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A data-mining approach for assessing consistency between multiple
representations in spatial databases
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When different spatial databases are combined, an important issue is the
identification of inconsistencies between data. Quite often, representations of the
same geographical entities in databases are different and reflect different points
of view. In order to fully take advantage of these differences when object
instances are associated, a key issue is to determine whether the differences are
normal, i.e. explained by the database specifications, or if they are due to
erroneous or outdated data in one database. In this paper, we propose a
knowledge-based approach to partially automate the consistency assessment
between multiple representations of data. The inconsistency detection is viewed
as a knowledge-acquisition problem, the source of knowledge being the data. The
consistency assessment is carried out by applying a proposed method called
MECO. This method is itself parameterized by some domain knowledge obtained
from a second method called MACO. MACO supports two approaches (direct or
indirect) to perform the knowledge acquisition using data-mining techniques. In
particular, a supervised learning approach is defined to automate the knowledge
acquisition so as to drastically reduce the human-domain expert’s work. Thanks
to this approach, the knowledge-acquisition process is sped up and less expert-
dependent. Training examples are obtained automatically upon completion of
the spatial data matching. Knowledge extraction from data following this
bottom-up approach is particularly useful, since the database specifications are
generally complex, difficult to analyse, and manually encoded. Such a data-
driven process also sheds some light on the gap between textual specifications
and those actually used to produce the data. The methodology is illustrated and
experimentally validated by comparing geometrical representations and attribute
values of different vector spatial databases. The advantages and limits of such
partially automatic approaches are discussed, and some future works are
suggested.

Keywords: Data mining; Inconsistency; Integration; Metadata; Multiple
representation; Spatial data matching

1. Introduction

In the present era of information, the co-existence of multiple representations of the
same phenomena has become usual. This is a general observation which is
particularly true in the field of geographical information. Several technical reasons
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can explain this. Geographical data capture is less and less expensive because of the
evolution in tools and techniques: GPS, digital images with high resolution,
automated correlation in photogrammetry, automated image analysis in remote
sensing, and so on. But the diversity of geographical data does not appear simply
because of technical ability; it also originates in a deep-rooted need of geographers
to simultaneously manipulate several points of view in order to analyse the
geographical world. The best example of this is the diversity of existing maps with
different scales, but also different contents and purposes, from topographic to
thematic maps.

We thus face a strong diversity of geographical information and consequently
differences between geographical databases describing one same area. These
differences can have several origins. First of all, databases (DB) have different
purposes and thus different contents, organizations, and granulometry. For
instance, a spatial DB for urban management does not include the same geo-
graphical entities as a spatial DB intended for applications in landscape ecology; in
the same way, representation of objects in a map to a 1:25 000 scale differs from that
associated with a map to a 1:250 000 scale. Second, data are produced from different
and various sources: what is captured from an old map is different from what is
captured from spatial images or field surveys. Third, the sources, even if they are
identical, may be differently interpreted and digitized because of the complexity of
the geographic data capture: it requires identifying, selecting, splitting, merging, and
delineating geographical phenomena (Gesbert 2004, Uitermark ez al. 2005). Fourth,
the geographical world is in constant evolution, whereas data give only the situation
at certain dates. And one notices that even one database usually originates from
various sources with different dates and is thus heterogeneous in this respect.
Finally, the data-capture process is still complex, and databases also contain errors
leading to differences between databases. All these reasons lead to differences
between data representing the same geographic entities in various respects (Parent
et al. 1996).

Most of the time, the differences reflect different points of view, and are thus of
interest. But, in order to make the best of these differences, a key issue is to
determine if the differences are somehow normal, or if they are due to erroneous or
outdated data in one database (Egenhofer et al. 1994, Sheeren et al. 2004b). For
example, typical differences and inconsistencies are shown in figure 1. Figure 1(a)
shows important differences in the way of representing crossroads, but they are only
due to the differences between levels of details. According to the class definitions of
the two DB and the capture rules of the objects, the differences are normal.
Figure 1(b) shows other differences in the way of representing crossroads, but in this

Figure 1. Typical differences between two topographic databases (consistent (a) and
inconsistent (b) representations).



case there surely is an inconsistency at the crossroad pointed out: it is very unlikely
that the same crossroads should be represented by a roundabout in one database
and by Y-shaped crossroads in the other database. In this case, one can easily
imagine that one DB is more up to date than the other one, but we do not know
which one without additional information.

In order to efficiently combine different views of the world, one must identify
inconsistencies like that shown in figure 1. Identifying inconsistencies may be useful
either to correct them when possible, or to point out potential problematic areas
that need surveying, or even to characterize the degree of certainty of the
information (Goodchild and Jeansoulin 1998). While, in the past decades, the main
issue was the acquisition of geographic data, this new era has to deal with combining
all this information. Managing consistency has therefore become a key issue. This is
perfectly illustrated in Europe by the INSPIRE directive that states that ‘the
implementing rules shall be designed to ensure consistency between items of
information which refer to the same location or between items of information which
refer to the same object represented at different scales’ (Directive of the European
Parliament and of the Council establishing an Infrastructure for Spatial Information
in the European Community (INSPIRE), Joint text approved by Conciliation
Committee, 17/01/2007). In this context, this article proposes an approach to
identify inconsistencies between geographical data. After this introduction, section 2
will refine the definition of the issue: we will describe how this task is carried out
within the wider field of geographic database integration, and we will define
precisely what we consider to be an inconsistency. In section 3, we will show that the
inconsistency detection can be thought of as a knowledge-acquisition problem, and
section 4 will introduce which sources of knowledge can be used to perform the
knowledge acquisition, namely textual specifications and data themselves. Section 5
will then propose two approaches to actually perform the knowledge acquisition
from data with data-mining techniques. Section 6 will present experiments
illustrating the suggested approaches on three test cases. Finally, before concluding,
in section 7 we will discuss and compare our approaches.

2. Detecting inconsistencies in the framework of spatial database integration
2.1 Spatial database integration

For quite some time, integration has undergone substantial research within the
database community (Batini et al. 1986, Parent and Spaccapietra 2000). There
currently exist several paradigms to provide a unified and coherent view of data
stored in multiple sources: multi-database systems (Litwin ef al. 1990), federated
systems (Sheth and Larson 1990), mediated systems (Wiederhold 1992) or
datawarehousing (Calvanese et al. 2001). This integration issue has also been
addressed in the field of spatial databases, and is considered as an important issue
for data producers who need to create and maintain various databases, but also for
data users who require up-to-date and rich data (Sester et al. 1998, Kilpeldinen 2000,
Hampe and Sester 2002, Friis-Christensen 2003, Sheeren et al. 2004a, Mustiére and
van Smaalen 2007). Explicitly defining the relationships between heterogeneous data
sources can help keep the databases up to date by propagating updates from the
more detailed to the less detailed (Lemarié and Badard 2001). It also increases the
potentiality of applications which can benefit from using databases with multiple
representations.
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Figure 2. General framework of spatial databases integration (Devogele et al. 1998, Sheeren
et al. 2004a).

A general framework for database integration has been adapted to geographical
databases (Devogele et al. 1998, Sheeren et al. 2004a), leading to figure 2.

Pre-integration consists in the study of each database, to gain a good under-
standing of its content, and to prepare the integration. Correspondences investigation
aims at identifying and declaring correspondences between the elements of the
schemata and between objects of the databases. Even if the schema and object levels
are clearly dependent, geographic databases specifically require separation of these
investigations: because of the lack of universal identifiers on objects, correspon-
dences at the objects level are not directly derived from correspondences at the
schema level. Finally, the Integration step is the actual filling of the integrated
database. A new schema is defined, and, according to the integration strategy
adopted (i.e. mono-representation or multi-representation), objects are merged or
linked and transferred into the new system. The mono-representation strategy
provides a unique representation of the world which relies on the merging of the
more detailed data from the initial DBs. In this case, no link between the new system
and the initial DBs is retained. The initial data cannot be inferred from the
integrated DB. On the contrary, in the multi-representation strategy, the respective
representations are preserved, and explicit relationships between the homologous
objects are created. The integrated database, which can take the form of a federated
system, remains compatible with the initial DBs and includes the same geographical
entities represented with different levels of details. This framework allows us to
provide a brief overview of some of the contributions on database integration and
their link with the issue of identifying inconsistencies between datasets.

