing of the five series, the
simulated mean of the machine’s BL2 population was
10.55 log CFU, whereas the experimental result was
9.45 log CFU. After the whole scenario, the simu-
lated mean of the neighboring environment’s BL2
population was 10.71 log CFU, whereas the experi-
mental result was 10.54 log CFU. These differences
are due, among other things, to the fact that only
a part of the machine and environmental compart-
ments could be analyzed: regarding the neighboring
environment, the inside surface at the bottom of the
machine under the conveyor belt was analyzed but
not the exterior of the machine (notably the floor).
Regarding the machine, direct contact surfaces were
analyzed (brushes and conveyor belt) but not indi-
rect contact surfaces (notably the inner walls of the
machine). Another reason for these differences is the
uncertainty of the measurement method of the BL2
population.

4. DISCUSSION

Several aspects of the model should be high-
lighted. Concerning model validation, confidence in
simulated results depends on the propensity of the
theoretical model to match reality. Even if the dif-
ferences between simulated and experimental results

are partially related to the fact that neither the whole
machine nor the complete environment could be
analyzed, the fact remains that more experimental
data are necessary to properly validate this cross-
contamination model.

It has to be recognized that the analytical solu-
tion for transfer parameters (Equations (1)–(3) and
(4)) is based on the experimental protocol: the first
cheese only is contaminated (with a known contami-
nant load), which makes it possible to assess first pcm,
and then the pair (pmc, pme) using results on pcm. As
seen from the present experiments, uncertainty en-
gendered by transfer parameters is relevant. Such a
situation is due mainly to the uncertainty of the mea-
surement method and the intrinsic variability of the
experimental data. However, these experiments facil-
itate the development of a plausible idea for transfer
parameter values. If transfer parameter uncertainty
can be reduced, variance due to the binomial process
can then be taken into account, paving the way for
more realistic results in QRA.(18)

The approach used here is different from the tra-
ditional approach, which focuses on individual trans-
fer rates between various surface and/or various prod-
ucts for a defined microorganism.(19–21) Our approach
presents an advantage because we are interested in
the case of limited contamination of undesirable mi-
croorganisms spread through the biomass of the prod-
uct surface (induced by a recontamination event, for
instance). This hypothesis leads us to assume that the
undesirable microorganisms do not modify the behav-
ior of the biomass. Thus, to assess transfer parameters,
only one microorganism constituting the biomass of
the product surface is necessary (here, Brevibacterium
linens) and these transfer parameters can then be ap-
plied to any undesirable microorganism.

According to the literature, the linear decrease
of the logarithm of the contaminant load on cross-
contaminated products (for scenario S1) seems plau-
sible and has already been observed. When assess-
ing microbial populations on hands, Veulemans et al.
observed that the logarithm of the contaminant load
of the adhesive tape in contact with hands decreased
linearly in function of the tape rank.(22) Midelet and
Carpentier also applied this model to assess the at-
tachment strength of microorganisms on some sur-
faces, including Listeria monocytogenes.(23) Vorst et al.
have recently shown data that reinforced the idea of
a linear decrease for scenario S1:(24) the experiments
performed quantify the transfer rate of Listeria mono-
cytogenes from inoculated products to uninoculated
products via a slicing machine. In similar experiments,
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Pérez et al. observe the transfer rate of Staphylococ-
cus aureus from the machine to uninoculated prod-
ucts.(25) For both studies, a linear decrease of the log-
arithm of the contaminant load of cross-contaminated
product in function of the slice rank is observed.
Transfer rates obtained for Listeria monocytogenes
are different from one inoculum to another. However,
pure inoculums of Listeria monocytogenes were used,
whereas the central concept of our model is that con-
taminant cells are diluted in the biomass of the cheese
surface, so that transfer parameters do not depend
on the initial contaminant load of the contaminated
product. Moreover, adhesion of cells to the surface
may influence results on transfer rates, which is not
the case here.(26)

Christensen et al., when developing risk assess-
ment on Campylobacter spp. in chicken products,(16,17)

modeled cross-contamination between carcasses by
means of linear decrease of the logarithm contami-
nant load on carcasses for scenario S1. However, they
did not give any analysis showing that the linear re-
gression was the proper solution. The slope of this de-
crease was determined by the indicator Bhalf, defined
by the number of carcasses that need to be slaugh-
tered before the number of Campylobacter cells on
a bird was reduced to 50% of the contaminant load
of the first cross-contaminated carcass. As Bhalf was
currently unknown, five different values were used,
from 300 to 6,000. The indicator K we used, which
had the same definition as Bhalf, was analytically cal-
culated (Equation (7)) from the system (S). Its math-
ematical expression did not depend on the initial con-
taminant load of the initially contaminated cheese
but rather on only the slope of the linear regression,
i.e., on pme and pmc. We believe that this indicator, a
cross-contamination strength, represents an efficient
summary of the cross-contamination propensity of
the process and can be deduced mathematically from
transfer parameters of the system (S).

Concerning the impact of brush smearing on
cheese contamination, results for scenario S2 show
that the initial contaminant load of a homogeneous
contaminated batch will be reduced by more than a
half. That result proves the efficiency of brush smear-
ing since one aim of this processing step is to ex-
tract potential undesirable microorganisms that could
arise from the environment. For scenario S1, where
one cheese was contaminated, less than 2,000 cheeses
were contaminated, no matter what the initial con-
taminant load (Table IV). Thus, in the case of the
plant where experiments were conducted and where
hygienic measures of the machine are planned about
every 2,000 cheeses, the model indicates that this fre-

quency of cleaning and disinfection is not sufficient
to stop a cross-contamination event inside a batch.
Results for scenario S1 also indicate that the contami-
nant load of the initially contaminated cheese is highly
spread on the cross-contaminated cheeses with small
contaminant loads: the contaminant load of the first
cheese cross-contaminated represents less than 5% of
the initial contaminant load. Thus, microbial analysis
of products during the process should be performed
once the detection level of the test used to search out
an undesirable microorganism is known: for a test able
to detect any level of population, products should be
analyzed after brush smearing because of the high
number of contaminated cheeses. At the same time,
the model suggests that there may be a threshold
combining number of contaminated cheeses and ini-
tial contaminant load above which products will be
detectable before brush smearing but not after. This
threshold depends on the detection level of the test
for the microorganism concerned. This model could
thus be used as an objective tool to improve sampling
in a plant.

This model will be integrated in the future as a
module in the microbial quantitative assessment of
listeriosis linked to the consumption of soft cheeses
made from pasteurized milk taking the whole process
into account. Inputs of this model are the rank of the
contaminated cheeses of a batch and their level of
contamination, which come from the previous step of
the process. Integration of this step will considerably
improve results in listeriosis risk detection since physi-
cal and chemical parameters of cheeses during ripen-
ing, such as temperature and pH, affect the growth
of Listeria monocytogenes(9,27) even if contaminant
loads of cross-contaminated cheeses are low. How-
ever, the question of the outbreak of a CFU during
brush smearing and after a growth period remains to
be addressed, as we do not yet know the mechani-
cal effect of brushing on it. Assumptions lead to two
extremes: (1) a CFU is totally broken up, forming
as much new CFU as the number of microorgan-
isms it contained before brushing; or (2) a CFU is
not broken up and the whole CFU is transferred.
No literature is available on the splitting of colonies.
Experiments should therefore be performed to gain
understanding of this phenomenon and add a splitting
factor to the model. Such a factor would be applied
to any CFU coming from the surface of the cheese
and entering the machine. As the final number of
contaminated cheeses depends on the initial contam-
inant load of initially contaminated cheeses, splitting
CFUs entering the machine would have consequences
on the results.



Modeling of Cross-Contamination of Smeared Cheeses 743

More generally, this model may represent a
generic model for cross-contamination. First, the con-
cept of mechanistically modeling the biomass transfer
coming from the product makes it possible to apply
the cross-contamination model to any undesirable mi-
croorganism. Second, it is based on logical and simple
ideas, compartments and transfer rates between them,
which are easily recognizable for many processes
prone to cross-contamination (like handling or slic-
ing). Using an adapted marker, the same experiments
can be organized. The cross-contamination strength,
defined above and for which analytical expression is
available with Equation (7), could be used to compare
industrial processes prone to cross-contamination and
fitting our model.

Finally, the model also highlights the correlation
between contamination of the product by the environ-
ment and cross-contamination.(15) Indeed, the model
shows how the environment and the machine become
contaminated during the process. Sampling results
from industrial plants often present a persistence of
strains in the environment and/or on machines.(28,29)

This persistence can be explained by the difficulty of
completely eradicating undesirable microorganisms
from the machine and the environment.(30) Improve-
ments to this model could thus help to gain a better un-
derstanding of the dynamic of a plant contamination.
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APPENDIX A

The system (S) describes the number of CFU in
a compartment after the cheese with rank i has been
brushed.

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(0) = e(0) = 0

m(i) = (1 − pmc − pme) × m(i − 1) + pcm

× c(i)0, i ≥ 1

e(i) = e(i − 1) + pme × m(i − 1), i ≥ 1

c(i)1 = (1 − pcm) × c(i)0 + pmc

× m(i − 1), i ≥ 1

0 < pcm, pmc, pme < 1; pmc + pme < 1

In the case i = 1, as m(0) = 0,

c(1)1 = (1 − pcm) × c(1)0. (A.1)

Hence,

pcm 1
c(1)1

c(1)0

pcm 1 10log(c(1)1) log(c(1)0) (1).

Moreover, m(1) pcm c(1)0.