At the schema level, methodologies have been defined in order to produce a single
unified description of the originally independent schemata and resolve conflicts
between concepts (Branki and Defude 1998, Devogele et al. 1998, Strauch et al
1998, Park 2001, Balley et al. 2004). The current trend relies on solutions based on
mediation or the use of ontologies (Leclercq et al. 1999, Visser et al. 2002, Fonseca
et al. 2003, Gesbert 2004, Rodriguez and Egenhofer 2004, Uitermark et al. 2005).
New models supporting multiple representations have also been put forward
(Vangenot et al. 2002, Friis-Christensen 2003, Mustiére and van Smaalen 2007).
Some other works establish correspondences at the schema level from correspon-
dences observed at the data level (Duckham and Worboys 2005, Volz 2005). This
latter approach particularly requires identification of inconsistencies at the data
level, in order to avoid propagating them erroneously to the schema level.



At the data level, a typology of differences encountered between databases has
been established (Parent et al. 1996). Geometric feature matching algorithms have
been developed to establish explicit links between objects in different representa-
tions. Some are dedicated to the detection of updates (Lemari¢ and Badard 2001,
Gombosi et al. 2003), while others compare databases with similar levels of details
but different purposes (Sester ef al. 1998, Walter and Fritsch 1999, Beeri et al. 2004,
Volz 2006), and some concentrate on databases with different levels of details
(Devogele 1997, Haunert 2005, Mustiere 2006). In those works, the issue of
consistency assessment appears in several ways. Studies on data matching, when
applied to real data, observe inconsistencies between the data. When they matched
the German ATKIS and GDF databases, Walter and Fritsch (1999) observed that
‘problems can occur in areas with completely different acquisition where there is no
reasonable matching possible’. In several previous experiments, we also observed
inconsistencies between the French BDTOPO and BDCARTO databases: some of
the inconsistencies were identified once the matching was carried out, for example
when automatically comparing attributes values of matched data; other incon-
sistencies have been identified because they resulted in abnormal unmatched data
(Mustiere 2006).

More globally, works comparing maps or databases are faced with the issue of
explicitly managing fuzziness or uncertainty, and this is partly due to the presence of
inconsistencies between the data (Worboys and Clementini 2001, Ahlqvist ef al
2003, Comber et al. 2004, Fritz and See 2005, Hagen-Zanker et al. 2005). As noticed
by Duckham and Worboys (2005): ‘Addressing the problem of degenerate fusion
products is important to the success of automated information fusion. The problem
will be a key area of future research [...]".

As far as we know, only a few studies have specifically addressed the issue of
consistency assessment between multiple representations in spatial databases, and in
general, they focused on the consistency of topological relations (Egenhofer et al
1994, El-Geresy and Abdelmoty 1998, Paiva 1998). Those works define a formal
model to qualitatively describe topological relationships in spatial scenes, and thus
compare qualitative descriptions. In a general way, these models are useful to
express rules formally and unambiguously such as: ‘if the relation is Disjoint in DBI
it should not Overlap in DB2’ (a detailed description of these works can be found in
Rodriguez 2005). However, the issue of acquiring the knowledge, which is necessary
to build these rules, is rarely explicitly addressed.

In this context, our work aims at defining a global framework for assessing
consistency between databases, and particularly to study which source of knowledge
can be used for that. In the general framework of spatial database integration
presented previously (figure 2), this work is part of the Correspondence investigation
step. More precisely, our work concerns the evaluation of correspondences
discovered once instance-level elements have been matched. We strongly believe
that if matching data is a prerequisite for integration, it is not the only one: matched
data must be analysed and inconsistencies discovered, in order to be efficiently
handled when actually integrating data.

2.2 Definition of inconsistency

Before assessing the consistency between multiple representations, one must define
what an inconsistency is. Even if its meaning seems rather naturally understood, we



believe that this concept needs clarifying. Egenhofer et al. (1994) define consistency
as follows:

Consistency refers to the lack of any logical contradiction within a model of reality. This
must not be confused with correctness, which excludes any contradiction with reality.
[...] In itself, each individual level may be consistent, however, when integrating and
comparing the different levels, inconsistencies may be detected if the representations
contradict.

This clear definition allows us to avoid any misunderstanding. First of all, it
should be clear that what is addressed in this paper is the consistency between
representations. This should not be confused with (internal) consistency, which is
the respect of a model. For example, an internal consistency constraint within one
database may be that ‘for all objects of a class, values of a given attribute must be
between some given thresholds’. This is beyond the scope of this paper. Second,
consistency refers to the absence of contradictions between representations, but not
to the correctness of the data. Determining the correctness of the data is a matter of
quality control, and requires an external reference source like a field survey. In our
context, we do not use any reference that is known to be error-prone; nor do we
consider that one database is more correct than another, but we search for
contradicting representations of the same geographic phenomenon in two different
databases. This consequently may lead to the detection of incorrect data in one of
the databases, because if the data were correct, there would not be the least
inconsistency between them. But in our case, we usually ignore which database is
incorrect.

However, Egenhofer et al’s definition still needs clarifying in order to specify
what ‘contradict’” means. As shown in figure 1, determining inconsistencies may
require some complex knowledge defining when the representations are in
contradiction. This knowledge is actually closely related to the elements that best
define the database: its specifications. Indeed, a database is never captured by
chance: the data-capture process follows some rules expressed in the specifications
of the database (figure3). These specifications can be more or less explicit and
precise, but they always exist, even if in the worse case it is only informally in the
mind of the human operator filling the database. Based on this observation, we
propose the following definition of inconsistency:
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Figure 3. Specifications govern the representation of geographical phenomena in databases.



Definition (inconsistency): “Two representations of a given geographic phenomenon are
said to be inconsistent if and only if the differences between these representations
cannot be explained by their respective database specifications. Otherwise, the
representations are said to be consistent’.

It should be noted that in this definition, the notion of difference must be taken in
the wide sense of ‘the result of the comparison’, including possibly the result ‘exactly
identical’. Actually, even if a phenomenon is represented exactly in the same way in
two different databases, the two representations may be inconsistent if the
specifications express that these objects should not be identical. For example, if
one database specifies that buildings should be represented by a polygon
delimitating the roof, and another database specifies that the polygon should be
located at ground level, and if a given building has exactly the same shape and
height in the two databases, this is inconsistent.

3. Sources of knowledge used for assessing consistency: specifications and data

As mentioned before, determining inconsistencies may require some complex
knowledge defining when the representations contradict each other. In this section,
we will present two different sources for knowledge: textual specifications and DB
instances themselves.

3.1 Specifications

According to our definition, inconsistencies are differences that cannot be explained
by the specifications. The first idea to acquire the necessary knowledge to assess
consistency is thus to make use of the specifications themselves. Most data
producers have such specifications in the form of textual documents. These are
necessary at least to guide data capture and to ensure a certain homogeneity in the
data if several people are involved in the data-capture process, which is almost
always the case for geographic data that are voluminous and take a long time to
acquire. The specifications may also be provided to users as they precisely describe
the semantics of the data. They are an integral part of metadata. For spatial
database integration, the specifications seem to be a fundamental source of
knowledge. Even if some information about the precise semantic of data is
already captured in the database schema, it only concerns a small part of it
and is therefore not sufficient. For instance, no information about the spatial
data-capture constraints is given in the schemata, even in conceptual spatial-
temporal models (Vangenot et al 2002). Consequently, while the correct
interpretation of the schemata mainly relies on the database administrator’s
expertise and data dictionary for traditional databases integration (Parent and
Spaccapietra 2000), for data semantic interpretation the specifications for spatial
databases need to be used.

Figure4 shows an extract of the specifications of the French IGN BDTOPO®
database (specifications are in French; the full text is long and not legible on the
figure, but typical excerpts are translated in English). For each class of the database,
these specifications describe which real-world entities are represented in this class
and how they are represented. For instance, they answer the typical questions “What
does river mean in the database?’, ‘Is an aqueduct a river in the database sense?’,
‘Which rivers may be represented in the class river?”’, and ‘How is a river represented
in the database?’.
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Figure 4. Elements encountered in the textual specifications (translated from IGN BD
TOPO® database).

From these individual descriptions of the semantics of the schema of each
database, one may derive all the information necessary to compare them and assess
their consistency. Questions such as the following may be answered by comparing
the specifications: ‘If an object in database SDB; belongs to class river, in which
class(es) may it have a corresponding object in SDB,?’, ‘Does any object of class
river in SDB; have a corresponding object in class watercourse of SDB,?’, and ‘If a
class river object in SDB; has certain properties, how should we expect the possible
corresponding object(s) in SDB, to be represented?’.

Theoretically speaking, all the necessary information is then explained in the
specifications, and hardly anywhere else (Gesbert 2004). But exploiting them
practically is an arduous task. First of all, the description of the capture constraints
in a natural language is mostly informal. The specifications are also voluminous,
and useful information for a specific problem may be split into several pieces that
may be hard to discover among the huge quantity of information available. The
specifications may also be organized using different structures for different
databases. For example, one may have a ‘selection criteria’ section while this
information may be found for other databases either in a ‘definition’ section, or even
in the definitions of the possible values of the attributes. In addition, specifications
frequently require an interpretation. For instance, we can find descriptions like:
‘rivers are captured as regards to their importance and their surroundings’ or ‘only
the main objects are captured’. These natural language descriptions suffice for the
people in charge of the production of the SDB because they use their knowledge and
their know-how. However, in an automation context, this knowledge is not always
sufficient and not well adapted. The formalization of the specifications could be a
first step toward automatic analysis (Mustiere et al. 2003, Gesbert 2004). We think
that capture constraints should benefit considerably from being transformed into a



more formal or even computational language. This is the way to introduce more
tractable semantics in the metadata. However, as this task is arduous, we propose
another source of knowledge to acquire specifications: the data itself.

3.2 Data

Comparing data in order to compare schemata has already been proposed in recent
years (Duckham and Worboys 2005, Volz 2005, Tomai 2006). The idea could be
extended to the consistency assessment as illustrated in figure 5. This figure shows
the superimposition of two classes from two different databases: grey surfaces are
water surfaces in the French IGN BDTOPO® database (roughly a database with a
metric precision), and black points are punctual water names in the French IGN
BDCARTO® database (roughly a database with a decametric precision). Just
looking at the data, without studying the textual specifications, one may extract a
considerable amount of knowledge from this image. It seems there is a point for
each surface that is (1) not part of a river and (2) large enough. The threshold
defining the ‘big enough’ can even be evaluated: it is between the area of the smallest
surface with a corresponding point and the area of the largest surface without any
corresponding point. Additionally, one may think that adjacent surfaces may be
merged before measuring the area (see the large surface split on the left of the
image). Examination at the attributes of the data (not displayed here) would even
provide us with more information: we may see that the attribute ‘toponym’ of one
database has values close to that of the attribute ‘name’ for corresponding objects in
the other. Based on this knowledge extracted from a simple excerpt of the data, one
may consider that if we encounter somewhere else a very small surface with a
homologous point in the other database, this may certainly be an inconsistency.

Analysing data in order to extract knowledge, or in other words ‘data mining’,
thus seems to be useful for consistency assessment. To take advantage of this idea,
the key issue is then to define a methodology to actually perform the knowledge
acquisition. This will be detailed hereafter.

4. Knowledge-based approach for assessing consistency

In this section, we will present an approach for assessing consistency between
multiple representations that derives in a natural way from the considerations of the
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Figure 5. Comparing data in order to extract rules for assessing consistency (excerpts of
water surfaces of the IGN BDTOPO® and punctual water of the IGN BDCARTO®
databases).



previous sections (Sheeren et al. 2004b, Sheeren 2005). The proposed approach is
summarized in figure 6. Data are input of our process. The output of the process is
the set of consistent and inconsistent pairs detected and justified. The consistency
assessment is realized by applying the MECO method (Method for Evaluating the
COnsistency). This method is guided by some domain knowledge, which is obtained
by applying the MACO method (Method for Acquiring knowledge to evaluate the
COnsistency). MACO extracts the useful knowledge from data. The knowledge
is formalized in a knowledge base and appears at the interface of the two
complementary methods.

MECO is applied on each set of homologous objects of the two DB that
correspond to the same geographical entities. To carry out MECO and according to
the integration process presented in figure2, we make the assumption that
correspondences at the schema level have already been declared in terms of
Interdatabases Correspondence Assertions (Devogele et al. 1998, Parent and
Spaccapietra 2000, Sheeren et al. 2004a). The first two main parts of the approach,
MECO and the knowledge base that guides it, are discussed in this section. The last
part, MACO, which represents the key point of the approach presented here, will be
described in section 5.

4.1 MECO: Method for evaluating consistency

Differences between representations in the spatial databases that need to be
integrated are detected and analysed in MECO. This problem-solving method
consists in several steps, each associated with specific tools. MECO is fully
automated. Its core is detailed in figure 7.

MECO?’s first step is enrichment. Its goal is to reduce heterogeneity between data
from the initial two databases. It facilitates the comparison between databases and
prepares data for checking compliance with some internal integrity constraints. The
enrichment phase mainly consists in extracting implicit spatial concepts from data
that exist only through geometry and to which the specifications explicitly refer (i.e.
qualifying the spatial properties of the objects like shape and dimension, or
extracting spatial relations and implicit objects). The essential properties of spatial
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concepts which are seldom stored as database attributes are thus made explicit. All
of this results in the creation of new classes and attributes, or in the reorganization
of existing ones. An example of such enrichment would be the merger of adjacent
lake parts in order to create actual lakes (cf. section 3.2). The enrichment is a
traditional task in the databases integration methodologies (Parent and
Spaccapietra 2000). Its utility depends on the richness and the heterogeneity of
the initial database schemata. For spatial databases, the enrichment requires specific
spatial analysis measures and geometrical algorithms to be called upon.

The second step of MECO is the intra-database control. This step is applied to
both databases individually and may be viewed as spatial-data integrity constraint
checking (Cockroft 1997, Servigne et al. 2000). Part of the specification is checked so
as to detect any internal errors and to determine how the data instances globally
respect the specifications. In this step, only the specifications that can be evaluated
within one database without external data are considered. The checking is related to
several spatial properties and attributes compared with their definition domain (e.g.



the minimal size that an object must respect). Thus, only logical consistency errors
are pointed out. Classification confusions or positional errors in particular are not
detected at this step. The intra-database control is performed automatically by an
expert system, relying on rules determined by the MACO method (section 5).

Once internal constraints have been checked, databases may be compared. So, the
next step is the spatial data matching (also called conflation). Correspondences
between the data are computed, and pairs of homologous objects are created.
Whenever possible, the matching tools used in this approach are mainly based on
the comparison of the position of the objects, in addition to their geometrical and
topological properties. Such tools are relatively independent of the data and exploit
only few heuristics. At this level, we are not concerned yet with the conformity of
representations with their specifications. The homologous objects that do not
strictly respect their specifications can be matched. This enables us to consider the
matching process as a ‘black box’ guided by general knowledge about spatial data
but with as little knowledge as possible specific to the compared databases.