In the case i = 2, as c(2)0 = 0,

c(2)1 = pmc × m(1) ⇔
c(2)1 = pmc × pcm × c(1)0 (A.2)

and

m(2) = (1 − pmc − pme) × m(1) ⇔
m(2) = (1 − pmc − pme) × pcm × c(1)0.

In the case i ≥ 3, as c(i)0 = 0, m(i) = (1 − pmc −
pme) × m(i − 1) and c(i)1 = pmc × m(i − 1).

Hence,

c(i)1 = pmc × (1 − pmc − pme) × m(i − 2).

This recurrence relation easily gives c(i)1 =
pmc × (1 − pmc − pme)i−2 × m(1).

As m(1) = pcm × c(1)0,

c(i)1 = (1 − pmc − pme)i−2 × pmc × pcm × c(1)0.

(A.3)

When applying i = 2 to Equation (A.3), c(2)1 =
pmc × pcm × c(1)0, which is the same result as Equa-
tion (A.2). Thus, Equation (A.3) works for i ≥ 2.

Switching over to the decimal logarithmic scale
led to a linear relationship between log(c(i)1) and i,
i ≥ 2: log (c(i)1) = A+ i × B, i ≥ 2 (4).

A and B from Equation (4) are defined by the
following system:

(S′)

⎧⎪⎨⎪⎩
A = log(pmc × pcm × c(1)0) − 2

× log(1 − pme − pmc)

B = log(1 − pme − pmc).

Finally, solving system (S′) results in the following
equations{

pmc = 10A−log(pcm×c(1)0)+2B (2)

pme = 1 − 10B − pmc. (3)

Equation (4) makes it possible to obtain values on
parameters A and B by means of a linear regression
(least square fitting) between log(c(i)1) and i, as if i
were a continuous variable and for i ≥ 2. Equation (1)
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makes it possible to assess pcm. Finally, Equations (2)
and (3) provide values of pme and pmc.

APPENDIX B

Let I be the number of cross-contaminated
cheeses from one initially contaminated with C CFU.
I ∈ {i ≥ 2/A+ iB = 0} since I is the last contaminated
cheese and, for i ≥ 2, log(c(i)1) = A+ iB. A and B
are defined by the system (S′) (see Appendix A). De-
riving A+ IB = 0 as if I were continuous gives:

A+ I × B = 0 ⇔ I = −A
B

⇔ I = −log(pmc × pcm × C) + 2 × log(1 − pmc − pme)

log(1 − pmc − pme)

⇔ I = 2 − log(pmc × pcm × C)

log(1 − pmc − pme)
. (5)

APPENDIX C

For scenario S1, indicator K corresponds to the
number of cheeses brushed before the number of
CFU on a cheese is reduced to 50% of the con-
taminant load of the first cross-contaminated cheese
(i = 2).

Thus,

K =
{

i/c(i)1 = c(2)1

2

}
,

i.e.,

K = {i/ log(c(i)1) = log(c(2)1) − log(2)}.

As log(c(i)1) = A+ iB, for i ≥ 2 and c(2)1 =
pmc × pcm × c(1)0 (see Appendix A), we come to

K = log(pmc × pcm × c(1)0) − log(2) − A
B

.

According to the system (S′) of Appendix A,

K = log(pmc × pcm × c(1)0) − log(2) − log(pmc × pcm × c(1)0) + 2 × log(1 − pme × pmc)

log(1 − pme × pmc)
.

Finally,

K = 2 − log(2)

log(1 − pme − pmc)
. (7)

APPENDIX D

Let us calculate c(i)1/c(i)0 for scenario S2, where
all cheeses are contaminated with the contaminant

load C, i.e., c(i)0 = C, ∀i ≥ 1. The reduction rate L is
1 − [c(i)1/C].

According to the system (S),⎧⎪⎪⎪⎨⎪⎪⎪⎩
c(i)1 = (1 − pcm) × c(i)0

+ pmc × m(i − 1)

m(i) = (1 − pcm − pme)

× m(i − 1) + pcm × c(i)0,

for i ≥ 1.

In the case where all cheeses are contaminated
with the same load C, the recurrence equation for
m(n), n ≥ 2 easily gives:

m(n) = Bn−1
L × m(1) + C × pcm ×

n−2∑
k=0

Bk
L,

with BL = 1 − pmc − pme. As

m(1) = pcm × C and

j∑
k=0

Bk
L = 1 − Bj+1

L

1 − BL
,

m(n) = C × pcm × 1 − Bn
L

1 − BL
, n ≥ 0.

If n = i − 1, we obtain

c(i)1 = (1 − pcm) × C + pmc × 1 − Bi−1
L

1 − BL
, i ≥ 1.

Thus,

c(i)1

C
= 1 − pcm + pmc × 1 − Bi−1

L

1 − BL
, i ≥ 1.

And finally,

L = pcm − pmc × 1 − Bi−1
L

1 − BL
, i ≥ 1. (8)
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