The next step is the key step: the actual inter-DB control which follows the data-
matching step. It consists in comparing representations of the matched objects and
checking consistency. Each representation is analysed in a cross way by taking into
account the representation of the homologous object. The consistency assessment is
based on the use of some domain knowledge specific to the compared database. All the
spatial and non-spatial properties which require another source of data to be analysed
are now considered. The inter-DB control is thus complementary to the intra-DB
control, and its results are exploited to explain and make assumptions on the origin of
the inconsistencies detected. For instance, if an inconsistency between two representa-
tions is detected at the inter-DB control and if one of the two representations
corresponds to an internal error according to the intra-DB control, we can deduce that
the inconsistency certainly arises from an internal error of this DB. At the end of this
step, the matched pairs are qualified as consistent or inconsistent. The inter-DB control
is performed by means of an expert system that relies on rules determined by the
MACO method. The creation of these rules is the main subject of our approach.

A global evaluation is supplied at the end of MECO to combine and summarize
the results. It gives the number of consistent and inconsistent representations, their
type, and how significant they are.

4.2 Knowledge representation and management

In knowledge-based approaches, one important aspect is how knowledge is
represented in an appropriate computer-usable form. Many theoretical frameworks,
often related to the Artificial Intelligence (AI) field, exist for knowledge representation
and management. In our approach, the knowledge used in the intra- and inter-
database controls is encoded in the form of if~then rules. These rules are managed
automatically by an expert system. For the inter-database control that is detailed more
in depth in this paper, since it is the core of our approach, we propose in particular to
organize the knowledge in the rule base in two different ways: following either the
direct classification approach or the predictive approach, as described hereafter.

4.2.1 Direct classification approach. In this first approach, the knowledge is
represented in the form of a set of rules that directly explain each difference between
representations. More precisely, if (04;,0,j) represents a matched pair of objects, the
direct classification of differences consists in the activation of rules such as:



if conditiona (0,5, 05)) then the pair (0y;, 0,5) is consistent.
if conditiong (0yj, 0j) then the pair (04, 05) is inconsistent.

For objects coming from two databases with different resolutions, an example of
such rules could be:

if the pair (043, 05j) is composed of a house o;; represented by a polygon smaller than
200 m? and a building 0, represented by a point then the pair (04;, 0,;) is consistent.

In practice, the rules related to inconsistent representations may not be
formulated. Only the rules enabling consistent representations to be detected may
be defined. The number of these rules is limited, and inconsistencies can be deduced
from them. The correspondences that do not respect these rules (i.e. for which no
rule was activated by the inference engine of the expert system) are considered as
inconsistent.

4.2.2 Predictive approach. In the predictive approach, the matching pairs are not
labelled directly as inconsistent or consistent. The consistency is assessed in several
steps. First, each representation of a matching pair is used to predict the conditions
the representation of the homologous object has to respect in the other database. So,
we determine for instance the conditions relating to the shape of the objects in SDB;
using those in SDB,, and the conditions relating to the shape of the objects in SDB,
using those in SDB;. Then, the predicted conditions on the representations are
compared with the actual representations stored in the SDBs. If the actual
representations respect the conditions in both directions, the pair of homologous
objects can be considered as consistent; otherwise the pair of homologous objects is
labelled as inconsistent. In terms of rules, this approach can be expressed as follows:

if conditiona (0;;) then the object (0,;) must respect conditiong
if condition¢ (05j) then the object (0;;) must respect conditionp,

Knowing the rules that need to be respected (let us say here conditiong and
conditionp), we can easily test the consistency by means of the following rule:

if conditiong (0,5) and conditionp, (0y;) then the pair (0,;,05)) is consistent else it is
inconsistent

The rules expressed in such a way are easy for a human being to understand, but
they can also be directly transformed in a more syntactically standard form for an
expert system as:

if condition, (0;;) and conditiong (05j) then the pair (0;;, 0,) is consistent else it is
inconsistent.
if condition¢ (0,j) and conditionp (0y;) then the pair (045, 0,j) is consistent else it is
inconsistent.

Figure 8 is an example to illustrate this approach. In SDBy, a particular building is
shown with a detailed representation (the contour of the object). Its area is 13 square
metres. In SDB,, the object is represented with a node. Let us imagine that the
specifications in SDB; indicate ‘the object must have a detailed representation if and
only if the area is larger than 10 square metres’ and those in SDB, say ‘the object
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Figure 8. Implementing the inter-databases control following the predictive approach.

must have a detailed representation if and only if the area is larger than 20 square
metres’. This leads to the following rule: the object in SDB, should be represented
with a node (conditiong) if the object in SDB; is a point or detailed but less than
20 m in size (condition,). On the other hand, it also gives another rule: the object in
SDB; should be represented with either a node or a detailed representation with an
extent ranging between 10 and 20 square metres (conditionp) if the object in SDB2 is
represented with a node (conditionc). As, in our example, objects in SDB; and
SDB,, respectively, meet conditiony and conditionc defined above, we can thus
predict that the objects in SDB; and SDB, should respectively meet conditionp and
conditiong. Having determined these conditions, we can compare them with the
actual representations stored in the SDB. In this particular case, we can conclude
that the representations are consistent, since the conditions are respected.

5. MACO: method for acquiring knowledge to evaluate consistency

Expert systems have already proved their efficiency in many applications when
knowledge needs to be introduced (David et al 1993, Leung and Leung 1993,
Bonnett ef al. 2004). However, the key issue in their implementation is knowledge
acquisition. It is often difficult to grasp knowledge directly from human domain
experts. They are rarely able to supply an explicit description of the knowledge they
use for a given problem: ‘as the expert acquires expertise, his declarative knowledge
[of which he is aware] becomes procedural and he loses conscience of what he
knows’ (Musen 1993). This problem is known as the knowledge acquisition
bottleneck (Feigenbaum 1981) and has also been explicitly pointed out in the
spatial domain (Weibel et al. 1995, Mustiere et al. 2000, Sester 2000, Mustiére 2005).

In our approach, knowledge acquisition is also an important issue. As explained
in section 3, the knowledge we use to assess consistency may originate from two
sources: the specifications and the data. However, as we already observed, extracting
knowledge automatically from the specifications is a difficult task, and encoding it
manually in a computational language is probably too long in practice. So, the main
source of knowledge we exploit here is data, using data-mining techniques (Witten
and Frank 2005) and in particular supervised machine learning (Mitchell 1997).
These methods originated in the Al field, although they are related to the inferential
statistics.



Supervised learning requires that a set of training examples of a concept be given
by a ‘teacher’ to automatically induce a general model that will capture the general
patterns in the training data (Mitchell 1997). An expert gives some examples in the
form of, on the one hand, a description of an object and, on the other hand, a
classification (label) of this object. Learning algorithms automatically build a model
for these examples so as to best predict their class. This model can then be applied to
predict future, previously unseen observations with the highest accuracy today’s
algorithms may afford.

There are a wide variety of algorithms from numerical algorithms such as
Artificial Neural Network (ANN), Support Vector Machines (SVM) as well as more
symbolic algorithms such as decision trees or decision rules. One very popular
supervised machine-learning algorithm is the C.4.5 classifier proposed by Quinlan
(1993). This algorithm enables the creation of decision trees that predict class
membership by recursively partitioning a dataset into more homogeneous subsets
using discriminating attributes. The decision tree can subsequently be transformed
into if—then rules. The algorithm requires that the training examples be represented
as a list of attributes (i.e. expressed in the ‘attribute-value’ representation language).
The attributes are selected to generate the decision nodes of the tree by computing
the information gain ratio. This measure evaluates the reduction in entropy in the
data produced by a split. The classification of the data that maximizes this reduction
is retained. Results obtained by C4.5 are easy to interpret and validate. Their
simplicity helps to explain why observations are classified or predicted in a
particular manner. The rules can then be revised by a domain expert, should this be
necessary. This symbolic algorithm (in opposition to numerical approaches) is
particularly well adapted for building our knowledge base. We have used it for our
experiments, as it has been proven experimentally that it gives the best predictive
accuracy performances on numerous applications. The theoretical explanation of
this behaviour lies in its information gain ratio measure.

5.1 Learning direct classification rules from data

The direct classification approach is characterized by the definition of a set of rules
that enable one to determine directly if a matching pair is consistent or not (see
section 4.2.1). Implementing this approach with supervised learning is relatively
simple. A training example corresponds to a characterized matching pair of objects,
1.e. a pair represented by a vector of descriptive attributes. These attributes translate
the initial representation of each object constituting the pair in a symbolic way. The
training example is also labelled. The label indicates if the matching pair is
consistent or inconsistent. From a set of such training examples describing the
differences, direct classification rules can be induced from data. This process is
illustrated schematically in figure9. The example shows differences between
representations of triangle junctions (i.e. Y-shaped crossroads). Notice that the
intervention of a human domain expert (the supervisor) is required in the process.
The expert has to determine the label for each of the collected examples, validate the
learned rules, and evaluate their relevance (which is the case for any learning
method).

In this approach, an interesting aspect is that the knowledge acquired can be
slightly different from the knowledge existing in textual specifications. Since training
examples are classified by the expert, it is the expert’s point of view which is learned,
with the implicit rules that they use to determine if the differences are consistent or
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Figure 9. Learning process for acquiring direct classification rules from matching pairs
reformulated as training examples.

not. The expert takes the specifications into account to fix the class label for the
examples. However, they also admit a tolerance on the thresholds encountered in the
specifications because they know by experience that this tolerance is introduced
during the data capture. This means that the rules obtained with machine learning
will not be exactly the same as those existing in the specification documents. In this
case, they reflect the expert’s knowledge.

The direct classification approach is well adapted to determine the rules of
evaluation. It is simple and easy to implement. However, it is well known in the
machine-learning community that if the way to describe examples is complex (e.g.
with many attributes describing each example), the required training set size may be
large for good performances. Acquiring such large training sets interactively may be
difficult and costly. For that reason, we argue that this approach can probably not
be followed in practice all the time. That is the reason why, even if this approach is
theoretically interesting, we did not apply it during the experiments described in
section 6. An application can be found in Sheeren (2003).

5.2 Learning predictive rules from data

Another approach may be used to acquire knowledge from data, namely the
predictive approach. As we saw previously, the predictive approach is based on the
definition of the conditions the representation of the objects in one database have to
respect, these conditions depending on the representation of the homologous objects
in the other database (section 4.2.2). Machine learning can help acquire these
conditions automatically. A training example is then composed of attributes that
describe the representation of the object in the first database for a given matching
pair. The label of the example corresponds to the conditions that the homologous
object of the pair must satisfy. If a set of examples is defined in both directions, the
learning algorithm can be trained, and two sets of predictive rules can be acquired
(figure 10).

Since the class of the examples is defined by one of the two representations of the
objects composing the matching pair, the expert is not required to assign it. The
training set is directly created at the end of the matching step. So, this approach is
particularly fast to implement. In addition, it enables one to use a great number of
training examples, as much data as are available, which can greatly improve the
quality of the rules and make the approach scalable. The predictive approach thus
enables us to overcome the main obstacle mentioned above for the direct
classification approach: the intervention of the human expert is not required to
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Figure 10. Learning process for acquiring predictive rules.

classify the training examples. This key point makes the predictive approach
particularly advantageous.

In this approach, the acquired knowledge reflects the implicit knowledge used
during the data capture. The tolerance for the thresholds of the specifications the
human operators agree upon can be highlighted, in the same way as in the direct
classification approach. But the knowledge extracted in this case is different. The
knowledge is closer to the data-capture reality. It reflects the human operator’s
knowledge and takes several points of view into account, the data being captured by
different persons.

This method is particularly interesting for collecting training examples. However,
the learning step can be made with more noisy data or, in other words, with
examples with a wrong label. Indeed, the label of examples is not checked at the end
of the data matching. Consequently, some noisy data (i.e. inconsistencies and
matching errors) are selected in the training set. If the data are too noisy, there is a
risk of learning rules that do not correspond to the database specifications. From
the point of view of the inductive learning, the rules then learned can overfit the
data.

Since this approach enables a great number of training examples to be used, we
make the assumption that, in most cases, the inconsistencies are rare enough not to
be taken into account in the inductive process. Only the recurring patterns are
learned by the algorithm, and we suppose that they correspond to consistent
representations. However, at the end of the process, more attention must be given to
the evaluation of the learned rules, in order to ensure that this assumption is indeed
verified.

6. Applications

This section illustrates the suggested approach on several concrete application
examples using three different vector databases from IGN (the French National
Mapping Agency): BDTOPO, BDCARTO and GEOROUTE (figure11). The
databases have been defined according to different specifications, in order to fulfil
different application domains and geographical analysis levels. BDTOPO is a highly
detailed topographic database. The data are derived from aerial photographs and
typically used to produce maps at a 1:25000 scale. BDCARTO is a geographical
decametric database used in particular to produce maps at a scale ranging from



Figure 11. Extract from the three databases we studied: BDTOPO, GEOROUTE and
BDCARTO (from left to right).

1:100000 to 1:250 000. GEOROUTE is a database with a metric resolution specially
developed for car-navigation applications. It contains a rich, detailed road network,
but the database does not have a cartographic vocation.

The first experiment we made illustrates the detection and the analysis of
inconsistencies between geometrical object representations from GEOROUTE and
BDCARTO. The application relates to the study of differences between
representations of roundabouts, which is one of the possible corresponding object
classes between the two databases. The other experiments concern the consistency
assessment of attribute values. Several attribute values of objects from BDTOPO
and BDCARTO are compared: the voltage of electric lines (numeric attribute) and
the nature of orographic points (symbolic attribute). The experiments illustrate how
rules for assessing consistency can be derived from data with data mining. They also
indicate the interest and limits of the approaches.

6.1 Inconsistency between geometrical representations

This first experiment is related to the comparison of roundabout representations
from GEOROUTE and BDCARTO. The study area is situated in an urban
area near Paris (France) and has an extent of about 4000km? It represents
approximately 45000 road segment objects in GEOROUTE against 14200 in
BDCARTO. In both databases, the road network is described by linear road
segments and punctual road nodes.

In the following subsections, we mainly concentrate on the implementation of the
MACO method. We briefly describe the enrichment step of MECO, but a more
detailed illustration of this method can be found in Sheeren (2005).

6.1.1 Data. In order to present what each database exactly contains and to
determine the differences that are likely to appear in the data, we provide some
information about the representations of the roundabout object in both databases.

In GEOROUTE, the information relating to the roundabout objects is embedded
in the description of two classes: ‘Road Node’ (point object) and ‘Complex
Crossroads’ (polygon object). A road node corresponds to a road segment extremity
in the database. It represents ‘crossroads or a change in the circulation conditions in
the reality that does not exceed 30m diameter on the ground’. A ‘nature of
intersection’ attribute specifies the road node type which can take the value ‘simple
roundabout’. This attribute value is assigned if the crossroads correspond to: ‘a
place in the road space where roads join each other at the same level. The shape is



not exclusively circular. There must have an impassable central reservation and the
roads that surround the object must have a gyratory direction’ (Georoute 1999).
The ‘Complex Crossroads’ class (polygon object) also refers in GEOROUTE to the
roundabout entities in the real world. Complex crossroads can be ‘a non-structured
traffic area, a large roundabout or arranged crossroads. The minimal extent is 15 m
radius. If the extent is lower, the crossroads are modelled as a simple intersection
(i.e. a road node)’. This class has also an attribute indicating the nature of the
complex crossroads. This attribute can take among others the value ‘roundabout’.
The definition of a roundabout is then the same as in the ‘Road Node’ class.

For BDCARTO, the explicit information relating to the roundabout objects is
only included in the ‘Road Node’ class (BDCarto 2001). There exists a kind of
intersection attribute which can take several values, including ‘simple crossroads’,
‘small roundabout’ and ‘large roundabout’. The ‘simple crossroads’ value is
assigned if the road node corresponds to a simple intersection, a ‘cul-de-sac’,
arranged crossroads with an extent that does not exceed 100 m, or a roundabout
with a diameter lower than 50 metres. Thus, roundabouts are not distinguished from
other crossroads when they are small enough. The ‘small roundabout’ value is
allocated for a diameter between 50 and 100 m. Beyond the representation is detailed
by means of segments and nodes, and the ‘large roundabout’ value is given to nodes.
The possible representations of roundabouts for both databases with their
differences are shown in figure 12.

6.1.2 [Extracting implicit spatial objects and properties for assessing con-
sistency. While the roundabout objects can easily be identified visually in the data,
no ‘Roundabout’ class exists in the data. These objects are grouped with objects of
another nature into less specific classes (‘Road Node’ and ‘Complex Crossroads’).
The concept of a roundabout does not have an explicit existence in BDCARTO and,
in particular, for the detailed representation. There is no object with a polygon
geometry. A detailed roundabout corresponds only to a set of connected road
segments and nodes. In GEOROUTE, the class ‘Complex crossroads’ includes the
detailed roundabouts, but no relationship between the ‘Road Node’ and ‘Road
Segment’ classes exists. In addition, no attribute relating to the diameter of the
objects is stored in the databases. This spatial property is also implicit. So, in order
to assess the consistency between the representations of roundabouts, the databases
have to be enriched. This was performed during the enrichment step in MECO.

Class: 'Road Maode’ Clagses: "Road Node' + "Road Segment’ + "Complex crossroad”
Attribute: 'simple roundabout’ Attribute of Road Node: "simple roundabout’
Attribute of Complex Crossroad: 'roundabout’
GEQROUTE
| = Diameter on
50 100 the ground
30 r
BDCARTO ; I
Class: "Road Mode' Class: 'Road MNode' Classes: "‘Road Mode' + "Road Segment’
Attribute: 'simple crossroads’  Attribute: “small reundabout’ Attribute of Road Node: 'large roundabout’

Figure 12. Differences of representation of roundabouts in GEOROUTE and BDCARTO.



The enrichment concerns both data and schemata. Explicitly introducing
roundabouts in the data supposes the definition of new classes and relations at
the schema level; likewise their instantiation (figure 13). The extraction of the
roundabouts required several steps. For the simple roundabouts (with a point
geometry), the extraction did not present any difficulty, since the simple
roundabouts can be selected according to the values of the attribute ‘nature of
intersection’ of the road nodes. For the detailed roundabouts (with a polygon
geometry), the extraction of objects in BDCARTO was more complex. First, a
topological graph was computed. Then, each face was characterized with Miller’s
compactness index, the number of nodes associated, and the direction of the cycle.
Finally, each face was analysed, and only faces corresponding to a roundabout
object were retained (i.e. faces with a compactness higher than 0.95, associated with
at least three nodes, and with a gyratory direction). This enrichment was made for
both databases. Concerning the BDCARTO, we verified that the objects created
were associated with road nodes defined as ‘large roundabout’. For GEOROUTE,
we verified the correspondence with its complex crossroad. The few encountered
internal errors of non-correspondence were detected and dealt with during the
consistency assessment itself. An illustration of some roundabouts extracted
automatically with this method is given in figure 14.

In a general way, we can see that the enrichment step prepares the data to check
its compliance with the specifications, but it also reduces the heterogeneity between
the two initial databases. It can help to underline federative concepts corresponding
to geographical entities defined independently of the representation. The
correspondence between these concepts and the objects in each database helps
define the unified schema (Gesbert 2004, Uitermark et al. 2005).

6.1.3 Knowledge acquisition by data analysis. In this section, we present the
knowledge acquired automatically from data to assess consistency. Predictive rules
were discovered from a set of training examples. All the pairs computed at the data
matching step were selected automatically, and the learning procedure was
performed in both directions (to predict conditions that must be respected by both
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Figure 13. Enrichment of DB schemata of GEOROUTE and BDCARTO. The schemata
are expressed in the UML language associated to spatial pictograms used to depict geometry.
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Figure 14. Enrichment of data: examples of complex roundabouts extracted automatically

in BDCARTO.

BDCARTO and GEOROUTE). Two attributes were retained to predict the
conditions that need to be respected by the BDCARTO: the kind of the
representation of the roundabouts in GEOROUTE and the diameter length of
complex crossroads. The label of the training examples corresponds to the linked
representation of BDCARTO, i.e. simple crossroads, a small roundabout, or a large

roundabout (table 1).

The rules acquired from the 258 training examples with the C4.5. algorithm are as
follows. Prediction of the conditions relating to the BDCARTO representations
from the GEOROUTE representations:

R; If ObjectgeorouTe = ‘simple roundabout’
Then ObjectgpcarTo Must be ‘simple crossroads’
R, If ObjectgrorouTe = ‘complex crossroad’ and diameter <44
Then ObjectgpcarTo Must be ‘simple crossroads’
R; If ObjectgrorouTe = ‘complex crossroads’ and 44<<diameter <84

Then ObjectgpcarTo Must be a ‘small roundabout’

R4 If ObjectgeorouTe = ‘complex crossroads’ and diameter >84
Then ObjectgpcarTo Must be a ‘large roundabout’

All of these rules can be considered relevant. The expression and the number of
the learned rules are similar to those that could be deduced from the specifications.

Table 1. Excerpt of the training set enabling to learn the conditions that must be respected by
the BDCARTO.

Attributes

Class

Roundabout representation
ID in GEOROUTE

Diameter length
in GEOROUTE

Roundabout

representation in BDCARTO

Simple roundabout
Simple roundabout
Complex crossroads
Complex crossroads
Simple roundabout
Complex crossroads
Complex crossroads

~N NN AW~

0.0

0.0
42
81.28

0.0
91.55
70.58

Simple crossroads
Simple crossroads
Small roundabout
Small roundabout
Simple crossroads
Large roundabout
Small roundabout




First, in the presence of a simplified roundabout in GEOROUTE, the only possible
consistent representation in BDCARTO is a road node with the attribute value
‘simple crossroads’ (R). Then, if there is a detailed representation in GEOROUTE,
the consistent representation in BDCARTO can be either simplified or detailed
according to the diameter (R,, R3, Ry). In the first case, the attribute of the node can
take the ‘simple crossroads’ value (diameter <44) or ‘small roundabout’ value (44<<
diameter <84). In the other case, the diameter length should be higher than 84 m.
However, when comparing with the textual specifications, the learned thresholds
relating to the diameter length are different. We discovered a threshold of 44 m
instead of 50 m in the specifications and a threshold of 84 m instead of 100.

Discovering these differences underlines the interest in the learning approach.
Data mining enables us to extract not only the correspondences between object
classes from data instances but also the imprecision of the specifications. In general,
those in charge of the data capture do not strictly respect the thresholds fixed in the
textual specifications. The capture constraints are not strict rules but rather
guidelines. The thresholds are defined to give an order of magnitude. Thus, we
determined the implicit knowledge used during the data capture obtained from
aerial photographs. Learning these differences is particularly interesting because the
learned thresholds are closer to the data and, thus, the assessment of consistency is
closer to database reality. In addition, it enables us to learn part of the human
operator’s know-how. In our case study, we can notice, for instance, that the
operators detail the roundabouts in BDCARTO more often than they should.

The results obtained only concern the conditions that should be respected by the
BDCARTO. However, the predictive approach requires rules to be defined in both
directions. Thus, we also trained the C4.5 algorithm to discover the conditions that
have to be respected by GEOROUTE. The same training set was used, but this time,
the examples have the form of attributes describing the roundabout representation
in BDCARTO, and the Ilabel of the examples describes the roundabout
representation in GEOROUTE. Three rules were discovered:

R; If ObjectgpcarTo = ‘simple crossroads’

Then ObjectgeorouTe Must be a ‘simple roundabout’
R, If Objectgpcarto = ‘small roundabout’

Then ObjectgeorouTe Must be ‘complex crossroads’
R; If ObjectgpcarTo = ‘large roundabout’

Then ObjectgeorouTe Must be ‘complex crossroads’

Among these rules, the first is not complete. According to the specifications, if
the BDCARTO object is simple crossroads, the roundabout object in GEOROUTE
can be either a simple roundabout or a detailed roundabout. Thus, for this case,
the rule has been revised interactively, which shows the interest in using a
symbolic learning algorithm. Learned rules are understandable and thus can be
interactively revised if necessary. The other rules are correct. However, the class
value could be more precise by indicating the diameter to respect. This information
has not been learned for the complex crossroads in GEOROUTE. The symbolic
algorithm we use does not admit numeric continuous values for the class, and a
discretization of these values is not well adapted because the results may be very
sensitive to the thresholds fixed for discretizing: an a priori choice of these
thresholds is difficult. So, for the last two rules, it is not possible to learn the
thresholds for the diameter length.



Even if it is difficult to learn thresholds for continuous values, we can consider
that machine learning gives a precious assistance in knowledge acquisition. These
experiments show that, in addition to rules for assessing consistency, it is possible to
discover the imprecision of the database specifications and determine in a
nonarbitrary way an ‘¢’ value automatically that is related to the thresholds fixed
in the documents. However, the interest in using machine learning is broader. The
data analysis also enables us to enrich the database specifications by comparing the
representations. As we mentioned before, one of the conditions to capture a
roundabout in GEOROUTE is to have an impassable central reservation on the
ground. In the BDCARTO, no information exists for this criterion. If the results
show that only a few inconsistencies appear between the detailed roundabout
representations of the two databases, we could make the assumption that the
existence of a central reservation on the ground is also a condition to capture the
roundabouts in BDCARTO. If this is the case, the textual specifications of
BDCARTO could be enriched. Thus, analysing and comparing the representations
in this way can also help discover implicit specifications.

6.1.4 Applying rules and detecting inconsistencies. The application described above
has been entirely tested and implemented within the MECOLIib prototype. The
architecture of our prototype is built on three main widely used open-source
components: the experimental GeOxygene open-source GIS platform (Badard and
Braun 2004), the Java Expert System Shell—JESS (Friedman-Hill 2003), and the
WEKA data-mining software (Witten and Frank 2005). GeOxygene provides an
object-oriented data model in Java which implements the OGC specifications
and ISO standards related to the geographic domain. The GeOxygene users can
define their database schemata and applications from this extensible model. All
the data instances are manipulated in the object-oriented paradigm, but they are
stored in a relational DBMS which can be either Oracle Spatial or PostGIS. A
mapping exists between the relational tables and the Java classes. This is supported
by the OJB library (Apache Object Relational Bridge). GeOxygene is linked to the
other components of MECOLIb (i.e. JESS and WEKA) via Java APIs.

Graphical user interfaces (GUI) have been specifically developed in the prototype
to analyse the matching pairs and give an overview of the evaluation results. These
are illustrated in figure 15.

GeDxygene Object Viewer
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Figure 15. Graphical user interfaces of the MECOLIib prototype.



Using these tools, a human operator can manually select the inconsistent
correspondences and correct the incorrect object representations before the data
integration itself. If necessary, they can also revise the learned evaluation rules
introduced manually in the expert system. This revision can be assisted by the expert
system itself that can explain how it led to a decision (i.e. showing the rules that were
used) when an incorrect decision was made and an error detected. This is one of the
advantages of using an expert system.

Table 2 shows all the consistent and inconsistent representations of the different
correspondence categories which appeared after the implementation and the
activation of the learned rules in the expert system. Twenty-nine per cent of
inconsistencies were found in the data, against 71% of consistent pairs. These values
were computed at the end of the inter-DB control but also take into account the
results of the intra-DB control to explain the origin of the inconsistencies (table 3).
The inconsistencies detected have been interactively checked one by one, and all
turned out to be actual inconsistencies, which encourages the approach.

If an inconsistency exists between two simplified representations (i.e. two points),
the error can come from either the BDCARTO (the road node is classified as ‘small
roundabout’ instead of ‘simple crossroads’) or GEOROUTE (the representation is
simplified, although it should be detailed). In this case, all we can do is notice the
inconsistency, but it is not possible to specify in which database the error exists
(table 3, see the fourth case). On the contrary, if the representation is simplified in
the BDCARTO (i.e. the road node is classified as ‘simple crossroads’), and if this
one is detailed in GEOROUTE (with a diameter larger than 50 m), one can make the
assumption that the error lies in BDCARTO. The diameter was probably not
overestimated compared with the reality, since the data capture derived from aerial
photographs in GEOROUTE (table 3, second case).

The experiment presented here involved approximately 260 roundabouts.
However, since both the data matching and the predictive approach are fully
automated, the method can be also used for large databases with many object classes
and many instances. Experiments have been performed in that sense and in
particular to check the consistency between attribute values of road segments
(Sheeren 2005). From about 45000 road segment objects in GEOROUTE against
14200 in BDCARTO, we computed approximately 7000 matching pairs, and all of
these pairs were used to learn predictive rules. So, conclusions about the matching of

Table 2. Results of the inter-database control applied on the set of the 258 extracted
roundabouts.

Consistent pairs: 184 matching pairs (71%)

Inconsistent pairs: 74 matching pairs (29%)
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Table 3. Examples of consistent and inconsistent representations.

Results of the Results of the Results of
Intra-DB control Intra-DB control thelnter-DB
BDCARTO GEOROUTE of BDCARTO of GEOROURTE control

Simple represen- Consistent diameter Consistent
1) tation — intra- value — potentially representations
DB not applied in compliance with

the specifications

Simple crossroad ©J=40m

Simple represen- Consistent diameter Inconsistent
7 - tation — intra- value — potentially representations —
DB not applied in compliance with  BDCARTO is
the specifications  probably not in
compliance with
the specifications

Small roundabout @=39m

Simple represen- Inconsistent dia-  Inconsistent
3 tation — intra- meter value— representations —
DB not applied internal error GEROUTE is not
| in compliance
Simple crossroad ©O=15m with the
specifications
Simple represen- Simple representa- Inconsistent
4} ; tation — intra- tion — not applied representations

DB not applied

Small roundabout Simple
roundabout

the corresponding classes and the rules derived from it can be drawn using a great
number of training examples, i.e. using as many matching pairs as available. This is
what makes the predictive learning approach particularly interesting and scalable.

6.2 Inconsistency between attribute values

The first experiment presented an application example related to the detection of
inconsistencies between geometrical representations. In this section, we show some
experiments on the comparison of attribute values. This is another kind of multi-
representation: real-world entities may be represented in two databases by different
objects with different attribute values, either consistent or not. For the sake of
clarity, we will consider in these experiments that only one-to-one matching links
have been detected, i.e. one object from the first database (here the BDTOPO) is
linked to only one object from the second database (the BDCARTO). However, in
practice, this is not the case. A difference in granulometry exists between the linear
object representations considered which results in a fragmentation conflict (Parent
et al. 1996). But in order to reduce the spatial heterogeneity between data and to
facilitate the comparison, the geometrical objects of BDCARTO have been
segmented according to the representation of the BDTOPO objects. In this way,
we can directly compare the attribute values of the objects. This transformation,
which has no influence on the conclusions of the experiments, is another illustration
of the enrichment step proposed in MECO.

The first experiment concerns the voltage of electric lines in the two databases
(Mustiere 2006). For this attribute, the possible values are the same in both spatial
databases. But in spite of these apparent similarities confirmed by the textual



Table 4. Confusion matrix for the voltage value of matched electric lines.

BDCARTO
63kV 90kV 150kV 225kV 400kV
BD 63kV 169 28 0 2 0
TOPO 90kV 8 12 0 0 0
150kV 0 0 17 0 0
225kV 0 0 0 32 0
400kV 0 0 0 0 9
Unknown 1 0 0 2 0

specifications, the data analysis may highlight differences. This experiment shows
once again the implicit fuzziness of the specifications and the data, and the interest
of data mining to discover rules for assessing consistency.

The confusion matrix between attribute values of matched electric lines is shown
in table4. In each cell, the number of matched pairs of objects that have some given
values in the two databases is computed. For instance, there are eight pairs of
objects with a BDTOPO voltage of 90kV that correspond with a BDCARTO
voltage of 63 kV. Notice that the automated matching results in this experiment as
well as in the following one are fully efficient and that all the matching pairs have
been interactively checked.

Three important points are shown in this matrix. First, two matching pairs are
clearly inconsistent: those with the BDTOPO voltage of 63 kV associated with those
with the BDCARTO voltage of 225kV, but the machine-learning algorithm C4.5
easily determined from this matrix the rule ‘if the BDCARTO voltage is 225 then the
BDTOPO voltage 1s 225°. It thus rightly considered that the two pairs did not fulfil
these rules appearing as noise and did not take them into account when inducing
learned rules. These two inconsistencies will then be easily detected when applying
learned rules.

The second important point is the relatively frequent confusion between 63 kV
and 90 kV. If we had only followed textual specifications, we would have determined
rules ‘if the BDCARTO voltage is 63 (respectively 90) then the BDTOPO voltage
should be 63 (resp. 90)’. Actual data clearly show that the frontier between these two
values is not so sharp, maybe because these values are actually approximated and
estimated. Thus, confusions between 63 and 90kV can hardly be thought of as
inconsistencies. They rather reflect the implicit fuzziness of the specifications and the
data. Unfortunately, most basic machine-learning tools do not deal very well with
these cases; they do not provide the expected rule ‘if the BDCARTO voltage is 63 or
90 then the BDTOPO voltage should be 63 or 90°, because they do not foresee rules
conclusions with a disjunction such as ‘63 or 90’. Two approaches however may
overcome this problem: one can either build an ad hoc method for simple confusion
matrices or use more complex learning tools that allow the automatic grouping of
class values like some learning methods do (Ganascia et al. 1993).

Another important point concerns the high voltage 400kV lines. Unfortunately,
the machine-learning algorithm did not produce the expected rule ‘if the
BDCARTO voltage is 400 then the BDTOPO voltage should be 400’ because the
number of examples to support this rule were not suffient. Similarly, the unknown
values have not been taken into account. Simply changing some parameters of the
learning algorithm did solve the problem in this experiment. But this highlights the



fact that the frontier between inconsistencies on the one hand and rare but
consistent combinations on the other hand is hard to determine automatically. This
is certainly the main limit of our approach that relies on data mining. This also
suggests that learned rules should be checked systematically and confirms our
decision to use symbolic machine-learning tools that produce readable rules rather
than numeric approaches such as ANN or SVM. Indeed, these approaches do not
provide an interpretable model, and so no expertise can be used to analyse it.

The second experiment is similar to the previous one but it has a symbolic
attribute to describe the nature of the object rather than a numeric attribute
describing a property. We compared two classes supposed to represent main
orographic points (summits, passes, gorges ...). Results are shown in table 5.

Similar conclusions to the previous conclusions can be drawn from this
experiment. First, some actual inconsistencies may be detected, like that between
a Summit and a Versant. Second, the matrix shows some confusion that would not
have been directly seen in the textual map specifications, even if it seems natural and
reflects the fuzziness of the information: objects qualified as Peak in BDTOPO may
correspond to objects qualified as Peak in BDCARTO but also to objects qualified
as Crest, summit or mountain. Similarly, objects in BDTOPO qualified as Summit,
crest or hill may correspond to objects qualified as Crest, summit or mountain in
BDCARTO, but also to objects named Peak. Third, some attribute values are very
rarely encountered in the sample data (or even never in the case of volcanoes), and
so data-mining tools can hardly discover relations for these types of attributes.

7. Conclusions and outlook

In this paper, we theoretically defined inconsistencies as differences between
databases that cannot be explained by their respective specifications. We also alleged

Table 5. Confusion matrix for the nature value of matched orographic points.
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that in practice, detecting these inconsistencies requires relying on a complex body
of knowledge. Knowledge representation and acquisition are thus key issues for
consistency assessment.

We proposed a bottom-up approach to acquire the necessary knowledge to
partially automate the identification of inconsistencies. As they are full of important
information, textual specifications provided by data producers could be exploited.
Nevertheless, this requires translating textual specifications into formal models and
computational languages, which is a natural language-processing task that is known
to be very difficult. As an alternative approach to acquire this knowledge, we
propose automatically inferring the specifications from the data instances
themselves. This step resorts in practice on using data-mining tools.

We also proposed two ways to represent the necessary knowledge by means of
production rules. The first one, called the ‘direct classification approach’, consists in
organizing the rules in the form of ‘if condition(object in DB1, corresponding object
in DB2) then the objects are consistent or not’. The second one, called the ‘predictive
approach’, consists in organizing the rules in the form of ‘if condition;(object in
DBI1) then the corresponding object in DB2 has to respect condition, to be
consistent’. A theoretical analysis of these approaches, as well as some experiments
performed on actual data, enables us to underline the differences between them, as
summarized in table6 (see below). Depending on the chosen approach, the
knowledge-acquisition process may be a more or less difficult task. However, the
most important difference between these two approaches may well be that they elicit
a different type of knowledge, reflecting either the human expert’s knowledge (i.e.
the supervisor) or the knowledge embedded in the data (i.e. the persons that capture
the spatial data). Since the data are captured by several human operators, the rules
learned following the predictive approach are probably more objective and closer to
the data-capture reality. In this respect, the data-mining approach thus appears to
be a promising approach, either for learning specifications from data when they are
too complex, difficult to acquire, or do not exist, or for studying the differences
between textual specifications and those actually used to produce the data.

Due to the existing implicit fuzziness of both the specifications and the data, a
more flexible mode of classification ought to be adopted in the future. Labelling
matching pairs only as either consistent or inconsistent is probably too restrictive.
An extension of the approach that captures uncertainty in the classification should

Table 6. Two knowledge representation and acquisition approaches proposed.

Direct classification Predictive approach
Knowledge-acquisition Semi-automatic: rules are ~ Automatic: rules are automatically
process automatically learned but learned and examples are automati-
examples have to be cally built with data-matching tools,
defined, collected and but an expert still needs to define the
classified by an expert. form of the examples
Acquired knowledge It reflects the human It reflects knowledge “embedded” in
domain expert’s knowledge the data (i.e. the human operator’s
(i.e. the supervisor) knowledge who captured the data)
In practice Time-consuming because  Fast to develop, but special attention
the expert has to collect has to be paid to the rules automati-

a lot of examples by hand cally acquired, because they may
have been generated from incorrect
or noisy examples




be envisaged (Comber et al. 2004). In addition, the extraction of rules from data
should also be studied using other learning algorithms capable of learning more
complex or efficient rules from noisy data. Another perspective is the application of
the method to raster data (Fritz and See 2005).

The approach we proposed is a starting-point for further investigations regarding
the data-driven schemata integration (Duckham and Worboys 2005, Volz 2005).
Our approach also opens up new prospects for the enrichment of the specifications.
In a more general way, this is a first step towards the automatic extraction of
metadata deriving from spatial data. Furthermore, we believe that combining top-
down and bottom-up approaches is the key to successfully integrating spatial
databases in a consistent way. Textual specifications should be used to
automatically assess the relevance of the learned rules and complete them when
required. This would enable us to avoid the interactive validation and revision steps
included in our method. In that sense, a rich formal model was recently defined to
describe spatial database specifications (Gesbert 2004, 2005). This model relies on an
ontology of the geographic world and describes specifications as links between the
ontology and the classes of the database schema. These links themselves rely on a
formal description of typical constraints encountered in the databases like geometric
constraints (ex: ‘an house is captured only if it is bigger than 100 m?’), topological
constraints (‘roads should be connected’), nature constraints (‘only paved roads are
captured’), and relational constraint (‘a small path is captured only if it leads to an
important building’) (Musticre et al. 2003). The automatic translation of the textual
specifications into this formal model defined is currently being explored.
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